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Abstract: Addition formulas exist in trigonometric functions. Double-angle
and half-angle formulas can be derived from these formulas. Moreover, the
relation equation between the trigonometric function and the hyperbolic function
can be derived using an imaginary number. The inverse hyperbolic function

arsinh(r) = [j —==d¢ is similar to the inverse trigonometric function

arcsin(r) = for \/%—ﬂdt, such as the second degree of a polynomial and the con-

stant term 1, except for the sign — and +. Such an analogy holds not only when the
degree of the polynomial is 2, but also for higher degrees. As such, a function
exists with respect to the leaf function through the imaginary number i, such that
the hyperbolic function exists with respect to the trigonometric function through
this imaginary number. In this study, we refer to this function as the hyperbolic
leaf function. By making such a definition, the relation equation between the leaf
function and the hyperbolic leaf function makes it possible to easily derive various
formulas, such as addition formulas of hyperbolic leaf functions based on the
addition formulas of leaf functions. Using the addition formulas, we can also
derive the double-angle and half-angle formulas. We then verify the consistency
of these formulas by constructing graphs and numerical data.

Keywords: Leaf functions; hyperbolic leaf functions; lemniscate functions; Jacobi
elliptic functions; ordinary differential equations; nonlinear equations

1 Introduction

1.1 Leaf Functions and Hyperbolic Leaf Functions
An ordinary differential equation consists of both a function raised to the 2n — 1 power and the second
derivative of the function.

dzr(l)
d2

= —nr(1)*™"" 1)

The preceding equation is the ODE that motivated this study. Although the Eq. (1) is a simple ordinary
differential equation, it has a very important meaning because it generates characteristic waves. By
numerically analyzing the solution that satisfies this equation, we can obtain regular and periodic waves
[1,2]. The form of these waves differs from the form of the waves based on trigonometric functions. The
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function that satisfies this ordinary differential equation is called a leaf function, and it describes the features
of these functions. Eq. (1) is transformed as follows:

Toodt
l:/ ———— (= arcsleaf,,(r 2
= () @
The preceding integral is defined as the inverse function arcsleaf,, (/) of the leaf function. Another
function can be defined as follows:

1
dt
l:/r ﬁ(: arccleaf, (r)) 3)
The preceding integral is also defined as the inverse function arccleaf,(r) of the leaf function with a
different integral domain compared to Eq. (2). The variable n represents a natural number, and it is
referred to as the basis. Moreover, the ordinary differential equation that is satisfied by the hyperbolic
functions (/) = sinh(/) and »(/) = cosh(/) is described as follows.

d?r(1
drli B (4)

Compared to Eq. (1), the difference in Eq. (4) is the positive sign on the right hand side of the equation.
The inverse hyperbolic functions arsinh(r) and arcosh(r) are well known as:

Toode .
l:/o ﬁ(: asinh(r)) (5)
[ = /1 ' \/tzdtj(— acosh(r)) (6)

The contents of the root in the integrand constitute a polynomial. The polynomial of the inverse hyperbolic
function and that of the inverse trigonometric function both have a degree of 2. The magnitude 1 of the
constant term in the root is also the same. The difference between the inverse functions of the trigonometric
function and the hyperbolic function is the sign (“+” and “—) of the polynomial in the root. Using Egs. (5)
and (6), it is seen that trigonometric functions and hyperbolic functions have relational equation through
imaginary numbers. Based on this relationship, similar functions also could be paired with leaf functions
though analogy relation (see Appendix D in detail). These functions are called hyperbolic leaf functions and
consist of two functions. One function is defined as follows.

r(1) = sleafh,(I)(n = 1,2,3- ") 7)

The limit exists for the function sleath,(/) (see Appendix F). The domain of the variable / is defined as
follows:

= <1<, ®)
The initial conditions of the preceding equation are defined as follows.
r(0) = sleath,(0) =0(n =1,2,3--") )
dr(0) d
= —sleafth,(0) =1(n=1,2,3--- 1
pT 3l (0) (n 3--4) (10)

Next, the another function is defined as follows:
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r(l) = cleafh,(/)(n =1,2,3--) (11)
The limit exists for the function cleafh,,(/) (see Appendix G). The domain of the variable / is as follows:
—My < I < M (12)

The initial conditions of the preceding equation are defined as follows.

#(0) = cleafh,(0) = 1(n = 1,2,3--") (13)
did(lO) = %cleafhn(O) =0n=1,2,3-) (14)

The ordinary differential equations that are satisfied by the hyperbolic leaf functions that correspond to
both Egs. (7) and (11) are as follows.

d*r(1)
dr

= nr(1)™! (15)

The inverse function of the hyperbolic leaf function is derived as follows:

Toodt

[ = /0 ﬁ(: asleafhn(r))(n == 1,2,3 < ) (16)
Toodt

l—/l ﬁ(— aCleafhn(l"))(n— 1,2,3) (17)

Here, the prefix a of both hyperbolic leaf functions sleath,, (/) and cleafth,,(/) are defined as the inverse
functions.

1.2 Comparison of Legacy Functions
The leaf functions and the hyperbolic leaf functions based on the basis #n = 1 are as follows:

sleaf (1) = sin(l) (18)
cleaf (1) = cos(1) (19)
sleafh; ({) = sinh(/) (20)
cleafh, (1) = cosh(/) @1)

Lemniscate functions were proposed by Johann Carl Friedrich Gauss [3]. The relation equations
between these functions and leaf functions are as follows:

sleaf, (1) = sl(l) (22)
cleaf, (1) = cl(/) (23)
sleafhy (1) = slh(/) (24)

The definition of the function slh(/) in Eq. (24) can be confirmed based on references [4,5]. A function
corresponding to the hyperbolic leaf function cleath,(/) is not described in the literature [6]. In the case where
the basis n = 3, the leaf function or the hyperbolic leaf function cannot be represented by a legacy function
such as the lemniscate function.
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1.3 Originality and Purpose

The purpose of this report is to propose addition formulas for the hyperbolic leaf functions with basis
n =2 and n = 3, in addition to establishing both double-angle and the half-angle formulas using addition
formulas. A similar analogy exists in the relation between the leaf function and the hyperbolic leaf
function such that the relation between the trigonometric function and the hyperbolic function can be
derived using imaginary numbers. Using this analogy, the addition formulas of hyperbolic leaf functions
based on n = 3 can be derived from the addition formulas of leaf functions based on n = 3. Using
addition formulas, we present numerical data and curves derived from the hyperbolic leaf function and
show that these addition formulas in the Section 2 are consistent.

1.4 Contribution

The leaf functions are closely related to the Jacobi elliptic functions. The Jacobi elliptic function
originated from the lemniscate function. In 1691, Jacob Bernoulli noticed that the arc length OP of the
lemniscate curve was the same as the integral of the equation [7]. As shown in Fig. 1, / represents the
length of arc OP. The arc OP is represented as:

"d
arcOP = /0 \/ii—tz (=1 (25)

The curve in Fig. 1 can be expressed using variables x and y as:

(2417 =22 =) (26)

Figure 1: Lemniscate of Bernoulli

When the basis of the leaf function, n = 2, the curve for the leaf function is the same as the lemniscate curve.
In 1718, Giulio Carlo de’ Toschi di Fagnano published a paper explaining how arc OP could be divided into two
equal parts using only a straightedge and a compass [8]. He discovered that the length » was twice the length u, as
shown in Fig. 2. This led to the derivation of the addition theorem for the lemniscate function:

2uv'1 — u?
r= % under the condition arcOP = 2arcOA 27)
u
“oode
arcOA = / 28
o V1I—1¢ (8

Figure 2: Fagnano and the lemniscate
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After reading Fagnano’s paper, Leonhard Euler found the addition formula for the lemniscate function in
1752 [9]. In the formula, the sum of the integral forms of arbitrary variables « and v equals the integral form 7:

r_u\/l—v4+\/\/1—u4

2
1 + u?v? (29)
The above-mentioned relation satisfies the integral equation as follows:
Toode “oodt voodt
Il v v 60
o V1—#¢ o VI—t# Jo V1—1¢

In 1796, Carl Friedrich Gauss derived the addition formula using the lemniscate function [3]. The
inverse lemniscate function is expressed as:

arcsl(r =lorkh) 31

= [ =

o V1—#¢
Using this definition of inverse arc sl, the addition formula of lemniscate function sl(/; + /,) is derived as:
sl(l)\/1 = sl(L)* + sl(L)y/1 — si(1;)*

Sy + 1) =
i+ l) 1+ s1(h)2si()?

(32)

Phases /; or [, of lemniscate function sl can be extended to complex variables i - /; or i - [,, respectively.
In 1827, Carl Gustav Jacob Jacobi derived the inverses of the Jacobi elliptic functions [10]. To derive the
formula, the term # is added to the root of the integrand denominator in Eq. (31):

arcsn(r, k (33)

)_/r dt
o /T—= ({0 +K)2 + k4

Eq. (33) represents the inverse Jacobi elliptic function sn, where k is a constant. There exist 12 Jacobi
elliptic functions, including cn and dn. In the Eq. (33), the variable ¢ is to the fourth power in the denominator.
Jacobi did not discuss the variable ¢ to higher powers, such as follows:

/’ de /’ de /r dt (34)
o VI—20"Jo VI=8"Jo VI —10 "

In other words, there had been no discussion for n = 3 in Egs. (2), (3), (16), and (17). Therefore, the
addition formulas for the leaf function were investigated for n = 3 [11]. In case of n = 3, no clear
description for the addition formulas of hyperbolic leaf functions exists. On the contrary, n = 1 represents
hyperbolic functions sinh(/) and cosh(/). Therefore, the addition formulas of the hyperbolic leaf function
and hyperbolic function are the same. The hyperbolic leaf function with n = 2 represents hyperbolic

lemniscate function slh(/). No clear description of the addition formulas of function slh(/) exists.

1.5 Advantage and Disadvantage
In physics, the nonlinear duffing equation represents a model for the spring pendulum whose spring
stiffness does not obey Hooke’s law. This undamped duffing equation is represented as:

d2
Cubic— Quintic Duffing Equation :d—l; +or+ pr + =0 (35)

To solve the above equation, numerical analysis or analytical approximate solutions have been applied
[12-24]. Additionally, literatures describe the application of the cubic duffing equation, using Jacobi elliptic
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functions [25-27]. As in the leaf function represented by Eq. (2), the term # is added to the root of inverse
Jacobian elliptic function sn in Eq. (33). Variables » and & control Jacobian function sn. The scope of applying
the duffing equation to the Jacobian elliptic function is wider compared with the leaf function that has only
one parameter /. Over time, the nonlinear duffing equation has witnessed improvements and further
numerical analysis [28-31].

2

Cubic — Quintic — Septic Duffing Equation : 7

—|—<xr—|—ﬂr +ur’ +or’ =0 (36)

A high-order exact solution using the Jacobi elliptic function has not been found yet. Furthermore,
the high-order addition theorem necessary to derive the exact solution is not defined in the Jacobi elliptic
function. To find the exact solution, the addition theorem is important to apply superposition principle.
By using the addition theorem, one term in the exact solution can be divided into several terms, or
the several terms can be integrated into one term. In this paper, we derive the addition theorem to
further derive an exact solution for a high-order duffing equation, followed by applying the
superposition principle.

2 Addition Formulas

2.1 Addition Formulas of Leaf Functions
Let there be two variables, /; and /,. The addition formulas of the function sleaf,(/) can be stated as

follows:

Osleaf; ()
ol

1 + (sleaf,(1,))* (sleaf, (i))*

Osleaf, (1))

sleaf, (1) o,

+ sleaf, ()

sleafy () + ) = (37)

Depending on the domain of the variable / of the leaf function, the signs of both Jsleaf,(/,)/0l, and
osleaf,(/,)/0l; change. Eq. (37) can be summarized according a number of cases based on the domains of
variables /; and [, (See Fig. 3). The parameters m and k represent integers.

(i) In the case where % (4m—1)=| = % (4m + 1), % 4k —1)Sh= % (4k + 1)(see Appendix E for
the constant x,), Eq. (37) is transformed into:

sleaf, (/; \/ 1 — (sleaf, (/) )
1 + (sleaf(/
L

sleaf, (/) + L) =

—)I— leafz 12 \/1 sleafz(h)) (38)

) (sleafz (12))

(ii) In the case where %(4m— 1= =- (4m+ 1), —(dk+1)=h é%(4k+3), Eq. (37) is

2]
. 2
transformed into:

—sleaf;(/; \/1 (sleafy (1)) puE sleaf (1, \/1 sleafz(ll))4
1 + (sleaf,(1,))*(sleaf,(i))*

(iii) In the case where %(4m F1)SLS %(4m +3),
tansformed into:

sleaf, (11 + 12)

(39)

%(41«— ESA é%(4k+1) Eq. (37) is

sleaf, (/; \/1 (sleaf,( lz — sleaf, (1) \/1 sleafz(ll))4
1 + (sleaf,(1)))* (sleaf (1))

sleafz (ll + 12 (40)
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(iv) In the case where %(4m +1H)=L=

%(4m—|—3) S @k +1)=h é%(4k+3) Eq. (37) is
tansformed into:

—sleaf2 L \/1 (sleaf,( 12 — sleaf, (k) \/1 sleafz(ll))4

sleaf, () + L) 41
(i k) 1+ (sleafs (1)) (sleafs (1)) )
Next, the addition formula of cleaf,(/) can be stated as follows:

leaf; (! leaf; (I
cleafz(ll)as%lz(z)jL sleaf (! )&%12(1)
cleafy (I} + h) = 2 L (42)

1 + (cleafs (1)) (sleafs (1))?

Depending on the domain of the variable / of the leaf function, the signs of both Osleaf,(/,)/0l, and
ocleaf,(/1)/0l; change. Eq. (42) can be summarized according a number of cases based on the domains of
variables /; and /,.

(i) In the case where 2mm, = I, = 2m+ 1) 7r2, (4k - 1)=L =0 (4k + 1), Eq. (42) is transformed into:

cleafz(ll)\/l — (sleafz(lz))4 — sleafz(lz)\/l — (cleafz(ll))
1+ (cleafz(h))2(sleaf2(lz))2
(ii) In the case where 2m — 1) m, = [} = 2m 712, (4k —H)=h= B (4k + 1), Eq. (42) is transformed into:

cleaf,(ly + 1) =

(43)

cleaf, (/) \/1 (sleaf, (1)) pus sleaf; (1) \/1 cleaf2(ll))
cleafz(h + 12
1 + (cleafy(1)))* (sleafz(lz))

(iii) In the case where 2m— 1), = [} = 2m 7t2, (4k +1)=h <P (4k + 3), Eq. (42) is transformed into:

(44)

—cleafz(ll)\/l — (sleafz(lz)) + sleafz(lz)\/l — (cleafz(ll))
1 + (cleaf,(1,))*(sleafs (5))*

(iv) In the case where 2m m, = [} = 2m + 1) m, %(4k+ )=h= %(4k+3), Eq. (42) is
transformed into:

—cleafy (1)1 — (sleaf(I))* — sleafs (1) (/1 — (cleafa(11))’
cleafy (/) + L) =

cleaf,(ly + 1) =

(45)

(46)
1 + (cleaf,(;))*(sleafs (I))*
Next, the addition formulas of sleaf;(/) can be described as follows:
leaf leaf :
2 a12 811
(sleaf3(11 + 12)) = ) 3 2 4
1 + 4(sleafs(/;))" (sleafs (L))" + 4(sleafs (/1)) (sleafs (L)) (47)

{(sleaf3 (I))sleafs (L) — sleaf3(11)(sleaf3(lz))3}2
1 + 4(sleafs (1)) (sleafs (1)) + 4(sleafs(1;))?(sleafs(5))*

The preceding equation can be summarized as follows according to a number of cases based on the
domains of the variables /; and /,.
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<L =(4k + 1 )73 or both

= =(4m+ 1)%and (4k — 1)”7

(i) In the case where both ( m— 1) %
% =L =4k + 3) Eq (47) is tansformed into:

{sleaf3 \/1 (sleafs (L)) + sleafs (L \/1 (sleaf (1)) }
(48)

2 _
(sleafs(f +5))" = 1 + 4(sleafs(1;))* (sleafs () + 4(sleafs(1))* (sleaf3 (1))
) sleaf3 () — sleaf3(ll)(sleaf3(lz))3}2

)
))* (sleaf (1)) + 4(sleaf3 (1, ))* (sleaf3 (k)

{(sleaf3(ll
+
1+ 4(sleaf3 (ll

The symbol 73 represents a constant (see Appendix E).
<11 =(4m + 3)7 and (4k — 1) <12—(4k + 1)7 or both

(ii) In the case where both (4m + )
Eq. (47) is tansformed into:

3 < =(4m+ )—and(4k—|— ) <12—(4k—|—3)2

(4m — 1)

2
{sleaf3 (1)1 — (sleafs(12))° — sleaf (1) /1 — (sleafs (1)) }
(49)

(Sleats (4 ) = e eats (1)) Sleat (3) P & 4(sleaf(1y) ) (sleafs (1)
{(sleaf3(11 Ysleafs(,) — sleafs (1, )(sleafs () }2

)*(sleaf3(1))* + 4(sleaf3(1,))* (sleaf3())*

)
+
1+ 4(sleaf3 (11 )

Next, the addition formulas of cleaf3(/) can be defined as follows

2
{cleaf3 (h)————= asleafg, (5) + sleafs (/) 80162453([1)}
1
1 + 4(sleaf (k) )4(cleaf3 (1)))* + 4(sleaf3(l))* (cleaf 5 (1, 3) (50)
3

{(sleafg(lz)) cleafs(l;) — sleaf(/y)(cleafs(/;)) }
1 + 4(sleaf3(1,))* (cleafs(1)))* + 4(sleafs(Ly))* (cleaf (1))

The preceding equation can be summarized as follows according to a number of cases based on the
3 <l =(d4m + )%orboth Qk+ 1)

(cleafs(l; + 1))* =

domains of the variables /; and /.
(i) In the case where both 2k 7r3 =L=Qk+1D) 7r3 and (4m — 1)
3 <= (4m + 3) 3 Eq. (50) is transformed into:

w3 < ll < (2k+ 2) T3 and (41’1’1 + 1)
{cleafg (hh) \/1 (sleafs (L)) — sleafs(ly) \/1

1 + 4(sleafs(L))* (cleafs(}))* + 4(sleafs (1))
{(sleaf3(lz ) cleafs(l;) — sleafs () (cleafs (1)) }

)
)) (cleafg(ll)) —|—4(sleaf3(12)) (cleaf;(1}))

(cleafs (1)) }
( (51)

cleafs(/;))*
2

(cleafs(l; + h))* =

+
1 + 4(sleaf3(/
(ii) In the case where both 2k + 1) n3 = [} = 2k +2) m3 and (4m — 1 3 <[, =(4m + 1) = or both 2k
2

m3<[; <Qk+1)m;and (4m+ 1) % =h=(4m+3) %, Eq. (50) is transformed into
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{cleafg ) \/1 (sleafs (1)) +sleaf3 L) \/1 cleaf3(ll))6}2
1 + 4(sleafs (L))" (cleafs(l;))* + 4(sleafs (1)) (cleafs (211)) (52)
{(sleaf3 (L)) cleafs(1;) — sleafs (L) (cleafs (1)) }
1T 4(sleafs())* (cleafs (1)) + 4(sleafs (k) ((cleafs(1;))*

(cleafs(l) + 1))* =

r_Sleaf (4k —1)2= </<(4A+17 (4k+1) 2 <I<4A+3)7

WS P SRR

Y P

0.5

“1
-1.5

r—cleaf 15 r
2kz, <1< (2k+1)7, (2k+1)z, <1< (2k+2)x,

WA\/\/&”AAﬂ
VakVARVAIVARVARY

-1

-1.5

Figure 3: Curves of the functions sleaf,(/) and cleaf,,(/)

2.2 Addition Formulas of Hyperbolic Leaf Function

Let there be two variables, /; and /,. Considering the imaginary number i, the relation between
sleafy(/) and sleath,(/), and the relation between cleaf,(/) and cleafh,(/) can be obtained as follows
(see Appendix D in detail):

sleaf, (i - 1) = i - sleaf; (/) (33)
sleafhy (i - ) = i - sleafhy (/) (54)
cleaf, (i - 1) = cleafhy(/) (55)

As shown in Egs. (53) and (54), in the case where n = 2, the functions sleaf,(i - /) and sleath,(i - /) are
equal to the functions 7 - sleaf,(/) and i - sleath,(/), respectively. Therefore, we cannot derive the addition
formulas of sleath,(/) by replacing i - / with / in Egs. (38)—(41). Using the relation between the function
sleaf,(/) and the function sleafth,(/) (see Appendix B), the addition formulas of sleath,(/) can be obtained.
By substituting Eq. (96) into Egs. (38)—(41), the following equation is obtained:
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sleafhy (), + ) =

sleafhz(ll)\/l + (sleafhy (1))* + sleafhg(lg)\/l + (sleafhy (1;))* (56)
1 — (sleafhy (1)) (sleafhy (1))

In the work [32], the addition formulas of cleath,(/) are obtained using Eq. (95):

cleathy(l, + L) =
leaf (1;) dcleafs (1
2cleafhy (1) )cleafhs (1) + 25 e;;( 1) e eglz( ) 57)
1 2

1 + (cleafhy (1;))* + (cleafhy ())* — (cleafhy(1;))?(cleafh, (1))?

The preceding equation can be summarized as follows according to a number of cases based on the
domains of variables /; and /,.

(1) In the case where both 0 = [} = n,and 0 = [, = npporboth—#y, =y =0and—7n, =, = 0 (see
Appendix G for the constant 7,.), Eq. (57) is transformed into:
cleafh2(11 + 12) =
2cleafhy (1) )cleafhy(Iy) + / (cleafhy (1)) — 14/ (cleafhy (1))* — 1 (58)
1 + (cleafhy (1;))* + (cleafhy (i))* — (cleafhy (1)) (cleafhy (1))

(i1) In the case where both0 =/} = myand—n, =L, = O0orboth—#n, =/, =0and 0 = [, = 7,
Eq. (57) is transformed into:

cleafhz(ll + 12) =
2cleafhy (1 )cleaths (1) — 1/ (cleafhy(1))* — 11/ (cleafhy(b))* — 1 (59)
1 + (cleafhy(1;))? + (cleafhy())* — (cleafhy (1;))*(cleafhy (1))

Next, let us consider the case of n = 3. The relation between sleafs(/) and sleafh;(/) and the relation
between cleaf;(/) and cleath;(/) are as follows (see Appendix D):

sleafs(/) = —i - sleafh;(i - /) (60)
cleaf3(/) = cleafhs(i - /) (61)

In Egs. (47)—(52), the variables /; and /, are replaced with the expressions i - /; and i - /5, respectively.
The addition formulas of sleath;(/) are defined as follows:

(sleafh3(11 + 12))2 = ,
{sleafhg,(ll)\/l + (sleafhs(5))° + sleafhs (12)\/1 + (sleafhs (11))6}

1 — 4(sleafhs (1 ))* (sleafhs (1))> — 4(sleafhs(1;))*(sleafhs (12))* (62)
{ (sleafhs (1)) sleafhs (1) — sleafhs (I; ) (sleafhs (1))? }2
1 — 4(sleafhs (1;))* (sleafhs (1))* — 4(sleafhs (1)) (sleafhs (1))

The addition formulas of cleafh;(/) are defined as follows:



CMES, 2020, vol.123, no.2 451

(cleafhs (I} 4+ L)) =

2
cleaths (1) Osleaths (f;) + sleafh; (1) dcleafhs (1)
812 a11
1 + 4(sleafhs (1)) *(cleafhs (1;))? — 4(sleafhs (1)) (cleafhs (1 ))* (63)

{(sleafh3 (1)) cleaths (Ib) + sleafhs (1) (cleafhs (1))} }2
"1 + 4(sleafhs (1)) (cleafhs (1;))? — 4(sleafhs (1))* (cleafhs (7))

The preceding equation can be summarized as follows according to a number of cases based on the
domains of the variables /; and /5.

(1) In the case where both — 3 = /; = 0 (see Appendix G for the constant #3), Eq. (63) is transformed
into:

(cleafhs (I} + L)) =
{cleafhg(ll)\/ 1+ (sleaths (I))° — sleafhs (1), (cleaths (1,))° — 1}
1 + 4(sleafhs (1))*(cleafhs (1, ))> — 4(sleafhs (1,))? (cleafhs (7;))* (64)
{ (steaths (1)) cleafhs (1) + sleafhs (1) (cleafhs (1))’ }2
1 + 4(sleafhs(5,))* (cleafhs (1,))* — 4(sleafhs (1)) (cleafhs (;))*

2

(ii) In the case where 0 = /; = 53, Eq. (63) is transformed into:
(cleafhs (I, 4+ 1))* =

{cleafh3(ll)\/l + (sleafh;;(lz))6 + sleafh3(12)\/(cleafhg(ll))6 — 1}2

1 + 4(sleafhy (5))* (cleafhs (1;))* — 4(sleafhs (L))*(cleafhs (/))* (65)
{(sleafh3(12))3c1eafh3(11) + sleafhs (1) (cleafhs (/;))° }2
1+ 4(sleafhs (b))} (cleafhs (1;))* — 4(sleafhs (1))* (cleafhs (7))

3 Double Angle Formulas and Half Angle Formulas

3.1 Double Angle Formulas of Leaf Functions

In the case where the basis n = 2, the variables /; and /, in Eq. (37) are replaced with the variable /, and
the double-angle formula can be expressed as follows:

Osleaf; (1)

ol
1 + (sleaf,(1))*

2sleaf; (/)

sleaf;(2/) = (66)

The preceding equation can be summarized as follows according to a number of cases based on the
domain of the variable /.
(i) In the case where % (4m —1)=I= =

> (4m + 1), Eq. (66) is transformed into:
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2sleaf, (1), /1 — (sleaf,(1))*

sleaf,(2/) = 67
() 1 + (sleafs (1)) ©
(ii) In the case where % (dm+1)=I= % (4m + 3), Eq. (66) is transformed into:
2sleaf, (1)1/1 — (sleaf,(1))*
sleafy(2/) = — ) ( ) (68)

1 + (sleaf,(1))*

The variables /; and /, in Eqs. (43)—(46) are replaced with the variable /. The double-angle formula can
be defined as follows:

1 — 2(cleafs(1))* — (cleafs())*

cleafy(2/) = —1 —2(cleafs(/))* + (cleaf>(1))*

(69)

In the case where the basis n = 3, the variables /; and /, of Eq. (47) are replaced with the variable /, and
the double-angle formula of the function sleaf;(2/) can be expressed as follows:

Osleaf; (1)
\/1+ 8(sleafs (1))’

(i) In the case where % (4m —1)=I=
transformed into:

2sleaf3(/)
sleaf3(2/) =

T3

> (4m + 1) (see Appendix E for the constant z3), Eq. (70) is

2sleafs(1)1/1 — (sleafs(1))°

sleaf3(2/) = (71)
V1 + 8(sleafs (1))°
(ii) In the case where % (4m+1)=I= % (4m + 3), Eq. (70) is transformed into:
2sleaf3(1)y/1 — (sleaf3(1))°
sleaf3(2/) = — ) ( i) (72)

V1 + 8(sleats (1)

In the case where the basis n = 3, the variable /; and the variable /, of Egs. (51)—(52) are replaced with the
variable /. The double-angle formula of the function cleafs(2/) is then expressed as follows:

2(cleafs(1))* + 2(cleafs(1))* — 1
1 + 8(cleaf (1)) + 8(cleaf3(/))® — 8(cleafs(/))*

cleaf3(2/) =

(73)

3.2 Half Angle Formulas of Leaf Functions
In the case where the basis n =2, the variables /; and /, in Egs. (38)—(41) are replaced with the expression

//2, and the half-angle formula is defined as follows:
(i) In the case where % (dm+1)=Il= % (4m + 3) (see Appendix E for the constant x,), the half-angle

formula is expressed as follows:
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AN2 =1 — /1= (sleafy(1))?
(s0:(3)) = e 7
1 + (sleaf, (1))

T \/2—(sleaf2(l))2+2 1 — (sleaf, ()

(ii) In the case where % (4m—1)=I= % (4m + 1), the half-angle formula is defined as follows:

<sleaf2 <é>>2 _ Tt (Sli;z((jgiif 2(1)?

\/ 1+ (sleaf, (1))
(sleaf (1))

(75)

\/ 2 — (sleaf,(1))* — 24/ 1 — (sleaf,(1))*

In the case where the basis n = 2, the variables /; and /, in Eqs. (43)—(46) are replaced with the expression
//2 and the half-angle formula is expressed as follows:

L 2
(cleafz <£>) _ 1 + cleaf (1) + v/24/1 + (cleaf, (1)) 76)

1 + cleaf, (/)

In the case where the basis n = 3, the variables /; and /, in Egs. (47)—(49) are replaced with the expression
[/2 and the half-angle formula of the function sleaf3(/) is defined as follows:

(i) In the case where % (4m —1)=I= =5 > (4m + 1) (see Appendix E for the constant z3), the half-angle

formula is defined as follows:

o () --

(sleafs(/ \/ 1 + (sleaf3(1))* + (sleaf3(1))*

2 — 2(sleaf (1))’ a
\/1 + ( sleafz.(l)) (sleaf3(l))4

(4m + 3), the half-angle formula is expressed as follows:

N = l\.)|>—‘

—1 — (sleaf5(1))* + 2(sleaf5(1))* +

(ii) In the case where % (dm+1)=I= %

<sleaf3 <é>> = %(sleat}(l))2 + % \/1 + (sleafs(1))* + (sleaf3(1))*
78
+l —1 — (sleaf3(1))* + 2(sleaf3 (/) 2= (sleaf3(l)) 7
2 \/1 + (sleaf3(1))* + (sleaf3(1))*

In the case where the basis n = 3, the variables /; and /, in Egs. (51)—(52) are replaced with the expression

/
1/2 and the half-angle formula of the function cleafs (5) is defined as follows:
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(cleaf3 <£>>2 _ (cleafs(7))* — 1 N \/5\/ 1 + (cleafs(1))* + (cleafs(1))*

2] Alcleafs()” +2 5, [1 4 d(cleats (1))? + 4(cleafs ()’ (79)

V/3cleafs (/) \/ —3 — 6(cleaf3(1))* + 2v/3{1 + 2(cleaf5()) }\/ 1 + (cleaf3())* + (cleafs(/))*

+ 3
2{1 + 2(cleaf3(1))*}

3.3 Double Angle Formulas of Hyperbolic Leaf Functions
In the case where the basis n = 2, the variables /; and /, in Eq. (56) are replaced with the variable /, and
the double-angle formula is defined as follows:

2sleafhy(1)y/1 + (sleafhy(1))*
1 — (sleafhy(1))*

sleafh, (27) = (80)

The variables /; and /, in Egs. (58) and (59) are replaced with the variable /. The double-angle formula is
then defined as follows:

(cleafh, (1))* + 2(cleafh, (1))* — 1
—(cleafhy (1))* + 2(cleafhy (1)) + 1

cleafh, (2/) = (1)

In the case where the basis n = 3, the variables /; and /, of Eq. (62) are replaced with the variable /, and
the double-angle formula of the function sleafh;(2/) is defined as follows:

2sleafhy (1)y/1 + (sleafhy (1))’
\/1 - 8(sleafhs (1))°

In the case where the basis n = 3, the variables /; and /, of Egs. (64) and (65) are replaced with the
variable /, and the double-angle formula of the function cleath;(2/) is defined as follows:

sleafhs (21) = (82)

2(cleafhs (1)) + 2(cleafhs (7))* — 1

cleaths(2/) =
\/ 1+ 8(cleafhs (1))* + 8(cleafhs(1))° — 8(cleaths (1))*

(83)

3.4 Half Angle Formulas of Hyperbolic Leaf Functions
In the case where the basis n = 2, the variables /; and [, in Eq. (56) are replaced with the expression //2,
and the half-angle formula is defined as follows:

(1) In the case where |I| = {, (see Appendix F for the constant {; and Appendix H for the periodicity
n = 2), the half-angle formula is expressed as follows:

2 leafh,(
<Sleafh2< >> L \/1 (steafh, v2 ®9
2 (Sleafh2<l)) \/ 1+ \/1 + (sleathy (/)

(i1) In the case where {; < |/|, the half-angle formula is defined as follows:
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2 (sleafhy(
) e " -

(sleafhz(l)) \/_1 + /1 + (sleafhy(1))*

In the case where the basis n = 2, the variables /; and /, in Eqgs. (58) and (59) are replaced with the
expression //2, and the half-angle formula can be expressed as follows (see Appendix G for the constant
1, and Appendix H for the periodicity n = 2):

(1) In the case where |/| = 7, the half-angle formula is defined as follows:

I\\2 1+ cleafhy(l) + v21/1 + (cleafhy(1))?
(cleafh2 <§>) B 1 + cleafh; (/) (86)

(ii) In the case where #, = |/, the half-angle formula is defined as follows:

I\N\> —!+cleafhy(l) — ﬁ\/ 1 + (cleafhy(1))?
<Cleafh2 <E>> N I + cleafh, (/) (87)

In the case where the basis n = 3, the variables /; and /, in Eq. (62) are replaced with the expression //2,
and the half-angle formula of the function sleafth;(/) is defined as follows:

(sleafh3 <§>>2 = —%(sleafh3(l))2 — % \/1 — (sleafh3(l))2 + (SIeafh3([))4
2+ 2(sleafh3(l)) (88)
\/ 1 — (sleafhs (7)) + (sleafhs (7))

1
+§ —1 + (sleafhs(1))* + 2(sleafhs (/)

In the case where the basis n = 3, the variables /; and /, in Eqgs. (64) and (65) are replaced with the
expression //2 and the half-angle formula of the function cleaths(/) is defined as follows:

(cleafh3 <£>>2 _ —1 + cleafhs (7)) + \/§\/1 + cle;afh3(l))2 + (cleafhs(/))*
4(cleafhs(l))” + 2

(89)

V/3cleafhs (1) \/ —3 — 6(cleafhs (1))* + 2v/3{1 + 2(cleafhs (/) )2}\/ 1 + (cleafhs (1)) 4 (cleafhs (7))*

+
2{1 + 2cleafh;(1))*}*/?

4 Numerical Analysis

4.1 Numerical Analysis of Leaf Functions

The curves of the leaf functions sleaf,(/) and cleaf; (/) are shown in Figs. 4 and 5. Numerical data for these
two leaf functions are summarized in Tab. 1. These curves are the same curves as those of the lemniscate elliptic
functions = sl(/) and r = cl(/). Using the addition formulas of Eqgs. (38)-(46), the curves of the leaf functions
sleaf,(/) and cleaf,(/) are translated in the direction of the axis /. Fig. 6 shows graphs of the double-angle
sleaf,(2/) and the half-angle sleaf,(/2) obtained using Egs. (67)—(68) and Egs. (74)—(75). Fig. 7 shows



456 CMES, 2020, vol.123, no.2

7= sleaf, (I +1.0) / / \ r = sleaf, (I -1.0)
r = sleaf, (I +0.5 -1.5 r = sleaf,(1-0.5)
0}

r = sleaf,

Figure 4: Translation of the curves of the function sleaf,(/) obtained using the addition formulas with the
basis n =2

15 p

S 1 S
r = cleaf, (I +1.0) r = cleaf,(I-1.0)

r=cleaf,(1+0.) r=cleaf,(l) y:ﬁég/;(lfo.s)
Figure 5: Translation of the curves of the function cleaf,(/) obtained using the addition formulas with the
basis n =2

graphs of the double-angle cleaf,(2/) and the half-angle cleaf;(//2) obtained using Egs. (69) and (76). The
amplitude of the wave is 1 and one period of the function cleafy(/) is 2 7, (=2 x 2.622 ...).

As shown in Fig. 4, curves sleaf,(/) are translated using only the addition theorem, so that the period
remains constant at 2z,. On the contrary, as shown in Fig. 6, the period changes to 7, and 47,, when the
phase becomes 2/ and //2, respectively. Similarly, as shown in Fig. 5, curves cleaf,(/) are translated using
only the addition theorem, so that the period remains constant at 2zz,. On the contrary, as shown in Fig. 7,
the period changes to 7, and 4x,, when the phase becomes 2/ and //2, respectively. Additionally, the leaf
function can be expressed as the following trigonometric function:

sleaf, (l + %) = cleaf,(I) (n =1,2,3,--+) (90)

. . s . . . .
Using the Eq. (90) and with constant 72, the waves are translated in the direction /. The curve shown in

the Fig. 6 represents the wave translated in the positive direction /, as shown in the Fig. 7. Similarly, the curve
shown in the Fig. 4 represents the wave translated in the positive direction /, as shown in the Fig. 5.

Next, the graph of the leaf function with the basis » = 3 is shown. The curves of the leaf functions
sleaf;(/) and cleaf3(/) are shown in Figs. 8 and 9. The horizontal and vertical axes represent the variables
[ and r, respectively. The numerical data of the leaf functions sleaf;(/) and cleaf;(/) are summarized in
Tab. 1. The curves of the leaf functions sleaf;(/) and cleaf;(/) are translated in the direction of the axis /.
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Table 1: Numerical data of the leaf functions

/ sleaf; (/) cleafi (/) sleaf, (/) cleafy(/) sleafs(/) cleafz(/)
0.0  0.000000000 1.000000000  0.000000000  1.000000000  0.000000000  1.000000000
0.1 0.099833417 0.995004165  0.099998987  0.990049602  0.099999991  0.98518434
0.2 0.198669331 0.980066578  0.199967976  0.960781145  0.199999064  0.942809514
0.3 0.295520207 0.955336489  0.299757126  0.913842132  0.299984331  0.878183695
0.4 0.389418342 0.921060994  0.398978135  0.851676083  0.39988294 0.797825011
0.5 0.479425539 0.877582562  0.496891146  0.777159391  0.499442694  0.70763201
0.6 0.564642473 0.825335615  0.592307034  0.693234267  0.598009242  0.611978813
0.7 0.644217687 0.764842187  0.683522566  0.602609146  0.694183101  0.513646507
0.8 0.717356091 0.696706709  0.768312999  0.507563306  0.785387303  0.414175714
0.9 0.78332691  0.621609968  0.844009686  0.409858439  0.867486256  0.314303714
1.0 0.841470985 0.540302306  0.90768321 0.310738001  0.934767593  0.214323891
1.1 0.89120736  0.453596121  0.956432623  0.210987025  0.980707849  0.114325366
1.2 0932039086 0.362357754  0.987748032  0.111027204  0.999692203  0.014325392
1.3 0.963558185 0.267498829  0.999878378  0.011028912  0.989089542  —0.085674597
1.4 0.98544973  0.169967143  0.99211532 —0.088970511 0.950392842  —0.185674048
1.5 0.997494987 0.070737202  0.96491412 —0.188946955 0.888559535  —0.285663493
1.6 0.999573603 —0.029199522 0.919815574  —0.288769649 0.810063642  —0.385583945
1.7 0.99166481  —0.128844494 0.859192306 —0.388082304 0.720971617  —0.485219858
1.8 0.973847631 —0.227202095 0.785891649  —0.486189025 0.6258955 —0.583992736
1.9 0.946300088 —0.323289567 0.702864932  —0.581954203 0.527828311  —0.680635105
2.0 0.909297427 -0.416146837 0.612857981  —0.673732946 0.428461029  —0.772765772
2.1 0.863209367 —0.504846105 0.518203565  —0.759356014 0.328621294  —0.856486525
2.2 0.808496404 —0.588501117 0.420721859  —0.836196738 0.228648563  —0.92628646
2.3 0.745705212 -0.666276021 0.3217114 —0.90134206  0.128650882  —0.975673073
2.4 0.675463181 —0.737393716 0.222003575  —0.951870972 0.028650956  —0.998769949
2.5 0.598472144 -0.801143616 0.122054841  —0.985211764 —0.071349009 —-0.992412076
2.6 0.515501372 —0.856888753 0.022057545  —0.999513456 —0.171348665 —0.95749878
2.7 042737988  —-0.904072142 -0.077942171 -0.993943297 —0.2713412 —0.898594215
2.8 0.33498815  —0.942222341 —0.177924624 —0.968828424 —0.371279371 —0.822087294
2.9 0.239249329 -0.970958165 —0.277776677 —0.925599649 —0.470980082 —0.734191026
3.0 0.141120008 —0.989992497 -0.37717265 —0.866554268 —0.569933963 —0.639752776

These curves of the leaf functions were obtained using the addition formulas of Eqs. (48)—(49) and Egs. (51)—
(52). Fig. 10 shows graphs of the double-angle sleaf3(2/) and the half-angle sleaf;(//2) obtained using Eqs.
(71)—~(72) and Egs. (77)—(78). Fig. 11 shows graphs of the double-angle cleaf;(2/) and the half-angle cleaf;(//
2) obtained using Egs. (73) and (79). The amplitude of the wave is 1 and one period of the function cleaf;(/) is
2m3 (=2 %2429 ...).
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Figure 6: Translation of the curves of the functions sleaf,(/), sleaf,(2/), and sleaf,(//2) obtained using the
addition formulas based on the basis n = 2
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Figure 7: Translation of the curves of the functions cleaf,(/), cleaf,(2/), and cleaf,(//2) obtained using the
addition formulas based on the basis n =2
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Figure 8: Translation of the curves of the function sleaf3(/) obtained using the addition formulas with the
basis n =3

When the phase is doubled, the period is halved, and vice-versa. Even with a change in the phase, the amplitude
remains constant at 1, and initial condition cleaf3(0) = 1 is maintained at / = 0, as confirmed from the graph.

4.2 Numerical Analysis of Hyperbolic Leaf Functions
The curves of the leaf functions sleath,(/) and cleath,(/) are shown in Figs. 12 and 13. The horizontal and
vertical axes represent the variables / and . The numerical data for the leaf functions sleath,(/) and cleath,(/)
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Figure 9: Translation of the curves of the function cleaf;(/) obtained using the addition formulas with the
basis n =3
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Figure 10: Translation of the curves of the functions sleaf;(/), sleaf;(2/), and sleafs(//2) obtained using the
addition formulas based on the basis n = 3
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Figure 11: Translation of the curves of the functions cleaf(/), cleaf;(2/), and cleaf;(//2) obtained using the
addition formulas with the basis n = 3

are summarized in Tab. 2. Using the addition formulas of Eq. (56) and the Eqgs. (58)—(59), the curves of the
leaf functions sleath,(/) and cleafh,(/) are translated in the direction /. Fig. 14 shows graphs of the double-
angle sleafh,(2/) and the half-angle sleath,(//2) obtained using Eq. (80) and Eqs. (84)—(85). Fig. 15 shows
graphs of the double-angle cleath,(2/) and the half-angle cleath,(//2) obtained using Eq. (81) and Egs.
(86)—(87). Limits exist for the functions sleafth,(/) and cleafh,(/), respectively (see Appendix F and
Appendix G). Next, curves of the leaf functions sleath; (/) and cleath;(/) are shown in Figs. 16 and 17.
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Figure 12: Translation of the curves of the function sleath,(/) obtained using the addition formulas with the
basis n =2
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Figure 13: Translation of the curves of the function cleath,(/) obtained using the addition formulas with the

basis n =2
Table 2: Numerical data of the hyperbolic leaf functions

/ sleath; (/) cleafth;(/) sleafth,(/) cleafth,(/) sleaths(/) cleaths(/)
0.0  0.000000000  1.000000000  0.000000000  1.000000000  0.000000000  1.000000000
0.1 0.10016675 1.005004168  0.100001013  1.010050409  0.100000009  1.015190873
0.2 0.201336003  1.020066756  0.200032033  1.040819784  0.200000936  1.063219846
0.3 0.304520293  1.045338514  0.300243205  1.094280966  0.300015671  1.152957367
0.4 0.410752326 1.081072372  0.401026247  1.174155432  0.400117152  1.306327433
0.5 0.521095305 1.127625965 0.503141445 1.286737533  0.500558986  1.583264962
0.6 0.636653582  1.185465218 0.607861028  1.442514133  0.6020087 2.225120045
0.7 0.758583702  1.255169006  0.717150413  1.659450947  0.705950043  21.4096535
0.8 0.888105982  1.337434946  0.833926854  1.97019847 0.815368602 —
0.9 1.026516726  1.433086385  0.962467567 2.439868366  0.936017909 —
1.0 1.175201194  1.543080635 1.10910404 3.218148246 1.079143503 -
1.1 133564747 1.668518554  1.283479658  4.739635312  1.26866512 -
1.2 1.509461355 1.810655567  1.500980956  9.006830737  1.566095647 —
1.3 1.698382437  1.97091423 1.787828613  90.67397241  2.210887381 —
1.4 1904301501 2.150898465 2.192926988 — 15.13849028 —
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Figure 14: Translation of the curves of the functions sleath,(/), sleath,(2/) and sleath,(//2) obtained using
the addition formulas with the basis n =2

v r=cleafh,(21) r=cleafh, ()

\

[ury

O H N WRUONOWLVO

r = cleafh,

-1.5 -1 -0.5 0 0.5 1 \ ) 15
g

Figure 15: Translation of the curves of the functions cleath,(/), cleath,(2/), and cleath,(//2) obtained using
the addition formulas with the basis n = 2
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Figure 16: Translation of the curves of the function sleafths(/) obtained using the addition formulas with the
basis n =3

The horizontal and vertical axes represent the variables / and r, respectively. The numerical data of the
leaf functions sleafh;(/) and cleafh;(/) are summarized in Tab. 2. Using the addition formulas of Eq. (62)
and Egs. (64)—(65), the curves of the leaf functions sleafh;(/) and cleath;(/) are translated in the
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Figure 17: Translation of the curves of the functions cleafh;(/) obtained using the addition formulas with the
basis n =3

direction /. Fig. 18 shows graphs of the double-angle sleath;(2/) and the half-angle sleath3(//2) obtained using
Egs. (82) and (88).

Fig. 19 shows graphs of the double-angle cleath;(2/) and the half-angle cleath;(//2) obtained using Eqs
(83) and (89). Limits exist in the functions sleath;(/) and cleath;(/), respectively. For the function sleafths(/),
the limit exists at + {3 (see Appendix F for the constant {3). The curve of the function sleath;(/) monotonically
increases in the domain — {3 < / < {3. In the case of the function cleath;(/), the limit exists at + 73 (see
Appendix G for the constant #3). The domain of the function cleafhs(/) is — #3 <[ < 5.

sV r = sleafhy(l) |

4 r=sleafh, (2[) \

3 \

: e
0= |

T 0904 L o1 i \ +
) r= sleaﬂ,{ij
2

-3
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Figure 18: Translation of the curves of the functions sleaths(/), sleath;(2/), and sleath;(//2) obtained using
the addition formulas with the basis n = 3

7 r = cleafhy(l)

5 I
4.5 \ |
;
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0.5 \ 7
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-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

Figure 19: Translation of the curves of the functions cleaths(/), cleath;(2/), and cleath;(//2) obtained using
the addition formulas with the basis n = 3
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5 Conclusion

Based on the analogy between the trigonometric and hyperbolic function, the hyperbolic leaf function
paired with the leaf function was defined. The main conclusions can be summarized as follows:

e The relation equations between the leaf function and the hyperbolic leaf function were derived using
imaginary numbers.

e The addition formulas of the hyperbolic leaf function were derived by using addition formulas of the leaf
function with the basis n =1, 2, 3.

e For both the leaf function and hyperbolic leaf function for the basis n =1, 2, 3, half-angle and double-angle
formulas were derived using addition formulas

As a future research topic, we will investigate whether the periodicity of the hyperbolic leaf function
exists. In the case where the basis #n = 2, a limit exists in the hyperbolic function. By appropriately setting
the initial conditions, the addition formulas for » = 2 can be applied in all domains over the limit.
Although the periodicity of the hyperbolic leaf function n = 2 is evident, questions remain concerning the
periodicity of the hyperbolic leaf function with n = 3. In the case where the basis is n = 3, a limit also
exists for the hyperbolic leaf function. However, the addition formulas of the hyperbolic leaf function
cannot be applied outside of its domain. At basis n = 3, the periodicity of the hyperbolic leaf function is
not observed. Another unaddressed issue is that the addition formulas of the leaf function with the basis
n =4 or more are not known.
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Appendix A. Relationships of Leaf Functions and Hyperbolic Leaf Functions (n = 1)

The relation equations with the basis #» = 1 are described. The relation equation between the leaf function
sleaf](/) and the leaf function cleaf;(/) is as follows:

(sleaf (1))* + (cleaf, (1))* = 1 (91)
The relation equation between the hyperbolic leaf function sleath;(/) and the hyperbolic leaf function
cleath;(/) is as follows:

(cleafh, (1))* — (sleafh, (/))* = 1 (92)

Appendix B. Relationships of Leaf Functions and Hyperbolic Leaf Functions (n = 2)

The relation equations with the basis n =2 are described. The relation equation between the leaf function
sleaf,(/) and the leaf function cleaf,(/) is as follows [1]:

(sleaf,(1))* + (cleafs(1))* + (sleaf,(1))* - (cleaf,(1))* = 1 (93)
The relation equation between the hyperbolic leaf function sleafth,(/) and the hyperbolic leaf function
cleafh,(/) is as follows [32,33]:

1 + (sleafhy(1))*

cleafh, (v2/) = 1 — (sleafhy(1))?

94)

The relation equation between the hyperbolic leaf function cleaf,(/) and the hyperbolic leaf function
cleath,(/) is as follows:

cleaf, (/) - cleafhy (/) = 1 95)

The relation equation between the hyperbolic leaf function sleaf,(/) and the hyperbolic leaf function
sleath,(/) is as follows:

,  2(sleafhy(1))?
1+ (sleafhy (1))

(sleaf, (v/21)) (96)

Appendix C. Relationships of Leaf Functions and Hyperbolic Leaf Functions (n = 3)

The relation equations with the basis n = 3 are described. The relation equation between the leaf
functions sleafs(/) and cleaf;(/) is as follows [1]:

(sleaf3 (1)) + (cleafs(1))* 4 2(sleaf3(1))* - (cleafs(/))* = 1 (97)
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The relation equation between the hyperbolic leaf functions sleath;(/) and cleafths(/) is as follows [32,33]:
(cleafhs(1))* — (sleafhs(/))* — 2(sleafhs(1))* - (cleafhs(1))* = 1 (98)

Appendix D. Relationships between Leaf Functions and Hyperbolic Functions

Using the imaginary number, the relations between the leaf function and hyperbolic leaf function are
described in the works [32,33]. To derive the relation between these two functions, the following
equation is defined:

r=i-u ©9)

The symbol i represents the imaginary number. Substituting the preceding equation yields the following:

= arcsleaf, (i - u)) (100)

l_/i-u dz (
o VI—

Here, the parameter ¢ is replaced with i - £ (¢ =i - {). In the case where 1= 0, £ is zero. In the case where ¢ =
i - u, ¢is u. Thus, the following equation is obtained:

(101)

/ / " i-dé . / " dé

= _— = - _—
01— (&) 0 /1 —n. g
Let n be an odd number, thatis,n=2m —1(m=1,2, 3, ...). The following equation is then obtained:

= i - asleafh, (u) (102)

l:i-/ud—ézi./udig
0 /1 —2n. & 0 1+

The following equation is obtained based on the preceding equation as follows:
[
sleafh,, (—) =u (103)
l

sleafh,(—i-1) =u (104)
Here, the leaf function sleath,, (/) has the following relation [33]:

sleafh,(—I) = —sleafh, (/) (105)
Eq. (103) can be transformed as follows:

—sleafh,(i- /) = u (106)
The following equation is obtained using Eqgs. (100) and (106):

sleaf, (/) = —i - sleafth,,(i - /) (107)

Next, let us consider the case where 7 is an even number. In the case where n=2m (m=1,2,3 ...), the
following equation is obtained:

=i - arcsleaf, (u) (108)

zzi./”d—f:i./“L
0 /1 —2n. & 0 /1 — &
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The following equation is obtained:

sleaf, ({) =u
i

sleaf,(—i-1) =u
Here, the leaf function sleaf,(/) has the following relation [2]:
sleaf,,(—/) = —sleaf, (/)
Eq. (110) can be expressed as follows:
—sleaf,(i- ) = u
The following equation is obtained using Eqs. (100) and (112):
sleaf, (/) = —i - sleaf,(i - 1)
In the case where 7 is an even number, the following equation is also derived:
sleafh,, (/) = —i - sleafh, (i - /)

Next, the equation can be transformed as follows:

l:/r dr :/r' dt :%./rdt zl_arccleaf,,(r)
LV -1 piVI=2 i V=

The following equation is obtained by the Eq. (115):
r = cleaf, (i - /)

The following equation is also obtained by the Eq. (115):
r = cleafh, (/)

The following equation is obtained using Eqs. (116) and (117):
cleaf,,(i - [) = cleath, (/)

Alternatively, the following equation is obtained by substituting i - / into /:
cleaf, (/) = cleath, (i - )

In the preceding equation, the following equation is applied:

cleaf, (/) = cleaf,(—I)

Appendix E. Periods of Leaf Functions

The constants 7, are defined as follows [1,2]:

1
1
T, =2 ——dt(n=1,2,3---
/ox/l—ﬂn ( )

467

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

In the case where n = 1, the constant 7r; represents the circular constant zz. The constants z,, (m=1,2,3 ...)

are summarized in Tab. 3.
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Table 3: Values of constants 7,

n T,

1 3.1415 ...
2 2.6220 ...
3 2.4286 ...

Appendix F. Limits of Hyperbolic Leaf Functions sleafh,,(/)

Except for the basis n = 1, the limit of the variable / exists in the hyperbolic leaf function sleath,,(/) [33].
The limit with the basis # is defined as {,,. The limit {, is obtained by the following equation:

o 1

The constants {, (n =2, 3 ...) are summarized in Tab. 4.

Table 4: Values of constants 7,

n T,

1 Not applicable ...
2 1.8540 ...

3 1.4021 ...

Appendix G. Limits of Hyperbolic Leaf Functions cleafh, ()

Except for the basis n = 1, the limit of the variable / exists in the hyperbolic leaf function cleath,,(/) [32].
The limit with the basis # is defined as #,. The limit 7, is obtained using the following equation:

o0 1
[ &t =2,3--- 123
= [ ) (123)

The constants #,, (n =2, 3 ...) are summarized in Tab. 5.

Table 5: Limits #, of the hyperbolic leaf function cleath,,(/)

n M

1 Not applicable ...
2 1.31102 ...

3 0.70109 ...

Appendix H. Periods of Hyperbolic Leaf Functions

The function sleath,,(/) and cleafh,,(/) have limits. The domains of the variable / are defined as Egs. (8)
and (12), respectively. Therefore, the values of the hyperbolic leaf function cannot be defined under the
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domain |/| > ¢, in the function sleafh,,() or |/| > #,, in the function cleath,,(/). In the case where n = 1, the limits
do not exist in the hyperbolic leaf function as sleath;(/) and cleafh;(/) represent sinh(/) and cosh(/),
respectively. In the case where n = 2 (sleath,(/) and cleath,(/)), the initial values of the variables 7(0) and
dr(0)/dt are defined by Eqgs. (9) and (10), or Egs. (13) and (14). The initial values in the function
sleafh,(/) are redefined as follows:

r(2m{,) = sleafhy(2m{;) =0 (124)
dr(2m¢,) d B
T = aSleafhz(sz2) =1 (125)
The initial values of the function cleafh,(/) are redefined as follows:
r(4mn,) = cleafhy(4mn,) =1 (126)
r((4m — 2)n,) = cleafhy((4m — 2)n,) = —1 (127)
dr(2mm,) d B
TR dlcleafhg(Zmnz) =0 (128)

The variable m represents an integer. The graph based on these definitions is shown in Fig. 20 (sleath,(/))
and Fig. 21 (cleafh,(/) ), respectively. Such definitions are consistent for all the formulas such as the addition,
double-angle, and half-angle formulas. These formulas work under all domains. In the case n = 2, the
hyperbolic leaf functions can be extended for all domains. In the case where n = 3 in the hyperbolic leaf
function, the addition, double-angle, and half-angle formulas do not work in the domain |/| > {5 of |/| >
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Figure 21: Curves of the extended hyperbolic leaf function cleath,(/) for the initial conditions: Eqs. (126)—(128)
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73, even if the initial conditions are defined by equations such as r(2m (3) = sleath;(2m {3) = 0. In the case
where n = 3, the values of sleafh, (/) and cleath, are unknown for the domain |/| > ¢, of |/| > #,.

Appendix 1.
Eq. (47) is set as follows:

2 _ {p1(l1,h)} n {p2(1h, 1)}

Il 129
g(ll s 12) = sleaf3 (11 + 12) (130)
Osleafs (! Osleafs(/
1, 1) = sleafs(ly) 103 R) | ooy (1) 25120 (0) (131)
b ol
p2(l, 1) = (sleafs(ly))’sleaf(l,) — sleaf (/) (sleafs (1))’ (132)
p3(l, ) = 1+ 4(sleaf3(1,))* (sleafs(L))* + 4(sleafs(1;))* (sleaf3(1))* (133)
The following equations are obtained by differentiating with respect to variable /;:
6p1 (11, 12) 8sleaf3(11) 8sleaf3(12) 5
= — 3sleaf leaf;(/ 134
o, o, ol 3sleaf (1) (sleafs(l;)) (134)
Osleaf(/ Osleaf;(/
2 1) 3 Geafy (1) sleafs (1) 2R3 _ (greary ()2 2€803(0) (135)
8[1 811 all
leafs(/ Osleafs(/
I B) 6 gteafs (1))} (steafs ()2 22U | gqteats (1) (sleafs (1)) 251203 (1) (136)
811 811 811
The following equations are obtained by differentiating with respect to variable /5:
8p1 (11 s lz) 8SIGaf3 (l]) BSIGafg (12) 5
= — 3sleaf; (/) (sleaf3 (! 137
o o, o sleaf’3 (1, ) (sleaf3()) (137)
Osleaf’s (1 Osleaf’s (1
21 8) 3 greaty(n))steats (1) 222 E) L (qears (1)) 2120 (2) (138)
oh oh oh
leafs (/ leafs(/
I3l B) _ 6 steats (1))} (steafs ()2 2192 2) | gteat (1) (sleats (1)) 251203 2) (139)
812 612 a12
Using Eq. (129), the following equations are obtained by differentiating with respect to variable /;:
Ip1(l, b) Ip2(h, )
2pi(h, b)) —————=+2p2 (L, ) —————— Il
dg(l,b) < pi(l, 1) oI, +2pa(h, ) o, p3(h, k)
on 2¢(l, b)ps(h, bb)?
’ ’ 140
Ip3 (L, h) (140)

(pr(h, ) +pa(lh, b))
2g(h, b)ps (I, )
Using Egs. (134)—(136), the numerator in the Eq. (140) is expanded as:

ol
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op1(li, ) op>(h, )

(2p1 (I, 1) o, +2p2(l1, 1) oI,
ops(l1,b)

—(p1(h, b)* +pa(li, 1)) o,
— (2sleafs(l;) — 8(sleafs (1))’ (sleafs(h))* — 24(sleafs (1))’ (sleafs(1))*

141
—8sleafs (1)) (sleafs (1)) — 16(sleafs (1))’ (sleafs (1))*) 3816;53(11) (141)
!

+(2sleafs () — 8(sleafs(1)))> (sleafs(h))* — 24(sleafs(1;))* (sleafs (L))’

)
—8(sleafs(1)))%sleafs (L) — 16(Sleaf3(11))8(Sleaf3(12))5)%?(12)

3l b)

Using the Eq. (129), the following equation is obtained by differentiating with respect to the variable /,:

op1 (1, ) op>(I, 1)
dg(h.b) <2p1(11712)T+2p2(11,12)T12 p3(l,b)
ol 2g(ly, b)ps(h, b)* (142)
2 2 0p3(li, )
(1l h)” + p2(li; 1) )T

2g(h, b)ps(li, b)

Using Eqgs. (137)—(139), the numerator in the Eq. (142) is expanded to obtain the following relation:

dg(h,h) _ 0Og(h,b)
_ 143
ol EA (143)
The following equation is derived from the Eq. (143) (see Appendix J).
g(lh,h) =g(l +10,0) (144)
. o .. Osleaf3(0) . . )
Using the initial condition sleaf;(0) = 0 and —a - 1, the function g(/; + /,,0) is obtained
as follows:
L+5,0)° I +5,0)}
{g(ll + 1270)}2 — {pl( 1 2 )} + {pZ( 1 2 )} — (Sleaf3(ll + 12))2 (145)

p3(l +5,0) p3(h + 5,0)
Using Eqgs. (129), (144) and (145), the following equation is obtained.

(sleaf; (1) + 1))* = {g(h + 1. 0)}* = {g(l, b))

{ 3(11)7851%23(12) sleaf3(lz)—8SIeg§l3(ll)}2
T + 4(sleafs(1;))* (sleafs (1)) + 4(sleafs (1, ))?(sleafs(5))* (146)
(sleafs(1;)) sleafs () — sleafs(I;) (sleafs (12))3}
)

+1—|—4(sleaf3(11 )* (sleaf3(1))* + 4(sleaf3 (1, ))* (sleafs(5))*
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Appendix J. So(ls. ] P

The necessary and sufficient condition to satisty g(/1,/,) = g(/; + »,0) is that g(a}’ 2) = gg}’ 2) holds.
Function A(x,y) is defined as follows. ! 2
h(x,y) =g(x+y,x—y) (147)
h=x+y (148)
h=x—y (149)

By differentiating the Eq. (147) equation with respect to y, the following equation is obtained.
Oh(x,y) _0Oglx+yx—y)0h  0g(x+y,x—y)0h

dy ol Oy ol Oy (150)
_Ogx+yx—y) Oglx+yx—y)
81 1 812
) . Og Og . .
Therefore, if the equation o oL holds, the following equation holds.
1 2
Oh(x.y) _ (151)
Ay

Using the Eq. (151), we find that A(x,y) is a function of x and not of y. Therefore, the following equation
holds for any constant a and b:

h(x,a) = h(x,b) (152)
Here, we set the following equation:
L +1
y=b="1T0B_ (153)
2
L —1
a= % —0 (154)

The following equation is obtained by using the Egs. (150), (153), and (154):
o (h+hL h—=hL\  (h+hL L-—hLL+L L —Dbh\

o (h+bL h+hb\  (h+h Lh+bh L+bhL L+Dbh)

The following equation is obtained by using the Egs. (152), (155) and (156).
g(h,b) =gl +5,0) (157)

Conversely, if the Eq. (157) holds, the following relational expression can be obtained by using Eqs.
(147) and (157).

h(x,y) = g(x +y,x —y) = g(2x,0) (158)

Eq. (158) is differentiated with respect to variable y to obtain the following equation:
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Oh(x,y)  0g(2x,0)
d Oy

-0 (159)

Further, the following equation is obtained by using the Eq. (150).
Oglx+y,x—y) _Oglx+y,x—y)

160
ol ol (160)
Using the Eqs. (148) and (149), the following equation is obtained.
og(l,1 Og(l,!
g(h,h) _ og(h, ) (161)

ol oh
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