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Abstract: Optical coherence tomography (OCT) is a new intravascular imaging
technique with high resolution and could provide accurate morphological infor-
mation for plaques in coronary arteries. However, its segmentation is still com-
monly performed manually by experts which is time-consuming. The aim of
this study was to develop automatic techniques to characterize plaque components
and quantify plaque cap thickness using 3 machine learning methods including
convolutional neural network (CNN) with U-Net architecture, CNN with Fully
convolutional DenseNet (FC-DenseNet) architecture and support vector machine
(SVM). In vivo OCT and intravascular ultrasound (IVUS) images were acquired
from two patients at Emory University with informed consent obtained. Eighteen
OCT image slices which included lipid core and with acceptable image quality
were selected for our study. Manual segmentation from imaging experts was used
as the gold standard for model training and validation. Since OCT has limited
penetration, virtual histology IVUS was combined with OCT data to improve
reliability. A 3-fold cross-validation method was used for model training and vali-
dation. The overall tissue classification accuracy for the 18 slices studied (total
classification database sample size was 8580096 pixels) was 96.36% and
92.72% for U-Net and FC-DenseNet, respectively. The best average prediction
accuracy for lipid was 91.29% based on SVM, compared to 82.84% and
78.91% from U-Net and FC-DenseNet, respectively. The overall average accuracy
(Acc) differentiating lipid and fibrous tissue were 95.58%, 92.33% and 81.84%
for U-Net, FC-DenseNet and SVM, respectively. The average errors of U-Net,
FC-DenseNet and SVM from the 18 slices for cap thickness quantification were
8.83%, 10.71% and 15.85%. The average relative errors of minimum cap thick-
ness from 18 slices of U-Net, FC-DenseNet and SVM were 17.46%, 13.06%
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and 22.20%, respectively. To conclude, CNN-based segmentation methods can
better characterize plaque compositions and quantify plaque cap thickness on
OCT images and are more likely to be used in the clinical arena. Large-scale stu-
dies are needed to further develop the methods and validate our findings.

Keywords: Image segmentation; plaque; cap thickness; OCT; CNN; SVM

1 Introduction

Atherosclerotic cardiovascular diseases cause millions of sudden deaths annually, with coronary heart
disease accounting for the majority [1], and plaque rupture plays a major role in most acute coronary
syndromes [2]. Various methods have been developed to quantify atherosclerosis, including invasive methods
such as intravascular ultrasound (IVUS) and X-ray angiography [3], and non-invasive methods such as
magnetic resonance imaging (MRI) [4,5]. For clinical prevention of coronary artery disease, the most
difficult problem is to identify vulnerable patients before drastic cardiovascular events occur. Some clinical
and biomechanical studies have shown that plaque cap thickness, lipid core size and plaque burden can be
used as key predictors for plaque stability [6]. However, since the widely accepted threshold value of plaque
cap thickness for vulnerable plaque is around 65 µm, current clinical imaging technologies including IVUS
and MRI are not able to detect due to their limited imaging resolution [2]. As an emerging imaging modality,
optical coherence tomography (OCT) has a high resolution of approximately 10 µm. With its high resolution,
OCT can provide precise details on the morphology of coronary plaques, especially plaque cap thickness,
which is the most closely watched feature for vulnerable plaque management. At present, clinical
classification of OCT images is mainly accomplished by physicians and radiologists with visual inspections,
which is time-consuming, lack of accuracy, and easily lead to observer variability [7]. Automatic
classification and identification of vulnerable plaques are highly significant for cardiovascular research.

Over the past years, many scholars have dedicated themselves to developing automatic segmentation
methods for OCT images and proposed several methodologies. Van Soest et al. [8] studied and analyzed
the optical attenuation coefficient of tissue in intravascular OCT images, and proposed a method for
automatic classification of atherosclerotic plaque components. Going one step further, Shalev et al. [9]
and Guo et al. [10] applied support vector machine (SVM) to identify plaques, via machine learning
method. Athanasiou et al. based on random forests method to detect vessel lumen boundaries, identify
plaque region and detect four tissue types to achieve automatic segmentation [11]. More recently,
Athanasiou et al., Abdolmanafi et al., Zhang et al. and He et al. applied convolutional neural network
(CNN)-based deep learning models to plaque characterization and identification and have made
noticeable contributions [12–15]. With all of those developments, most of these methods were still
limited by intricate image preprocessing and large calculation cost. Features such as cap thickness which
are important for plaque vulnerability assessment were generally not quantified and discussed.

CNN has outstanding ability of extracting abstracted features directly from the original input data and has
achieved remarkable success in the field of computer vision, image classification, object detection, object
recognition, instance segmentation and semantic segmentation. Fully convolutional network (FCN) [16] was
first proposed and applied to semantic segmentation, which replaced fully connected layers with convolutional
layers, selected skip architecture to incorporate semantic features and detailed features and employed
deconvolution to improve the accuracy of segmentation results. After that, more semantic segmentation
architecture were proposed by several investigators. SegNet [17] performed pooling indices in the decoder to
upsample the feature map and maintain the integrity of high-frequency details in the segmentation. Based on
FCN, the contracting path that captures context and the symmetric expanding path that enables precise
localization make up the U-Net architecture [18], which could use high resolution information obtained by the
shallow layer supply the missing detailed spatial information during the up-sampling process to obtain better
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segmentation results from very few images and have fewer trainable parameters than SegNet. As well known,
medical images are generally difficult to obtain and need more precision segmentation results than natural
images. As such, U-Net was widely used in medical image segmentation and achieved widespread
acceptance. Extending the powerful DenseNet [19] classification network and using the upsampling path to
restore the full input resolution, fully convolutional DenseNet (FC-DenseNet) [20] was formed, which has a
unique advantage in considering both network depth and a small number of parameters compared with other
popular networks. And it does not require additional post-processing and pre-training. The connections of FC-
DenseNet could combine information of multiple scales, which benefits the extraction of abundant features of
images and makes it achieve state-of-art urban scene segmentation performance.

Recognition of lipid in OCT images can be classified as semantic segmentation, which is to assign each
pixel in the input image a semantic class in order to get a pixel-wise dense classification. U-Net architecture
due to its fast speed attribute and FC-DenseNet architecture because of its deep and powerful infrastructure
have been proved to have promising future in the field of segmentation in recent research [18,19]. In this
paper, three methods for automatically segmenting intracoronary OCT images were introduced to quantify
plaque components and cap thickness. Two of the three methods were based on CNN (U-Net and FC-
DenseNet) and the other was based on SVM. Manual segmentation from imaging experts was used as the
gold standard for model training and validation. Since OCT has limited penetration, virtual histology
IVUS was combined with OCT data to improve reliability. Results from the three segmentation methods
were compared using the same dataset.

2 Data and Methods

In this section, we will introduce data acquisition procedures first, and then introduce two types of
supervised learning methods, CNN-based methods (including U-Net and FC-DenseNet) which are
semantic segmentation methods and SVM-based method which is an ordinary machine learning method.

2.1 Data Acquisition and Gold Standard
In vivo OCT and IVUS images were acquired from two patients with informed consent obtained. Data

acquisition procedures were previously reported and are omitted here to avoid repetition [14,22]. It should be
noted that Virtual-Histology IVUS (VH-IVUS) provided four classified tissue components: fibrous, fibro-
fatty, lipid and calcification (Ca) [20]. VH-IVUS segmented tissue components were used as references
by radiologists in their manual segmentation to produce gold standard for our automatic segmentation
[21]. Fig. 1 gave matched sample IVUS and OCT slices with overlapping contours. Different colors were
used to distinguish four plaque tissue types. Dynamic angiography data were recorded which provided
positions of catheters and vessel segments for co-registration of OCT and IVUS images.

Eighteen matched VH-IVUS and OCT images with good image quality were selected to verify and
compare the three proposed segmentation methods in this study. Manual segmentation of OCT images
was done by experts using VH-IVUS segmented tissue components as references [23]. Since OCT has
limited penetration depth and often cannot “see” the out-border of lipid cores, we focused on
quantification of cap thickness. For each slice, to make the region of interest (ROI), an outline (called the
out-boundary of the ROI) was generated by pushing the lumen border (the inner boundary of the ROI)
outward 1 mm from the center of the catheter. Then ROI is defined as the area bounded by its inner-
boundary (lumen border) and the out-boundary with artery branches and artifacts removed (see Fig. 1c).
Combining expert manual segmentation images and ROI, the gold standard was developed (see Fig. 1d).
Fig. 1 gave 6 matched sample OCT slices with ROI and segmented gold standard contours. Calcification
was neglected since the lipid core and cap thickness were the selected foci in this study.
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2.2 Convolutional Neural Network: U-Net Architecture and Fully Convolutional DenseNet

(FC-DenseNet) Architecture
2.2.1 Image Processing and Data Augmentation

As shown in Fig. 2, in order to remove redundant image information, the original OCT data (1024 ×
1024 pixels or 1905 × 1905 pixels) of two patients were cropped (784 × 608 pixels) and used as the
input image of the network to save the model training time.

Figure 1: Six matching sample VH-IVUS/OCT images with overlapping contours and expert manually
drawn contours used as gold standard. Colors for VH-IVUS: Red—lipid; White -Ca; Dark Green—
Fibrous; Light Green—Fibro-Fatty. Colors for gold standard: Red—lipid tissue, Green—fibrous tissue;
Black—background. Color for contour lines: Red—lipid; Blue—lumen and out-boundary. (a) VH-IVUS/
IVUS slices. (b) Matching OCT slices and manual segmented contours. (c) OCT slices with ROI and ROI
borders. (d) Gold standard. (e) Expert manually drawn contours from OCT and used as gold standard

Figure 2: Image processing for CNN. (a) Original image (the red rectangular marked input image); (b)
Magnified input image of the network
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Previous research has shown that data augmentation can prevent neural network from overfitting and
improve model performance in imbalanced class problems [24–26]. In addition, the quality of deep
learning model training results is closely related to the size of the training data. To increase the data size
for our modeling training, we augmented existing datasets to train more powerful deep convolutional
neural network models. In this study, the data augmentation techniques included rotation (rotation angles:
θ = 90°, 180°, and 270°), flipping (horizontal and vertical) and brightness transformation (gamma
adjustment applied, the parameter values used: 0.5, 0.7, 0.9, 1.1, 1.3, 1.5). After augmentation, a total of
1512 slices were available for our use in machine learning method training and testing.

2.2.2 Network Architecture: U-Net
For U-Net architecture, it consists of a contracting path and an expansive path. As for the architecture

employed in this work (see Fig. 3), the contracting path includes the repeated application of two 3 × 3
convolutions, each followed by scaled exponential linear units (SeLU) and a 2 × 2 max pooling operation
with stride 2 for downsampling. In each downsampling step, the number of feature channels is doubled.
Each step in the expansive path consists of an upsampling of the feature map followed by a 2 × 2
convolution a concatenation with the correspondingly cropped feature map from the contracting path, and
two 3 × 3 convolutions, each followed by a SeLU. And the cropping is applied. Finally, a 1 × 1
convolution is used to map each feature vector to three classes.

2.2.3 Network Architecture: FC-DenseNet
FC-DenseNet architecture includes dense block layer, transition down layer and transition up layer. For

each dense block layer, it consists of batch normalization (BN), then ReLU, a 3 × 3 same convolution (no
resolution loss) and dropout with probability p = 0.2. The growth rate of the layer is set to k = 16. Similarly,

Figure 3: U-Net architecture employed in this work. Each dark green box corresponds to a multi-channel
feature map and the number of channels is noted on top of the box. White boxes represent copied feature
maps. The arrows denote the different operations
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for each transition down layer, it is composed of BN, then ReLU, a 1 × 1 convolution, dropout with p = 0.2
and a non-overlapping max pooling of size 2 × 2. For transition up layer, it consists of a 3 × 3 transposed
convolution with stride 2. The architecture used in our work is built from 57 convolutional layers: firstly,
one input layer, then 20 in the downsampling path, 5 in the bottleneck and 20 in the upsampling path.
Five Transition Down (TD) and 5 Transition Up (TU), each one containing a convolution, is also applied
in this architecture. Finally, 1 × 1 convolution followed by a softmax non-linearity is used to provide the
per class distribution at each pixel. In Fig. 4, all layers in architecture were summarized.

2.3 Support Vector Machine
Local binary patterns (LBPs), gray level co-occurrence matrices (GLCMs) which contains contrast,

correlation, energy and homogeneity, entropy and mean value were calculated as features in this study,
which have proven to be the optimal feature combination after trials. A neighborhood window of 11 × 11
pixels was selected in the ROI to calculate all features. The parameters used to calculate the ten features
of rotation-invariant LBP are p = 8 and R = 1. In the end, 28 features including 10 LBPs, 16 GLGMs,
entropy and mean were selected and used in the classification algorithm. These selected features extracted
from all pixels in the ROI were assembled into an n × m-dimensional data matrix to feed the SVM,
where n equals the number of pixels and m is the length of the feature vector.

2.4 Three-Fold Model Training and Cross Validation Methods
2.4.1 Three-Fold Methods for CNN (U-Net and FC-DenseNet)

The original 18 OCT image datasets were randomly divided into three groups, and the three-fold cross
validation was employed to perform model training and testing tasks. First, 2 groups (3 total possible
combinations) were chosen as the training set. With augmentation, the training set had 1008 slices. Then

Figure 4: Building blocks of FC-DenseNet and the architecture details of FC-DenseNet57model used in this work
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the remaining group served as the testing set. Due to the class imbalance in the proportion of lipid tissue
compared to other classes, focus loss function was applied in the model between the gold standard and
the output image of our model [27]. And for model selection, 1-standard error rule was performed on the
validation data set [28]. The trained model was applied to the testing group to obtain prediction
sensitivity, specificity and accuracy (to be defined later). This was done for all 3 grouping choices with
each group serving as the testing set once. The random group dividing process was done 10 times and
the results obtained were averaged as our final results. Further repeating did not noticeable improvements.
All CNN models were performed in Pytorch, version 3.6. Figs. 5b and 5c show seven images of
classification result based on U-Net and FC-DenseNet, respectively. The input images were divided into
three categories, which are lipid tissue (LT), fibrous tissue (FT), and background (BG, except for ROI).

2.4.2 Three-Fold Methods for SVM
In ROI, plaque cap can be determined once the lipid region is identified. As such, only two types of tissue

(pixels) need to be characterized: lipid tissue and fibrous tissue. Fibro-fatty tissue that has no effect on the
measurement of the plaque cap was considered as fibrous tissue. Taking the Gaussian Radial Basis function
as the kernel function, the least square support vector machine (SL-SVM) classifier was selected to classify
lipid tissue and fibrous tissue. As with CNN method, three-fold cross validation was also used in the SVM
method. For the training process, 500 pixels were randomly chosen from two classes (lipid and fibrous) in
the OCT images of each training group, that is, 12000 pixels (12 � 500 � 2 = 12000) were obtained from
12 training slices. All pixels in the ROI of the test group OCT images constitute the test set. Five trainings
and tests were performed in this way. Fig. 5d shows seven images of classification result based on SVM.

2.5 Contours Extraction
Plaque cap thickness was defined as the distance between extracted lipid contours and lumen contour. In

order to measure plaque cap thickness, the lipid contours were extracted using classification result based on
U-Net, FC-DenseNet and LS-SVM, respectively. Some scattered pixels in the classification results from the
3 methods were filtered out and smoothing method was applied to obtain clear borders for lipid contours.
Parametric active contour model was used for the lipid border detection. Fig. 6 shows contours of seven
sample slices (same as Fig. 5) obtained from gold standard and three different classification results.

Figure 5: Magnified image classification result. Colors used in images: Red—lipid tissue, Green—fibrous
tissue, Black—background. (a) Gold Standard. (b) Classification result based on U-Net. (c) Classification
result based on FC-DenseNet. (d) Classification result based on SVM
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2.6 Method Comparisons and Data Analysis
The results of segmentation methods were evaluated and compared using the OCT dataset and gold

standard at pixel level. Accuracy (Acc), sensitivity (Sen) and specificity (Spe) are defined as follows:

Acc ¼ TP þ TN

TP þ FP þ TN þ FN
(1)

Sen ¼ TP

TP þ FN
(2)

Spe ¼ TN

TN þ FP
(3)

where TP represents the number of true positive results, TN represents the number of true negative results, FP
represents the number of false positive results, and FN represents the number of false negative results.
Segmentation accuracy, sensitivity and specificity from our data set using the three methods are presented
in the next section.

3 Results

3.1 Accuracy of Tissue Region Detection Using Two CNN Methods
Two CNN network-based methods took the full image as input (not ROI region like SVMmethod), so it

is necessary to test their ability of extracting lipid and fibrous tissue. In this evaluation, lipid tissue and fibrous
tissue were considered as positive patterns respectively (prediction target) while background was regarded as
negative pattern. Prediction sensitivity (Sen), specificity (Spe) and accuracy (Acc) of tissue region using two
methods are shown in Tab. 1. The overall average prediction accuracy from the 18 slices (total pixel sample
size: 8580096) was 96.36% and 92.72% for U-Net and FC-DenseNet, respectively. The best accuracy was
97.45% for U-Net and 94.74% for FC-DenseNet. Even for the worst case, the prediction accuracy was
94.35% by U-Net and 86.45% by FC-DenseNet. Obviously, U-Net provided more accurate results than
that from FC-DenseNet. FC-DenseNet had considerable poorer sensitivity (84.65% vs. 94.02%).

Figure 6: Lipid contours and borders. Color for contour lines: Red—lipid, Blue—borders. (a) Contours from
gold Standard. (b) Contours from classification result based on U-Net. (c) Contours from classification result
based on FC-DenseNet. (d) Contours from classification result based on SVM

638 CMES, 2020, vol.123, no.2



3.2 Accuracy of Lipid and Overall Classification
The performed methods are able to extract lipid and fibrous tissue directly from OCT images, and sort

each pixel into its corresponding category. Tab. 2 records the prediction accuracy of the lipid and the
prediction accuracy of the input images (overall prediction accuracy). Tab. 2 shows that for the prediction
accuracy of lipid, the best result was given by SVM method, which is 91.29%. However, SVM method
gave the worst overall prediction accuracy (a total of 2156747 pixels) 81.84%. CNN scored much higher
on the overall accuracy rate, 95.40% for U-Net and 91.14% for FC-DenseNet, which were 16.57% and
11.36% higher than that from SVM, respectively. Compared to other objects, the percentage of lipid
pixels in the OCT image is much lower, causing class imbalance problems. Although the focal loss
function was applied to improve it, the lipid accuracy score of CNN was lower than that of SVM.

3.3 Evaluation of the Discrimination Between Lipid Tissue (LT) and Fibrous Tissue (FT)
Considered LT and FT as positive and negative respectively to further evaluate the difference between

them. Tab. 3 shows the results of differentiating LTand FT. The overall average accuracy (Acc) were 95.58%,
92.33% and 81.84% for U-Net, FC-DenseNet and SVM, respectively. Method based on FC-DenseNet
depicted the best average sensitivity (Sen) and U-Net provided the best average specificity (Spe). Overall,
both CNN and SVM provided good discrimination between LT and FT.

Table 1: Accuracy of tissue region detection based on U-net and FC-DenseNet

U-Net FC-DenseNet

Slices Sen Spe Acc Sen Spe Acc

1 91.89 98.04 96.54 76.68 95.95 91.25

2 84.33 99.42 95.70 87.11 95.56 93.68

3 86.70 98.37 95.57 88.13 95.56 93.82

4 93.69 96.94 96.22 80.32 97.81 93.13

5 93.55 96.94 96.12 91.82 94.85 94.04

6 87.07 99.20 96.31 80.45 98.60 93.58

7 95.70 96.85 96.58 77.31 95.11 90.72

8 97.47 96.85 96.17 88.75 92.81 91.83

9 84.13 96.96 94.35 87.64 96.49 94.74

10 97.51 96.81 97.00 92.65 94.80 94.23

11 98.21 95.21 96.01 85.85 96.48 93.59

12 98.55 95.55 96.35 87.99 92.74 91.40

13 95.38 96.85 96.46 74.44 97.28 91.79

14 98.21 96.65 97.07 90.28 94.23 93.29

15 97.74 97.34 97.45 94.57 93.47 93.69

16 97.85 96.99 97.23 87.67 95.24 93.23

17 97.81 95.99 96.50 67.33 93.66 86.45

18 96.57 97.00 96.88 84.79 98.32 94.45

Average 94.02 97.05 96.36 84.65 95.50 92.72
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3.4 Cap Thickness Quantification: Mean and Minimum Cap Thickness
Tabs. 4 and 5 gave the mean and minimum cap thickness for the 18 OCT slices obtained from the three

segmentation methods (U-Net, FC-DenseNet, SVM). Using the gold standard as a measure, U-Net, FC-
DenseNet, generally gave better results than that from SVM. The average of mean cap thickness from
gold standard and three methods were 0.739, 0.740, 0.703 and 0.633, respectively. The average errors of
U-Net, FC-DenseNet and SVM from the 18 slices were 8.83%, 10.71% and 15.85%, respectively.
Average of minimum cap thickness from gold standard and three methods were 0.513, 0.556, 0.489 and
0.433, respectively. The average relative error of minimum cap thickness from 18 slices of U-Net, FC-
DenseNet and SVM were 17.46%, 13.06% and 22.20%, respectively. These results indicated that U-Net
method provided the best mean cap thickness results. FC-DenseNet method provided the best minimum
cap thickness results, and SVM method performed poorly.

4 Discussion

4.1 Signification
Plaque cap thickness, lipid core size and plaque burden have been identified as key predictors of plaque

vulnerability and likelihood of rupture. Segmentation and classification of plaque components of OCT
images is able to provide precise plaque morphology with cap thickness and lipid core size which are the
most closely watched features in patient management. Image-based biomechanical plaque models may be

Table 2: Classification accuracy of objects using CNN and SVM

U-Net FC-DenseNet SVM

Slices Lipid Overall Lipid Overall Lipid Overall

1 68.26 95.35 65.69 88.79 93.12 75.05

2 61.22 94.74 81.24 91.27 89.16 68.90

3 70.60 94.63 85.27 92.66 76.41 66.43

4 83.41 95.68 77.12 92.05 80.80 67.75

5 91.21 95.58 90.94 92.73 96.71 70.33

6 78.54 95.88 80.82 92.64 90.36 75.56

7 86.83 95.96 65.32 88.32 88.44 69.66

8 82.71 95.60 79.58 89.73 80.15 83.41

9 98.30 93.60 86.16 93.98 91.80 83.97

10 93.92 95.82 87.37 92.89 96.48 87.84

11 83.65 94.67 81.70 92.08 96.97 85.22

12 81.75 95.22 84.03 90.01 96.62 91.33

13 90.20 95.08 62.31 88.91 98.30 91.97

14 79.02 95.74 82.55 91.53 94.41 91.57

15 84.17 96.31 86.18 92.14 96.37 91.29

16 88.91 96.01 81.40 91.86 95.93 89.62

17 78.08 95.21 57.40 85.16 90.45 91.36

18 90.41 96.06 85.29 93.75 90.65 91.91

Average 82.84 95.40 78.91 91.14 91.29 81.84
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used to research and quantify plaque mechanical stress and strain conditions, identify possible mechanical
factors associated with plaque rupture, assess plaque rupture risk and predict rupture location. According
to the research result proposed by Li et al. [29], in a 40% degree stenotic artery, a reduction of the cap
thickness from 0.4 mm to 0.2 mm could cause an increase in plaque stress from 141 kPa to 409 kPa.
Hence, the accuracy and efficiency of OCT image segmentation and quantification of cap thickness play a
significant role in clinical diagnosis, image analysis and vulnerable plaque research.

4.2 Comparison of the Three Methods
The proposed methods are able to segment the lipid component automatically with high accuracy. It is

worth mentioning that the CNN method using the U-Net or FC-DenseNet model is an “end-to-end” method,
and it is not necessary to detect the lumen and outer boundary before classification, which makes it relative to
previous segmentation methods has certain advantages. In addition, the proposed CNN method does not
require a large amount of image pre-processing and post-processing, thereby significantly improving the
segmentation efficiency. In CNN methods, U-Net model performed better in accurately identifying lipid
components, whereas FC-DenseNet model had fewer parameters and required less storage memory.

Obviously, in multiple indicators, CNN-based methods are better than SVM-based method. For
example, CNN-based methods have the advantage of unified implementation of feature extraction and
classification in a supervised mode. However, in SVM-based method, feature extraction and classification

Table 3: Evaluation of the discrimination between LT and FT

U-Net FC-DenseNet SVM

Slices Sen Spe Acc Sen Spe Acc Sen Spe Acc

1 74.08 98.07 94.69 93.15 85.87 86.91 71.33 88.43 75.05

2 71.06 99.00 95.38 65.35 95.86 87.57 64.44 83.75 68.90

3 81.45 98.43 95.53 74.81 96.57 94.31 61.30 64.33 66.43

4 91.99 99.16 97.42 98.02 94.44 95.00 62.55 69.62 67.75

5 95.61 97.72 97.62 95.12 94.62 94.70 67.86 87.11 70.33

6 89.77 98.47 97.89 95.15 95.91 95.78 73.13 79.19 75.56

7 88.40 98.28 97.21 91.27 86.75 87.43 67.86 80.79 69.66

8 84.62 98.84 97.04 90.95 90.20 90.24 82.30 66.25 83.41

9 99.56 95.16 95.66 72.17 99.19 95.57 81.85 84.32 83.97

10 96.68 95.25 95.49 95.47 94.42 94.57 87.47 96.15 87.84

11 88.97 95.81 94.86 92.22 93.91 93.56 85.10 96.46 85.22

12 83.93 98.62 95.66 82.16 98.30 94.41 91.01 96.07 91.33

13 92.18 95.18 94.59 98.81 81.30 83.87 91.06 97.53 91.97

14 81.23 98.73 94.99 89.41 91.99 91.80 91.11 93.33 91.57

15 86.19 98.40 95.74 99.67 91.10 91.92 90.63 95.58 91.29

16 90.79 96.76 95.50 90.68 95.13 94.14 89.33 95.25 89.62

17 84.23 98.23 95.32 84.83 96.67 92.99 90.59 88.91 91.36

18 92.12 98.42 97.03 90.56 98.78 97.11 91.47 90.40 91.91

Ave. 87.38 97.70 95.98 88.88 93.39 92.33 80.02 86.30 81.84
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have to be performed separately. Moreover, SVM cannot extract shallow and deep features and combine
them like as what CNN methods could do. Setting ROI is a necessary image preprocessing step for SVM
methods. Another limitation of SVM methods is that parameters of SVM cannot be learned automatically.

4.3 Computing Time and Time Complexities
Machine learning algorithms are very time consuming and normally a GPU computer is needed. For the

two CNN-based methods, all models were implemented in Pytorch, version 1.1.0 (GPU computer with Titan
XP 12G, Intel i7 8700k, 6 core/12 threads). For U-Net, the training time for 1 epoch was 9–10 minutes
(training 1002 slices) and the total training time was 15–17 hours for 100 epochs, which can ensure that
model is trained to converge . In terms of testing time, which closely related to time complexity, the
testing time for one original image was 1–2 seconds, and the total testing time for the testing set
(6 original images) was 6–12 seconds. The training and testing time of FC-DenseNet were slightly longer
than U-Net. The training time of FC-DenseNet for 1 epoch was 10–11 minutes and the total training time
is 16–18 hours. And for testing time, the testing time for 1 image is 1.5–2.5 seconds, and the overall
testing time is 9–15 seconds. SVM-based method took much less time than CNN-based methods to train
and test. The SVM-based method was performed in MATLAB R2015a (Dell Precision T5810 E5-
1607V4 32G RAM) and the total time including feature extraction, training and testing was about 5–6 hours.

Table 4: Mean cap thickness for 18 slices from four methods

Mean Cap Thickness (mm)

Slice Gold Standard U-Net Error FC Error SVM Error

1 0.770 0.713 7.39% 0.725 5.87% 0.619 19.55%

2 0.903 0.829 8.19% 0.795 12.00% 0.637 29.43%

3 0.660 0.751 13.76% 0.639 3.12% 0.601 9.01%

4 0.697 0.645 7.44% 0.624 10.44% 0.554 20.51%

5 0.611 0.731 19.61% 0.514 15.88% 0.576 5.73%

6 0.621 0.657 5.80% 0.555 10.58% 0.572 7.94%

7 0.634 0.706 11.43% 0.496 21.74% 0.540 14.78%

8 0.581 0.607 4.43% 0.789 35.82% 0.617 6.19%

9 0.650 0.685 5.38% 0.721 10.95% 0.647 0.48%

10 0.884 0.969 9.67% 0.811 8.30% 0.722 18.38%

11 1.048 0.979 6.58% 0.959 8.51% 0.727 30.62%

12 0.988 0.979 0.83% 0.925 6.39% 0.807 18.26%

13 0.499 0.550 10.25% 0.565 13.14% 0.624 24.96%

14 0.796 0.759 4.56% 0.710 10.73% 0.448 43.65%

15 0.674 0.737 9.28% 0.650 3.60% 0.681 1.05%

16 0.736 0.642 12.76% 0.711 3.39% 0.590 19.85%

17 0.747 0.704 5.81% 0.718 3.94% 0.696 6.81%

18 0.808 0.681 15.70% 0.740 8.44% 0.743 8.07%

Ave. 0.739 0.740 8.83% 0.703 10.71% 0.633 15.85%
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4.4 Large Relative Errors for Minimum Cap Thickness
In Tab. 5, the relative error reached to 68% for U-net method (Slice 5) and 79% for SVM method

(Slice 13). One may be wondering how we could justify our methods are proper for quantifying the Min
Cap thickness. The answer to this concern is actually non-trivial.

One reason that minimum cap thickness may have larger errors is that minimum cap thickness locations
of a given slice may be different for different methods (see Fig. 5). The contours and the cap thickness
derived from those contours given by Fig. 6 demonstrated that clearly. Fig. 6 also explains why mean cap
thickness had smaller errors.

Errors reported in Tab. 5 are relative errors which may be magnified by the small minimum cap thickness
of the slices from the gold standard. The absolute error of Slice 5 by U-Net was 0.213 mm. The absolute error
of Slice 13 by SVM was 0.202 mm. Both were smaller than VH-IVUS resolution limit.

One of the biggest challenges for segmentation of in vivo human coronary plaque images and
quantifying thin cap thickness is lack of real gold standard, i.e., histopathological data of the plaques
from which images were taken. In fact, thin cap thickness is the #1 closely watched risk indicator for
vulnerable plaque identification. A threshold cap thickness of 65 µm is currently accepted as
identification of a vulnerable plaque. VH-IVUS technology was developed and validated by limited

Table 5: Minimum cap thickness for 18 slices from four methods

Min Cap Thickness (mm)

Slice Gold Standard U-Net Error FC Error SVM Error

1 0.512 0.552 7.71% 0.538 4.97% 0.481 6.03%

2 0.475 0.464 2.27% 0.625 31.59% 0.458 3.53%

3 0.322 0.446 38.34% 0.400 24.10% 0.378 17.39%

4 0.389 0.410 5.50% 0.330 15.12% 0.292 24.91%

5 0.311 0.524 68.44% 0.354 13.73% 0.332 6.84%

6 0.372 0.420 12.92% 0.361 3.09% 0.347 6.85%

7 0.389 0.527 35.48% 0.369 5.15% 0.280 27.97%

8 0.443 0.430 2.87% 0.438 1.03% 0.434 2.03%

9 0.519 0.536 3.35% 0.567 9.37% 0.449 13.34%

10 0.761 0.899 18.10% 0.737 3.24% 0.532 30.06%

11 0.814 0.781 4.00% 0.608 25.33% 0.535 34.30%

12 0.752 0.809 7.54% 0.737 1.96% 0.532 29.19%

13 0.256 0.362 41.55% 0.266 3.96% 0.458 79.07%

14 0.553 0.574 3.83% 0.596 7.76% 0.377 31.86%

15 0.500 0.633 26.41% 0.312 37.62% 0.541 8.04%

16 0.652 0.534 18.11% 0.517 20.69% 0.417 36.05%

17 0.628 0.563 10.34% 0.509 18.97% 0.485 22.78%

18 0.586 0.542 7.43% 0.543 7.32% 0.472 19.38%

Ave. 0.513 0.556 17.46% 0.489 13.06% 0.433 22.20%
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histological data, and then was accepted as virtual histology. However, IVUS resolution was limited to about
200–300 µm which is not enough to capture plaques with cap thickness around 65 µm. That means any
differences smaller than 200–300 µm provided by VH-IVUS could be considered random errors. OCT
has resolution of 5–10 µm and could be the long-waited tool to identify vulnerable plaques. However, its
segmentation remains to be the current challenge. In this paper, VH-IVUS was used as references by
skilled radiologists to generate segmentation gold standard for OCT images. As it can be seen from
Fig. 1, manual segmentation of OCT images is very challenging and could be subjected human errors and
influences from VH-IVUS. That being said, this is still the best researchers could do at present time since
human coronary plaque tissues corresponding to in vivo images are not available to generate histopathological
data to serve as real gold standard.

When our models are trained by large data set, we may have reasons to hope that cap thickness
determined by machine learning methods could be meaningful and reliable. Using histopathological data
to train our models could also provide stronger results. Manual segmentation by more experts could also
reduce the error of the gold standard itself.

4.5 Limitations
In this study, a more accurate gold standard which combined both OCT and VH-IVUS images was

proposed, however, the lack of histology is a disadvantage. Histological data remain the current gold
standard in tissue detection. Histology could provide more effective and additional information which
could be applied to improve and optimize the reliability and applicability of our method. Moreover, since
the limitation of a small sample size of OCT dataset, more data would be desirable to improve the
accuracy and reliability of methods performed in our study.

4.6 Future Work
Automatic segmentation of medical images, in particular, OCT images of in vivo human coronary plaques,

is of utmost importance in diagnosis, prevention, prediction, treatment and management of related
cardiovascular diseases including heart attack and stroke. We will continue to search for better segmentation
methods, develop automatic algorithms, and utilize the segmentation results in mechanical model
construction for plaque progression and rupture predictions. Other deep learning methods including FCN,
R-FCN, GAN will be considered in our future effort. As the U-Net and FC-DenseNet architectures have
mutual advantages in different levels of feature extraction and combination, we plan to combine the two
architectures (Dense-Unet) and look forward to better results. In addition, in view of the limitations of a
large amount of noise and small amount of data in medical images, a direction worthy of research is to pre-
train deep learning models on ex vivo images or non-medical images where true gold standard (histological
data) could be available. Based on the segmentation results from those efforts, computational mechanical
vascular models based on OCT segmentation images will be established and used for plaque stress analysis
and prediction of plate growth and rupture. Those models would be the first models where truly reliable cap
thickness could be used to generate accurate and reliable plaque stress/strain data and make plaque growth
and vulnerability predictions which were not possible with IVUS 200–300 µm resolution limitations.
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