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Abstract: Nonlinear behaviors are commonplace in many complex engineering
applications, e.g., metal forming, vehicle crash test and so on. This paper focuses
on the T-spline based isogeometric analysis of two-dimensional nonlinear pro-
blems including general large deformation hyperelastic problems and small defor-
mation elastoplastic problems, to reveal the advantages of local refinement
property of T-splines in describing nonlinear behavior of materials. By applying
the adaptive refinement capability of T-splines during the iteration process of ana-
lysis, the numerical simulation accuracy of the nonlinear model could be
increased dramatically. The Bézier extraction of the T-splines provides an element
structure for isogeometric analysis that can be easily incorporated into existing
nonlinear finite element codes. In addition, T-splines show great superiority of
modeling complex geometries especially when the model is irregular and with
hole features. Several numerical examples have been tested to validate the accu-
racy and convergence of the proposed method. The obtained results are compared
with those from NURBS-based isogeometric analysis and commercial software
ABAQUS.

Keywords: Isogeometric analysis; T-splines; nonlinear; hyperelasticity;
elastoplasticity; adaptive refinement

1 Introduction

Isogeometric analysis (IGA), introduced by Cottrell et al. [1], employs the same basis functions in
geometry representation and analysis. The reuse of the geometric model in the analysis process saves a
lot of time for manual interactions to construct the analysis-suitable mesh, especially when the geometry
needs to be modified. Due to the exact geometry representation, high-order continuity, and high accuracy,
IGA offers significant advantages over FEA and is being expected to be implemented in CAE software as
well as exert its full potentials in industry practices.

IGA has been successfully applied to many engineering problems including shape optimization [2–6],
topological optimization [7–13], contact problem [14,15], fluid [16–18], fracture and damage [19–22].
Besides, the applications of IGA also include the interpretation of nonlinear material and nonlinear
geometric problems such as elastoplastic material, nearly incompressible material and large deformation
behavior [23–29]. In [23], IGA can accurately describe the large plastic deformation and calculate
accurate results. It is worth mentioning that, the high-order NURBS basis functions based IGA can
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greatly alleviate the phenomenon of self-locking, which is generally an unavoidable problem in low-order
finite element method.

Although IGA owns many advantages, a variety of the CAD models represented by NURBS cannot be
directly used in the analysis [30–32]. The tensor-product topological structure of NURBS limits its ability to
represent a complex model by using one single patch. When modeling complicated products in practical
industry scenarios, thousands of tensor product NURBS patches may be used to comprise the special
shape features needed by the design. Trimming curves are used to cut out the original defined NURBS
patches and then piece them together to achieve arbitrary topologies, so gaps and overlaps will be
produced unavoidably. Another defect of NURBS is that the local refinement cannot be defined within it
because it is based on a tensor-product mesh which means the control points should be aligned on a
rectangular grid regularly. Due to these reasons, the NURBS-based global discretization, is usually not
suitable as a basis for isogeometric analysis. As a generalization of NURBS, T-splines were introduced in
the CAD community, which were formulated to overcome the main drawbacks of NURBS mentioned
above [33]. Generally, the trimmed model based on NURBS could be represented by an untrimmed T-
spline and the model using multiple patches could be merged into one single, watertight T-spline [34].
Furthermore, for the sake of the accuracy of the numerical simulation, adaptive refinement has been
actively explored within the framework of isogeometric analysis [35–38]. Different from NURBS, local
refinement can be achieved in T-splines [39] without propagating superfluous control points when
implementing the knot insertion algorithm. These superiorities make T-splines a powerful technology for
geometric discretization as well as the integration of design-through analysis applications [40–42].

In this work, we use T-splines as a basis to perform analysis of complex nonlinear models, including
hyperelasticity and elastoplasticity material models. We use T-splines to model designs traditionally with
trimming features as one single, watertight geometry, which makes the integration of design and analysis
for two-dimensional models more seamless and efficient. Moreover, we combine the error estimate with
the local refinement capabilities of T-splines. Starting from a coarse uniform NURBS mesh, our approach
performs the adaptive refinement of the T-mesh during the iteration process of nonlinear analysis. The
adaptive T-spline meshes possess similar convergence properties to uniform meshes with fewer degrees-
of-freedom (Dofs).

The paper is outlined as follows: In Section 2 we give a brief review of T-splines and Bézier
extraction. The main formulations about hyperelastic materials and elastoplastic materials are given
in Section 3. The error estimate and adaptive strategy are presented in Section 4. In Section 5, we
consider some examples of trimmed models and compare adaptive refinement T-spline meshes with
uniform meshes in the two-dimensional nonlinear problem. The conclusions and directions for future
research are discussed in Section 6.

2 T-splines and Bézier Extraction

NURBS has been widely used in the field of CAD due to its superior mathematical and algorithmic
properties. The NURBS basis functions own some preferable properties such as the partition of unity, non-
negativity and linear independence. However, it is severely limited by its tensor product topological
structure. The T-spline surface is a non-uniform B-spline surface with T-junctions which help T-splines
to model the complex design as one single watertight geometry and achieve local refinement. In this
section, we present a brief overview of fundamental T-spline concepts. More details are presented in [33].

2.1 The T-spline Basis
AT-spline surface is constructed from a T-mesh. For surfaces, the T-mesh is a mesh of two-dimensional

polygonal elements. AT-mesh in the index space is shown in Fig. 1a. A major difference between a T-mesh
and a NURBSmesh is the existence of T-junctions, which are analogous to hanging nodes in the conventional
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finite element. (see the red circles in Fig. 1a). To define T-spline parametric information and basis functions,
knot intervals (non-negative real numbers) should be specified for the T-mesh. An effective knot interval
configuration demands that the knot interval of each side equal to that of the opposite. As shown in Fig. 1b,
the triangles, squares, and pentagons correspond to knot intervals of 0, 0.5 and 1, respectively.

A T-spline surface is defined by a T-mesh with valid knot interval configuration and T-spline basis
functions constructed from the configuration. The equation of a T-spline surface is as:

Tðu; vÞ ¼
Xn
i¼0

PiRiðu; vÞ; ðu; vÞ 2 � (1)

where each control point Pi, is associated with a weight wi, and a blending function Ri(u,v) is given by:

Riðu; vÞ ¼ wiNi
kðuÞNi

lðvÞPn
j¼0

wjNj
kðuÞNj

lðvÞ
: (2)

Ni
k(u) and Ni

l(v) are the B-spline basis functions corresponding to the control point Pi with k degree in u-
direction and l degree in v-direction. A cubic T-spline mesh is shown in Fig. 2. N3

1 ðuÞ and N3
1 ðvÞ are cubic B-

spline basis functions corresponding to the control point P1, which are defined over the horizontal knots [u1,
u2, u3, u4, u5] and the vertical knots [v1, v2, v3, v4, v5]. In our research, we choose cubic T-splines as the basis
for nonlinear isogeometric analysis, without losing generality.

2.2 Bézier Extraction of T-Splines
The Bézier extraction of T-splines is important for analysis because it delimits elements where T-spline

basis functions are guaranteed to be C∞. Thus, these delimited elements are called Bézier elements. The
Bézier extraction operation provides an element structure for isogeometric analysis which can be easily
incorporated into existing finite element codes. The details of Bézier extraction are presented in [43,44].

Figure 1: (a) Example of T-mesh in the index space. (b) Knot interval configuration of the T-mesh

Figure 2: The parameter domain corresponding to the control point P1
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In a certain element e, the T-spline basis functions NeðnÞ can be represented by a linear combination of
the Bernstein polynomial basis BeðnÞ through the Bézier extraction. The T-spline basis function NeðnÞ can be
expressed as:

NeðnÞ ¼ CeBeðnÞ (3)

where Ce is called the element Bézier extraction operator, which is based on knot insertion. ξ is the coordinate
in the parent element domain.

The ath rational T-spline basis function Re
aðnÞ over the element e can be written as:

Re
aðnÞ ¼

we
aN

e
aðnÞPn

j¼0
we
j N

e
j ðnÞ

(4)

where we
j represents the weight of the control point which is corresponding to the jth T-spline basis function

over the element e. Given a set of T-splines control points Pe
i of the element e, the element geometric map xe

from the parent element domain to the physical space can be defined as:

xeðnÞ ¼
Xn
i¼0

Pe
i R

e
i ðnÞ: (5)

3 Nonlinear Formulations

The formulations of nonlinear isogeometric analysis in our work are summarized in this section. For
two-dimensional hyperelastic problems, the large deformation, large stress and large strain are studied and
for two-dimensional elastoplasticity problems, only the small deformation case is considered at this stage.
Readers are referred to [45–49] for more details of the formulation.

3.1 Hyperelasticity
In the displacement-based implementation of isogeometric analysis, the ui is the displacement of control

points. The displacement can be calculated by the following scheme:

u ¼
Xn
i¼0

Riðn; gÞui (6)

where Ri(ξ, η) is the basis function for isogeometric analysis. The reference coordinate X is expressed by the
nodal coordinate in the undeformed geometry as:

X ¼
Xn
i¼0

Riðn; gÞXi: (7)

Then, the displacement gradient is given by:

r0u ¼ @u
@X

¼
Xn
i¼0

@Riðn; gÞ
@X

ui: (8)

The deformation gradient is defined by:

F ¼ 1þr0u; (9)

and the Lagrangian strain E is written as:
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E ¼ 1

2
ðFTF� 1Þ: (10)

Next, the variation of the Lagrangian strain is given by:

�E ¼ BN�u (11)

where BN is the nonlinear displacement-strain matrix, which contains the components of the deformation
gradient and ū is the variation of nodal displacements. The discrete energy form is obtained by using Eq.
(11) and the second Piola-Kirchhoff stress S as:

aðu; �uÞ ¼
Z
�

S : �Ed� � �uTf int (12)

where f int is the discrete internal force vector. Furthermore, the discrete version of external force vector is
written as:

lð�uÞ ¼
Z
�

�u � fbd�þ
Z
�N

�u � t̂d� � �uTfext (13)

where fb and t̂ denote the body force and prescribed traction. The nonlinear equation is solved by finding the
internal force which is equal to the external force:

�uTf intðuÞ ¼ �uTfext: (14)

The solution of Eq. (14) requires an iterative method, such as the modified Newton-Raphson method,
which needs the tangent stiffness matrix.

The incremental Lagrangian strain can be calculated as:

DE ¼ BNDu: (15)

The first term of the structural energy form is expressed as:Z
�

�E : DN : DEd� ¼ �uT
Z
�

BT
NDNBNd�

� �
Du: (16)

Then, the second term in the linearized energy form is expressed as:Z
�

S : D�Ed� ¼ �uT
Z
�

BT
G�BGd�

� �
Du (17)

where

� ¼
S11 S12 0 0
S12 S22 0 0
0 0 S11 S12
0 0 S12 S22

2
664

3
775; (18)

BG ¼
R0;1 0 R1;1 0 . . . Rn;1 0
R0;2 0 R1;2 0 . . . Rn;2 0
0 R0;1 0 R1;1 . . . 0 Rn;1

0 R0;2 0 R1;2 . . . 0 Rn;2

2
664

3
775: (19)

Ri,j denote the derivative of Ri(ξ, η) with respect to the reference configuration X in the jth direction. The
tangent stiffness matrix is derived by Eqs. (16) and (17) as:
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KT ¼
Z
�

ðBT
NDNBN þ BT

G�BGÞd�: (20)

The discretized version of incremental equation can now be written as:

�uTKTDu ¼ �uTðfext � f intÞ: (21)

Iterative methods, such as the modified Newton-Raphson method, can be employed to solve the above
system of equations until the residual force on the right is equal to zero. If the incremental force method is
applied, the Newton-Raphson method will be used at each load step.

3.2 Elastoplasticity
For elastoplasticity, the stress does not have a one-to-one relationship with the strain. At each integration

point of the element, the plastic variables and the stress are calculated by the past load history and the return-
mapping algorithm. In the return-mapping algorithm, the elastic trial status is computed first, assuming that
all strain increments are elastic. The trial stress ηtr at the nth load step can be written as:

gtr¼nsþ 2lDe�nα (22)

where s denotes the stress deviator; μmeans the shear modulus; e is the deviatoric strain, and α states the back
stress denoting the shifted vector of the yield surface due to the kinematic hardening. Assume that von Mises
yield criterion and the combined hardening criterion are used, the yield function is expressed as:

f ¼ gtrk k �
ffiffiffi
3

2

r
r0Y þ ð1� bÞHep
� �

: (23)

r0Y and H are initial yield stress and plastic modulus; ep denotes the effective plastic strain; the parameter
β ∈ [0, 1] states the influence of the isotropic hardening and kinematic hardening in the combined hardening.
If f ≤ 0, the material status is elastic. Then, the trail predictors are performed to update the plastic variables
and the stress:

nþ1s ¼ nsþ 2lDe;nþ1α ¼ nα;nþ1ep ¼ nep: (24)

If f > 0, the material status has become plastic. What’s more, the plastic correction step should be
performed to find the plastic status, as follows:

nþ1s ¼ trs� 2lDep ¼ trs� 2lĉN (25)

where ĉ ¼ f = 2lþ 2
3H

� �
is the plastic consistency parameter, and N ¼ trη= trηk k is a unit deviatoric tensor.

The stress is updated as:

nþ1σ ¼ nσ þ Dσ (26)

where the increment of stress is obtained as:

Dr ¼ D : De� 2lĉN: (27)

According to the flow law, the plastic variables are updated together with the stress as:

nþ1α ¼ nαþ 2

3
bH ĉN; (28)

nþ1ep ¼ nep þ
ffiffiffi
2

3

r
ĉ: (29)
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Assuming that the combined hardening is linear, from Eq. (27) the consistent or algorithmic tangent
stiffness becomes:

Dep ¼ @Dr
@De

¼ D� 2lN� @ĉ
@De

� 2lĉ
@N
@De

: (30)

The derivative of ĉ with respect to Δɛ is expressed as:

@ĉ
@De

¼ 2lN�N

2lþ 2
3H

: (31)

The unit normal tensor increment is obtained as:

@N
@De

¼ @N
@trη

:
@trg

@De
¼ ½ I

trgk k �
trg�trg

trgk k3 � : 2lIdev ¼
2l
trgk k ½Idev � N� N�: (32)

I is the fourth-order unit symmetric tensor. Idev is the fourth-order unit deviatoric tensor defined as
Idev ¼ I� 1

3 I� I. Thus, Dep can be calculated as:

Dep ¼ @Dr
@De

¼ D� 4l2N� N

2lþ 2
3H

� 4l2ĉ
trgk k ½Idev �N� N�: (33)

The tangent stiffness matrix is calculated as:

KT ¼
Z
�

BTDepBd� (34)

where B is the strain-displacement matrix. The discretized version of incremental equation is expressed as:

�uTKTDu ¼ �uTðfext � f intÞ: (35)

Because n+1ep,
n+1α and n+1σ will be used in the next load step, the iteration process needs one more step

to update them after the nonlinear equation converges.

3.3 Framework of Two-Dimensional Nonlinear Analysis
Although the previous sections summarized the steps of the nonlinear isogeometric analysis, it is also

important to explain how these steps are performed sequentially. The flowchart of a nonlinear
isogeometric analysis program is as shown in Fig. 3. In our work, we use the modified Newton-Raphson
method and the incremental force method. When the Newton-Raphson method fails to converge, the
bisection method will be used to control the load increment.

4 The Error Estimate and Adaptive Strategy

In our work, we apply the h-adaptive refinement strategy for two-dimensional nonlinear problems [50].
The h-adaptive strategy is used to improve the accuracy of nonlinear isogeometric analysis by refining the
mesh during the iteration process while keeping the order of the basis function unchanged. Three main
steps are involved in adaptive refinement:

1. Determine a reasonably accurate error estimator.

2. Perform the adaptive refinement to get the new mesh according to the estimate error.

3. Apply the second step cyclically until the estimate error is less than the prescribed value.

CMES, 2020, vol.123, no.2 827



All adaptive strategies are according to the fact that any calculation results obtained by initial numerical
simulation will always produce a certain error. For the generation of a better mesh, the error should be
estimated by an error estimator [51]. One such reasonably accurate error estimator and adaptive
procedure, introduced by Zienkiewicz et al. [52], have been applied in many engineering fields as, for
example, fluid, dynamic problems, and non-linear material models [53–55].

We obtain the approximate solution of stress r̂ by a standard Galerkin process in the isogeometric
analysis program. To obtain acceptable results for stresses, the projection process is generally used in
which it is assumed that the stress is interpolated by the same function R as the displacement, i.e.,

r� ¼ R�r� (36)

andZ
�

RTðr� � r̂Þd� ¼ 0: (37)

On substitution of Eqs. (36) and (37) this yields:

Final load ?

Input data

Update history 
variables

it=0,P=P+ Δ P

Stop

Compute stiffness 
K&residual R

max _ it ? 

Solve Δ U=R/K 

U=U+ Δ U

Converged ? 

it=it+1

P=P- Δ P
Δ P= Δ P/2

Y

N

N

Y

Y
N

P :Current Load/Displacement
ΔP :Load /Displacement increment
max_ it :Maximum iterative level
it :Iterative level

Stop

Figure 3: Flowchart for nonlinear isogeometric analysis procedure
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�r� ¼ A�1
Z
�

RTr̂d� (38)

where

A ¼
Z
�

RTRd�: (39)

It has been proved that σ * is in fact a better approximation than r̂. Thus, the estimate error can be
calculated as:

er ¼ r� � r̂: (40)

For the stresses the L2 norm of the error eσ is

erk k ¼ ð
Z
�

ðerÞTðerÞd�Þ1=2: (41)

The estimate for the local error of the ith element is defined as erk ki. Thus, the global error is:

erk k ¼ ð
Xnel
i¼1

erk k2i Þ1=2 (42)

where nel is the total number of elements.

The relative error can be defined by:

g ¼ erk k
r�k k � 100%: (43)

The refinement strategy is decided by the error level that we wish to achieve. So, we require to keep η
within the limit:

g 	 �g (44)

where �g is a prescribed error tolerance. If the error norm is under the tolerance, the solution is accepted and
the iteration process proceeds to the next load step, keeping the mesh constant. If the error norm exceeds the
limit, the mesh is refined and the current step is recalculated. As the local error erk ki is in fact computed for
each element we can conveniently check where local refinement is necessary. Let ξi denote the local
refinement parameter, which is calculated by:

ni ¼
erk ki
em

; (45)

where em is the average error, i.e.,

em ¼ erk kffiffiffiffiffiffi
nel

p : (46)

During the adaptive refinement process, an element is refined or not according to the local refinement
parameter. In implementation, the element of which this parameter is larger than 1 (ξ i > 1) will be
refined, as shown in Fig. 4. The details of the refinement of the T-mesh are presented in [33,39].
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5 Numerical Examples

In this section, several examples are provided to explain the major advantages that T-splines bring to
two-dimensional nonlinear isogeometric analysis. In the first part, two models with hole features or
irregular boundaries are represented by untrimmed T-splines, which can be directly used in the
isogeometric analysis. If the same model is represented by NURBS, more than ten patches need to be
merged, as shown in Figs. 5d and 10d. In the second part, we compare the global refinement with the

1 1.21 2 0.87

3 0.63 4 0.50

Figure 4: Mesh refinement according to the local refinement parameter

Figure 5: (a) T-spline surface of a square with three holes (b) The geometry size of the model (c) Boundary
conditions of the model (d) The model of multiple NURBS patches merging
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adaptive refinement to illustrate that the local refinement capabilities of T-splines enhance the accuracy of
two-dimensional nonlinear problems, by two widespread examples.

5.1 Untrimmed T-splines in Two-Dimensional Nonlinear Analysis
A complicated engineering design represented by trimmed NURBS usually requires the pre-process

before analysis. If we represent the model by a single untrimmed T-spline using the commercial software
Rhino with the T-splines plugin, it can be directly applied in isogeometric analysis. The results calculated
by T-spline IGA are compared with those from FEA(ABAQUS) to confirm the robustness and accuracy
of T-splines in the nonlinear calculation. It is well known that the results of FEA will gradually converge
with the refinement of the mesh, especially for the nonlinear problems. Thus, we adjust the approximate
global size in the ABAQUS to refine the mesh until the change of the calculation results is within 1%.
For the fairness of the comparison, the same strategy is also used for T-spline IGA to get acceptable results.

In the first example, the stretching of a square with three holes is investigated. Mooney-Rivlin
hyperelastic material is used for this model with A10 = 0.1863, A01 = 0.00979, and K = 0. Geometry
size of the model is shown in Fig. 5b. As shown in Fig. 5c, the left edge of the square is fixed, while the
right edge is subjected to a prescribed x-displacement D = 8.

The distributions of von Mises stress and displacements are compared between T-spline IGA and the
FEA (ABAQUS) in this example, as shown in Figs. 6–8. We also choose two points, A and B (Fig. 5a),
to show the load-displacement curves, which is another important result to be studied. The load D is
divided into 10 load steps equally for the comparison of our load-displacement curves with the results
from the FEA, as shown in Fig. 9. The IGA uses a mesh with 1838 Dofs (or 500 elements based on
Bézier extraction of T-splines), while a mesh with 20060 Dofs (or 6516 CPS8R elements) of the FEA is
used. As the figures show, our simulation results agree well with those from FEA. As usual, the FEA
uses rather more Dofs (or elements) to achieve the acceptable results. In contrast, our nonlinear IGA
program using T-splines offers almost the same results with a lower number of Dofs. Generally speaking,
this is known as the main advantage of the IGA method, no matter using T-splines or NURBS.

The second example is a trimmed elastoplastic square with two holes under a prescribed displacement,
as shown in Fig. 10. Young’s modulus E = 200 × 10e9, Poisson ratio ν = 0.29, initial yield stress Y0 = 200 ×
10e6, plastic modulus H = 2.222 × 10e10, and isotropic hardening model is used. The geometry size of the
model is as shown in Fig. 10b. For the boundary conditions: the x-displacement of the left edge is fixed, the
y-displacements of the top edge and bottom edge are fixed, and the right edge is subjected to a prescribed x-
displacement D = 0.008. A mesh with 1838 Dofs (or 478 elements) is used for IGA using T-splines, while a
mesh with 12865 Dofs (or 4170 CPE8R elements) for the FEA. Similar to the previous example, the von

Figure 6: The distributions of the x-displacement of hyperelastic model (a) The T-spline IGA (b) The FEA
(ABAQUS)
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Mises stress and the displacements computed by the T-spline based IGA are compared with those from the
FEA, as shown in Figs. 11–13.

Moreover, the plastic regions are studied. The plastic regions calculated by the FEA (ABAQUS)
compared with those derived from our proposed IGA based on T-splines are shown in Fig. 14. Obviously,
the plastic regions calculated by the IGA is essentially the same as those from ABAQUS. Fig. 15 shows

Figure 7: The distributions of the y-displacement of hyperelastic model (a) The T-spline IGA (b) The FEA
(ABAQUS)

Figure 8: The distributions of the von Mises stress of hyperelastic model (a) The T-spline IGA (b) The FEA
(ABAQUS)
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Figure 9: Comparison of the load-displacement curve between the IGA and FEA of hyperelastic model (a)
The y-displacement of the point A (b) The y-displacement of the point B
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Figure 10: (a) T-spline surface of a trimmed square with two holes (b) The geometry size of the model (c)
Boundary conditions of the model (d) The model of multiple NURBS patches merging

Figure 11: The distributions of the x-displacement of elastoplastic model (a) The T-spline IGA (b) The FEA
(ABAQUS)
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the load-displacement curves of the points A and B (Fig. 10a). Our curves have a good match with the results
obtained by the FEA. In addition, because the point A is in the elastic region and the point B is in the plastic
region, we can clearly see the strong nonlinearities due to the influence of plasticity.

Figure 12: The distributions of the y-displacement of elastoplastic model (a) The T-spline IGA (b) The FEA
(ABAQUS)

Figure 13: The distributions of the von Mises stress of elastoplastic model (a) The T-spline IGA (b) The
FEA (ABAQUS)

Figure 14: Comparison of the plastic regions (a) The T-spline IGA(yellow) (b) The FEA(red)
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5.2 Adaptive Refinement of T-Splines in Two-Dimensional Nonlinear Analysis
In this part, we provide two two-dimensional nonlinear common examples to illustrate that the adaptive

T-spline meshes enhance the accuracy of per Dof compared with the global refinement. The first example
deals with a one-quarter annular plate under small deformation whose geometry is schematically depicted
in Fig. 16a. The inner radius r = 1, while the outer radius R = 2. The left edge fixed and the right edge is
subjected to a prescribed y-displacement D = 0.008. For the material model: Young’s modulus E = 200 ×
10e9, Poisson ratio ν = 0.29, initial yield stress Y0 = 200 × 10e6, plastic modulus H = 2.222 × 10e10, and
isotropic hardening model is used.
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Figure 15: Comparison of the load-displacement curve between the IGA and FEA of elastoplastic model (a)
The x-displacement of the point A (b) The y-displacement of the point B

Figure 16: (a) Geometry size and boundary conditions of the model (b) The initial mesh 0 Dofs = 50 the
relative error η = 40% (c) The mesh 1 Dofs = 98 η = 30% (d) The mesh 2 Dofs = 242 η = 25% (e) The
mesh 3 Dofs = 722 η = 15%
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Firstly, the global refinement meshes are investigated, as shown in Fig. 16. The mesh 0, mesh 1, mesh 2
and mesh 3, are performed in nonlinear IGA program, respectively. Thus, we get the relative errors
approximately equal to 40%, 30%, 25%, and 15%. Then, the adaptive refinement analyses are also
performed from the initial mesh 0. The corresponding meshes calculated from the nonlinear isogeometric
analysis program are shown in Fig. 17, with prescribed relative errors 30%, 25%, and 15%. It is obvious
that at the same error levels, the adaptive refinement processes bring a reduction of more than 20% in the
number of Dofs. The computation results of the displacement ux of the point A and the number of Dofs
during the adaptive analysis process are shown in Figs. 18 and 19.

The load-displacement curves of the point A (see Fig. 16a) is shown as the Fig. 18. For all meshes, with
the refinement of the mesh, the displacements calculated by isogeometric analysis converge to the same
results. Besides that, the Fig. 18b shows that the adaptive t-mesh with 176 Dofs (t-mesh 2) and the
uniform mesh with 722 Dofs (mesh 3) seem to get the same results. It is clear that the adaptive
refinement achieves similar precision with fewer Dofs compared with the global refinement. In this
example we also study the convergence behavior of the displacement ux at point A. We choose the
calculation result of the uniform mesh with 8978 Dofs as the exact result uexactx . Fig. 20 shows the
absolute error ux � uexactx , where ux is the actual result achieved by the adaptive and the non-adaptive

(a) (b) (c)

Figure 17: (a) The t-mesh 1 Dofs = 76 the prescribed error �g = 30% (b) The t-mesh 2 Dofs = 176 the
prescribed error �g = 25% (c) The t-mesh 3 Dofs = 544 the prescribed error �g = 15%
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Figure 18: (a) The load-displacement curves of different meshes (b) A partial magnification of the load-
displacement curves
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isogeometric analysis respectively. It can be seen again that the adaptive refinement has a better accuracy and
convergence than the global refinement.

The second example is a hyperelastic model to illustrate the advantage of adaptive refinement in the
accuracy of nonlinear analysis. In this example, the stretching of a unit square is investigated. As shown
in Fig. 21, the left edge of the square is fixed, while the bottom edge simply supported. The right edge is
subjected to a prescribed displacements D, which is five times its length, namely D = 5. Mooney-Rivlin
hyperelastic material is used for this model with A10 = 0.1863, A01 = 0.00979, and K = 0.

For the global refinement, the relative errors approximately equal to 5.5%, 4.5%, 3.0%, and 1.5% are
given by mesh 0, mesh 1, mesh 2 and mesh 3 in Fig. 22, respectively. If we choose prescribed relative
errors as 4.5%, 3.0%, and 1.5%, we can get the corresponding adaptive meshes calculated from the
nonlinear isogeometric analysis program, as shown in Fig. 23. Compared with the global refinement
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102 103

Number of the  Dofs

10-6

10-5

10-4

10-3

A
bs

ol
ut

e 
er

ro
r 

of
 u

x

unifom mesh
adaptive mesh
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meshes in Fig. 22, we can see in Fig. 23 that, adaptive refinement processes apply a reduction of more than
15% in the Dofs at same error level.

Fig. 24 shows the convergence behavior of the displacement ux at point A. The absolute error is defined
as ux � uexactx where uexactx is the calculation result of the uniform mesh with 8978 Dofs and ux is the actual
result achieved by the different kinds of meshes. As expected, this example also proves that the adaptive
refinement improves the accuracy of the nonlinear isogeometric analysis.

D
x

Y

A

(a)

(b)

(c)

Figure 21: (a) Geometry size and boundary conditions of the model (b) The distribution of the y-
displacement of the computation result (uniform mesh) (c) The distribution of the y-displacement of the
computation result (adaptive mesh)

(a) (b)

(c) (d)

Figure 22: (a) The initial mesh 0 Dofs = 50 the relative error η = 5.5% (b) The mesh 1 Dofs = 98 η = 4.5%
(c) The mesh 2 Dofs = 242 η = 3.0% (d) The mesh 3 Dofs = 722 η = 1.5%
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6 Conclusions

We have extended the T-spline based isogeometric analysis to the simulation of two-dimensional
nonlinear problems, including hyperelasticity and elastoplasticity. We use T-splines to model trimmed
designs as one single, watertight geometry, which could be the basis to handle complicated engineering
models. Moreover, by combining the error estimate with the local refinement capabilities of T-splines, we
provide adaptive refinement meshes during the iteration process of nonlinear analysis. Finally, the
obtained results are compared with those from NURBS-based isogeometric analysis and commercial
software ABAQUS. The comparison confirm the robustness and accuracy of T-splines in the nonlinear
calculation and the advantage in the convergence behavior.

The isogeometric analysis based on T-splines can be a legitimate candidate to simulate nonlinear
problems. However, some problems should be scheduled for our future works:


 Among many two-dimensional nonlinear problems, we select hyperelasticity and small deformation
elastoplasticity as the research objects, without losing generality. More situations such as the large
deformation elastoplasticity and viscoelastoplastic will be conveniently implemented in our framework.

(a) (b) (c)

Figure 23: (a) The t-mesh 1 Dofs = 76 the prescribed error �g = 4.5% (b) The t-mesh 2 Dofs = 200 the
prescribed error �g = 3.0% (c) The t-mesh 3 Dofs = 610 the prescribed error �g = 1.5%
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Figure 24: The error of the displacement ux at point A
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 In our work, the element in which the local refinement parameter is over the prescribed value is refined into
new elements. However, in the current analysis framework, we haven’t implemented the recovery process,
which will be performed if the element’s local refinement parameter is under the prescribed value [51].


 The T-spline solids for isogeometric analysis of three-dimensional nonlinear problems will be developed,
which allow local refinement and will handle more complex three-dimensional geometry.
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