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Abstract: Currently, functional connectomes constructed from neuroimaging data have
emerged as a powerful tool in identifying brain disorders. If one brain disease just mani-
fests as some cognitive dysfunction, it means that the disease may affect some local con-
nectivity in the brain functional network. That is, there are functional abnormalities in the
sub-network. Therefore, it is crucial to accurately identify them in pathological diagnosis.
To solve these problems, we proposed a sub-network extraction method based on graph
regularization nonnegative matrix factorization (GNMF). The dynamic functional networks
of normal subjects and early mild cognitive impairment (eMCI) subjects were vectorized
and the functional connection vectors (FCV) were assembled to aggregation matrices. Then
GNMF was applied to factorize the aggregation matrix to get the base matrix, in which the
column vectors were restored to a common sub-network and a distinctive sub-network, and
visualization and statistical analysis were conducted on the two sub-networks, respectively.
Experimental results demonstrated that, compared with other matrix factorization methods,
the proposed method can more obviously reflect the similarity between the common sub-
network of eMCI subjects and normal subjects, as well as the difference between the
distinctive sub-network of eMCI subjects and normal subjects, Therefore, the high-dimen-
sional features in brain functional networks can be best represented locally in the low-
dimensional space, which provides a new idea for studying brain functional connectomes.

Keywords: Brain functional network, sub-network, functional connectivity, graph regularized
nonnegative matrix factorization (GNMF), aggregation matrix.

1 Introduction

Alzheimer’s disease (AD), a progressive, irreversible neurodegenerative disease, is one of
the most common types of dementia in life which accounts for 50% to 80% of dementia
cases. So far, there is no effective clinical treatment for this disorder, which has seriously
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affected the patients’ daily life [Alzheimer’s Association Calcium Hypothesis Workgroup
(2017); Tobia, Hayashi, Ballard et al. (2017)]. Mild cognitive impairment (MCI) is an
intermediate stage between the expected cognitive decline in normal aging and the more
pronounced decline in dementia. On average, the probability of MCI conversion to AD is
10% to 15% annually, and the conversion rate exceeds 50% within 5 years [Gauthier,
Reisberg, Zaudig et al. (2006); Wang, Wu, Hou et al. (2016)]. Due to high conversion
rate of MCI and increasing life expectancy, MCI intervention through drug and non-drug
approaches to reduce AD conversion rate has become a research focus [Wang, Du,
Atangana et al. (2018); Lu, Lu and Zhang (2019)]. In the past decades, the accurate
identification of early mild cognitive impairment (eMCI) has aroused great concern
among researchers [Zhang, Dong, Liu et al. (2015)]. More and more studies show that
there are very subtle changes in the brain of patients with eMCI, which mainly manifest
in some abnormal functional connectivity [Jiao, Zou, Cao et al. (2014); Zhang, Wang and
Sui (2018)]. Therefore, it is necessary to study the differences between eMCI and normal
people through brain functional networks [Wee, Yap, Zhang et al. (2012); Chen, Ward,
Xie et al. (2011); Zhou, Wang, Li et al. (2011)].

Nowadays, scientists utilize functional magnetic resonance imaging (fMRI) to divide brains
into different voxels, and analyze different activity patterns through the response strength of
voxels [Jie, Shen and Zhang (2014)]. In the studies of resting-state fMRI, many researchers
pay attention to the brain functional networks based on graph theories [Stam (2010);
Alzheimer’s Association Calcium Hypothesis Workgroup (2017)], and their work mainly
focus on the overall modes of the functional networks. The functions of human brain
need to be realized by mutual cooperation between different brain regions, and the
cooperative relations of brain regions can be demonstrated through functional
connectivity. In recent years, feature learning for functional connectomes has been
proved to be a valuable tool in characterizing and differentiating brain disorders from
normal subjects. If a certain brain disease is just manifested as some cognitive
dysfunction while other cognitive functions are normal, it indicates that the functional
abnormalities of sub-networks which are composed of some brain regions [Liang, Zhou,
Jiang et al. (2006); Li and Li (2016)]. Therefore, accurate identification of these sub-
networks is crucial for disease diagnosis.

Previous studies often adopted some matrix factorization methods during numerical
analysis, such as principal component analysis [Baumgartner, Ryner, Richter et al.
(2000)], independent component analysis [Beckmann, Deluca, Devlin et al. (2005)],
dictionary learning algorithm [Li, Zhu, Jiang et al. (2014)], clustering algorithm [Chen,
Li, Zhu et al. (2013)], sparse coding [Lee, Tak and Ye (2011); Zhang, Li, Lv et al.
(2013)], etc. Traditional matrix factorization ways allow the existences of negative
factorized matrices, but it is difficult to explain negative values by its physical meaning
in practical applications. Nonnegative matrix factorization (NMF) aims to find two low-
dimensional non-negative matrices to approximately express the high-dimensional
original matrix, and to characterize the internal structural information and characteristics
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in the matrices [Shahnaz, Berry, Pauca et al. (2006)]. Since Lee et al. [Lee and Seung (1999)]
proposed the NMF method based on a single target, many popular machine learning
methods including NMF algorithm have been applied to various research fields. Padilla
et al. [Padilla, Górriz, Ramírez et al. (2010)] used Support Vector Machine (SVM) to
classify computed tomography (CT) images and applied NMF to AD diagnosis for the
first time. Khambhati et al. [Khambhati, Sizemore, Betzel et al. (2018)] applied NMF to
brain functional networks, and proposed a dynamic graphical architecture for modeling
the activity patterns of functional connectivity. Ou et al. [Ou, Xie, Li et al. (2015)]
extracted sub-networks from brain functional networks using divergence-based projective
NMF and studied their connectivity patterns.

However, most machine learning algorithms are carried out in Euclidean space, and it is
difficult to find the internal geometric structure of data space, resulting in the failure to
effectively extract high-dimensional features from some data that can reflect the spatial
structure in the network. Especially for a brain with complex spatial structure, extracting
effective high-dimensional features is crucial for data clustering and classification [Stam
(2010)]. Cai et al. [Cai, He, Han et al. (2011)] introduced the manifold concept into
NMF, and proposed graph regularized nonnegative matrix factorization (GNMF) for
unsupervised learning. In relevant studies, some features were extracted for factorization,
such as matrix dispersion etc., which could not only cluster these features into more
compact clusters, better reflect the geometric connections among the elements in a
matrix, but also ensure the speed and efficiency of matrix factorization. In fact, brain
functional networks change dynamically over time, which contain a lot of valuable
information [Wang, Ren and Zhang (2017); Hutchison, Womelsdorf, Gati et al. (2013)].
Therefore, it is essential to accurately describe the actual state of functional connectivity,
especially the parts of the functional network with abnormal connectivity patterns. We
vectorized the dynamic functional networks of normal subjects and early mild cognitive
impairment (eMCI) subjects respectively, and assembled the functional connectivity
vectors (FCV) into aggregation matrices. Then we applied GNMF to splice the
aggregation matrix to several sub-networks, and conducted visualization and statistical
analysis on common sub-networks and distinctive sub-networks, respectively. Finally, the
results of the proposed method were compared with those of other matrix factorization
methods to verify the validity of GNMF on extracting sub-networks from brain
functional networks.

2 Materials and methods

Our work used the resting-state fMRI data from ADNIGo and ADNI2 dataset of
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http://adni.loni.ucla.edu). A total
of 62 subjects were involved in the experiment, including 32 eMCI subjects (16 males
and 16 females, age 63±7 years) and 30 normal subjects (17 males and 13 females, age
65±10 years). Since two female eMCI subjects had head movements and other behaviors
during the test, these two subjects were ignored. All subjects were obtained by the same
scanning method using a 3.0 T Philips Achieva scanner, and subjects were required to
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remain relax and awake during the scanning process. The scanning time for each subject was
7 minutes, with a large frame shift of more than 2.5 minutes (FD>0.5). Specific scanning
parameters are as follows: Repeat time TR=3000 ms, Echo time TE=30 ms, Flip angle
80°, Time points=140, Imaging matrix size=64×64, Layer thickness=3.3 mm.

The raw fMRI data was preprocessed in DPARSF toolbox (http://rfmri.org/dparsf) of
Matlab R2012a. The preprocessing operations include slice timing, realignment, spatial
normalization, smoothing, detrend, filtering, etc. Each subject’s brain was divided into 90
brain regions according to Anatomical Automatic Labeling (AAL) template, and the time
series of each brain region were extracted [Tzourio-Mazoyer, Landeau, Papathanassiou
et al. (2002)]. The filtering range is 0.01-0.08 Hz, the standardized bounding box is [-90,
-126, -72; 90, 90, 108], and the voxel size is [3, 3, 3]. It takes a certain amount of time
for both the machine and the subjects to enter a stable state. The first 3 time points are
removed during preprocessing, and the remaining 137 time points are retained for
subsequent analysis. The data of subjects with large head movements (translation >2 mm,
rotation >2°) are removed after realigning.

The whole time series are divided into several overlapping sub-segments with the same
window length by sliding time windows [Chen, Zhang, Gao et al. (2016); Chen, Zhang,
Zhang et al. (2017)]. Then the dynamic functional networks are constructed by
calculating the Pearson correlation coefficients between the time series of two brain
regions in the same window. There are two main methods of vectorizing brain functional
networks: (i) In view of the symmetry of correlation coefficient matrices, the columns in
their upper triangular elements are assembled into one column to generate a FCV with
the dimension of (89+1)×89/2=4005. (ii) The correlation coefficients between each brain
region and all other brain regions are accumulated into one column to generate a
90-dimensional vector that represents the functional connectivity strength (FCS) of a
brain region. The first method completely retains all the information in the networks and
the process is reversible, but the computing speed is very slow. Although the second
method loses some information in the networks, it has lower dimensions and is easy to
calculate. Therefore, we used the first method to vectorize dynamic functional networks
and the second method to analyze FCS.

NMF is a linear and non-negative approximate data description of a non-negative matrix
[Pascual-Montano, Carmona-Saez, Chagoyen et al. (2006)]. For a given matrix V with a
size of m×n, m represents the sample characteristics and n represents the number of
samples, that is, each column vector of the matrix represents a sample. The matrix V is
factorized into a base matrix W with a size of m×r and a weight matrix H with a size of
r×n, where H is the projection matrix of the original matrix V on the base matrix W, and
the value of r is generally smaller than that of m and n. The dynamic brain functional
network of subject i was vectorized to some FCVs from a mathematical point of view,
and the spliced sub-aggregation matrix Vi can be approximately factorized as follows:
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Vi � h1;t W 1þ…þ hj;t W jþ…þ hr;t W r ¼ W 1 . . .W j . . .W r

� �
h1;t
..
.

hj;t
..
.

hr;t

2
6666664

3
7777775

(1)

whereWj is the column vector corresponding to the j-th sub-network, hj,t is the weightWj, t
is the total number of column vectors in Vi, and r is the number of sub-networks.

Accordingly, the aggregation matrix spliced by the FCVs of a type of subjects can be
approximately factorized as follows:

V ¼ V 1 . . .V i . . .VN½ � � W 1 . . .W j . . .W r

� �
h1;1 � � � h1;t � � � h1;n
..
. . .

.
. .
. ..

.

hj;1 hj;t hj;n
..
.

. .
. . .

. ..
.

hr;1 � � � hr;t � � � hr;n

2
6666664

3
7777775
¼ WH (2)

where W is the base matrix composed of the column vectors corresponding to all sub-
networks, H is the weight matrix composed of the weights of all subjects’ column
vectors, N is the number of subjects, and n is the total number of all subjects’ column
vectors. Thus, the aggregation matrix can also be considered as a weighted combination
of all subjects’ sub-networks.

The square of Euclidean distance between V and WH is taken as the objective of NMF:

min
W ;H

V�WHk k2F s:t:W � 0;H � 0 (3)

where �k k is Frobenius norm. The updating criteria of the objective function of NMF are as
follows:

W i;k  W i;k

V HT
� �

i;k

WH HT
� �

i;k

H k;j  H k;j

W T V
� �

k;j

W T WH
� �

k;j

8>>>><
>>>>:

(4)

Both W and V obtained by NMF have non-negative characteristics and locality, so that the
result after dimensionality reduction can partially represent the data of vector space [Brunet,
Tamayo, Golub et al. (2004); Stam and Reijneveld (2007)]. In particular,W cannot retain as
many neighbor structures in V as possible, that is, the geometric structure of data in V is not
considered. This method ignores the intrinsic geometric structure of spatial data, which is
crucial for clustering and classification. GNMF added graph regularization constraints on
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the basis of NMF, which not only retained the local sparsity of NMF, but also enabled to
maintain the similarity between the samples in V after data dimensionality reduction. The
sample hi in the i-th column of H can be viewed as a new expression of the sample vi in
the i-th column of V in W. Assume that the samples vi and vj in V are adjacent samples,
the samples hi and hj in H are also adjacent samples after mapping the two samples in V
to the low-dimensional manifold. In order to make the factorized samples maintain the
manifold characteristics of V, we let G be the graph composed of the samples in V. The
objective function of GNMF is defined as:

min
W ;H

V �WHk k2F þ�tr HLHT Þs:t:W � 0;H � 0 (5)
�

where tr represents trace, L=D-K is the Laplace matrix of G, K is the weight matrix to
measure the similarity between samples, and D is a diagonal matrix where each element
on the diagonal is the sum of each row (or column) in K, that is, dij¼

P
i
kij; λ is the

regularized parameter, and when it is equal to 0, GNMF degenerates to NMF.

The objective function measures the degree of smoothness of the space represented by data
points in low dimensions. In view of this, the K introduced in GNMF can further highlight
the difference between different samples and serve as a regularization term to optimize the
objective function. The binary elements of K are as follows:

kij ¼ 1; vi 2 N k vj
� �

or vj 2 N k við Þ
0; else

�
(6)

where N k við Þ and N k vj
� �

represent the sets of the k most similar samples of the i-th sample
and the j-th sample in the feature space, respectively, which are called k-Nearest Neighbors.

The updating criteria of the objective function of GNMF are as follows:

wik  wik
V HT
� �

ik

WH HT
� �

ik

hkj  hkj
W T V þ �H KT
� �

kj

W T WH þ �HDT
� �

kj

8>>>><
>>>>:

(7)

Assume that the original matrix V = [ v1,…, vi,…, vn] is divided into k clustering clusters,
and each cluster forms a base matrix W. When the sample vi belongs to the k-th cluster, the
sample hi in the weight matrix H is all 1, otherwise it is 0. Then the objective function of
k-means clustering is:

min
V�0;H�0;HT H¼I

V �WHk k2F (8)

When HT H=I, NMF and k-means clustering are equivalent, so there a certain correlation
among NMF, GNMF and k-means clustering [Li, Bu, Li et al. (2018)]. In dictionary
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learning, the base matrixW 2 Rm�r is used to sparse the unfactorized matrix, among which
the weight matrix is H 2 Rr�n. The objective function of dictionary learning is:

min
W ;H

V �WHk k2F s:t:8i; hik k0 � T0 (9)

where hi is the vector in the i-th row of the weight matrix, and T0 is the sparsity
constraint parameter.

Optimizing objective function is a least-square problem, which can be solved by singular
value decomposition (SVD). The objective function of dictionary learning and the
objective function of NMF algorithm are equivalent under certain conditions [Zhang and
Li (2010)], so there is also a certain correlation between GNMF and dictionary learning.

The number of sub-networks is a very important parameter in the factorization of
aggregation matrices. There are many methods to determine the number of clusters in
traditional clustering, but there is no method to determine the optimal number of clusters
in NMF. Brunet et al. [Brunet, Tamayo, Golub et al. (2004)] proposed a method about
cophenetic correlation coefficient (CCC) to select the optimal value of r. CCC is defined
as the correlation coefficient between the distance matrix (I � C) corresponding to the
consensus matrix C and the linkage matrix of C in the process of reordering it. Notably
C generating from multiple clustering is the average value of the adjacent matrix C, a
binary matrix. If the samples vi and vj belong to the same cluster in a certain clustering,
the corresponding element in C is 1, otherwise 0. If the result of each clustering is the
same, the elements in the consensus matrix C can only be 0 or 1. The range of elements
in C is 0 to 1, it reflects the probability that the samples vi and vj are clustered to the
same cluster. If a clustering result is stable, there will be no changes in C, and the
elements of C are close to 0 or 1. The value of CCC is 1 when all elements in C are 0 or
1, and the value of CCC is less than 1 when the elements are between 0 and 1.
Therefore, the optimal value of r is generally taken when CCC decreases and the
blocking effect of C is the most significant (the classification results are most stable).

The aggregation matrices of normal subjects and eMCI subjects were factorized using
GNMF, respectively. Then, each column in the obtained base matrix is restored to a sub-
network by converting the 90×90 correlation coefficient matrix into a 4005×1 column
vector. Then the sub-network was transformed by Min-Max standard normalization [Jiao,
Xia, Ming et al. (2019)], and the elements in the matrix were normalized to the interval
of [0, 1]. The transformation function is as follows:

Corr	 ¼ Corr �Min

Max�Min
(10)

where Corr* is the correlation coefficient after transformation, Corr is the correlation
coefficient before transformation, Max and Min are the maximum value and the
minimum value among the correlation coefficients, respectively.
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3 Results

Zhang et al. [Zhang, Zhang, Chen et al. (2017)] studied the influence of the width of sliding
windows on the accuracy of MCI classification, and found that width of 70 performed best.
In this study, the width of sliding windows was also set as 70, and the step length was set
as 1. The size of all aggregation matrices was 4005×630. The number of sub-networks is
selected in the range from r=2 to r=10, and the consensus matrices of the corresponding
aggregation matrices are visualized respectively as shown in Fig. 1. When r=2, the
blocking effect of the consensus matrix is the most obvious, and the elements are also
close to 0 or 1, and the classification result is the most stable. From r=3, the blocking
effect becomes unstable and has some elements between 0 and 1.

Figure 1: Consensus matrices of aggregation matrices for all subjects, where the horizontal
and vertical coordinates all contain 1260 FCVs. (a) r=2, (b) r=3, (c) r=4, (d) r=5
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GNMF was used to factorize the aggregation matrices corresponding to each type of
subjects, extract the normalized sub-networks and visualize them. Fig. 2 illustrates the
factorization process of an aggregation matrix which is expressed in formula (2).

The extracted sub-networks are visualized by BrainNet Viewer toolkit (http://www.nitrc.
org/projects/bnv) in Matlab R2012a [Jiao, Ma, Wang et al. (2018)]. There are more
functional connections in sub-networks, and the effect is not obvious after all of them are
visualized. Therefore, a specific number of functional connections with the highest
correlation coefficient are selected for visualization. Our preliminary experiments showed
that visualization was the most obvious when the top 200 functional connectivities with
the highest correlation coefficients were selected as significant functional connectivities.
Then r=2 was selected as the number of sub-networks, and the sub-networks were
extracted by GNMF. Fig. 3 shows the visualization of sub-networks extracted for normal
subjects and eMCI subjects.

In Fig. 3, Normal-BFS#1 and Normal-BFS#2 represent the two sub-networks extracted
from the functional network of normal subjects, and eMCI-BFS#1 and eMCI-BFS#2
represent the two sub-networks extracted from the functional network of eMCI subjects.
Each column of the sub-networks was taken as a group of samples, and the similarity
and difference test were performed on BFS#1 and BFS#2 by two-sample t-test. The
binary parameter h was set to test whether the samples from each group came from the
same distribution. h=0 indicates that the mean values of the two groups of samples from
the sub-networks of normal subjects and eMCI subjects are equal, that is, they are from
the same distribution. On the contra, h=1 indicates that the mean values of the two
groups of samples from the sub-networks of normal subjects and eMCI subjects are
different and not from the same distribution. The parameter p was set to represent the
criteria for significant differences. p<0.05 indicated that there was a difference between

Figure 2: Factorization process of an aggregation matrix (a) Aggregation matrix, (b) Base
matrix (c) Weight matrix
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the samples from the sub-networks of normal subjects and eMCI subjects, and p<0.01
indicated that the difference between the samples from the sub-networks of normal
subjects and eMCI subjects was extremely significant. Tab. 1 shows the two-sample t-test
results of sub-networks extracted by GNMF.

There were 62 groups of samples in Normal-BFS#1 and eMCI-BFS#1 tested but only 47
groups of samples in Normal-BFS#2 and eMCI-BFS#2 tested when h was equal to 0. It
indicates that most samples in the two BFS#1 were from the same distribution while
most samples in the two BFS#2 were from different distributions. There were only 28
groups of samples in Normal-BFS#1 and eMCI BFS#1 tested and 43 groups of samples
in Normal-BFS#1 and eMCI BFS#1 tested when h was equal to 1. It indicated that most

Table 1: Two-sample t-test results of the sub-networks extracted by GNMF

Index Number of samples

Normal- BFS#1 and eMCI-BFS#1 Normal-BFS#2 and eMCI-BFS#2

h=0 62 47

h=1 28 43

p<0.05 28 43

p<0.01 19 32

Figure 3: Visualization of the sub-networks extracted by GNMF
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samples in the two BFS#1 were from the same distribution while most samples in the two
BFS#2 were from different distributions. There only 28 groups of samples in Normal-
BFS#1 and eMCI BFS#1 were tested but 43 groups of samples in Normal-BFS#2 and
eMCI-BFS#2 tested when p was less than 0.05. It indicated that there was little
difference between the two BFS#1 while there was significant difference between the two
BFS#2. There were only 19 groups of samples in BFS#1 and eMCI BFS#1 were tested
but 32 groups of samples in Normal-BFS#2 and eMCI-BFS#2 were tested when p was
less than 0.01. It indicates that there was extremely significant difference between the
two BFS#2 while there was no significant difference between the two BFS#1.

Therefore, the four sub-networks were categorized into a similarity pair and a difference
pair. The similar pair consisted of Normal BFS#1 and eMCI BFS#1, which were called
common sub-networks and reflected the similar connectivity patterns in non-brain
disease-related sub-networks. The difference pair consisted of Normal BFS#2 and eMCI
BFS#2, which were called distinctive sub-networks and reflected the different
connectivity patterns in brain disease-related sub-networks. Fig. 4 shows the visualization
of the common sub-networks, where there are no significant differences between the
common sub-networks of normal subjects and eMCI subjects. Moreover, the significant
functional connectivities are mainly concentrated in their corresponding default networks,
where the connectivity patterns are basically consistent [Jiao, Wang and Ma (2016); Jiao,
Wang, Ma et al. (2017)]. However, in the common sub-network of eMCI subjects, some
brain regions such as Occipital_Inf_L (IOG.L), Frontal_Mid_Orb_L (ORBmid.L) and
Lingual_R (LING.R), etc., lacked connectivities with other brain regions.

Fig. 5 shows the visualization of the distinctive sub-networks. We can find that there is big
difference in the density of functional connectivities between the distinctive sub-networks of
normal subjects and eMCI subjects. It indicates that the connectivity patterns of distinctive

Figure 4: Visualization of the common sub-networks, (a) Brain regions in the default
network, which are circled in (b) and (c), (b) Connectivity patterns of default network in
the common sub-network of normal subjects, (c) Connectivity patterns of the default
network in the common sub-network of eMCI subjects
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sub-networks of eMCI subjects had been significantly changed compared with those of
normal subjects. From the perspective of graph theory, FCS can be considered as the
degree of a node which reflects the activity degree of a brain region to some extent. The
color of the vectors representing FCS can more intuitively distinguish the difference
between the connectivity patterns in the distinctive sub-networks of normal subjects and
eMCI subjects.

In Figs. 5(a) and 5(b), the FCS in Precentral_L (PreCG.L), Frontal_Mid_R (MFG.R),
Frontal_Inf_Tri_L (IFGtriang.L) and other brain regions of eMCI subjects are stronger
than those in the same brain regions of normal subjects. While the FCS in
Supp_Motor_Area_L (SMA.L), Frontal_Sup_Medial_R (SFGmed.R), Cingulum_Mid_L
(DCG.L) and other brain regions of eMCI subjects are weaker than those in the same
brain regions of normal subjects. Seven connectivity patterns of the brain regions with
significant different FCS were found out from the distinctive sub-networks of normal
subjects and eMCI subjects respectively, as shown in Figs. 5(c) and 5(d). Therefore, the
connectivity patterns of brain region in default network plays a very important role

Figure 5: Visualization of the distinctive sub-networks. (a) Circled part is the brain regions
of normal subjects with significantly enhanced FCS; (b) Circled part is the brain regions of
eMCI subjects with significantly enhanced FCS; (c) and (d) Circled parts are the
connectivity patterns of the brain regions with significantly different FCS between the
distinctive sub-networks of normal subjects and eMCI subjects
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whether it is a common sub-network or a distinctive sub-network [Raichle, MacLeod,
Snyder et al. (2001)]. Tabs. 2 and 3 show the brain regions with significantly enhanced
FCS in the distinctive sub-networks of normal subjects and eMCI subjects, respectively.

In the distinctive sub-network of normal subjects, FCS was significantly enhanced in somemajor
brain regions on which cognitive functions were dependent, such as Frontal_Sup_Medial_R
(SFGmed.R), Supp_Motor_Area_L (SMA.L), and Para_Hippocampal_L (PHG.L) in
prefrontal lobe. FCS was also significantly enhanced in some major brain regions on
which vision and hearing were dependent, such as Precuneus_R (PCUN.R) in occipital
lobe and Temporal_Mid_R (TPOmid.R) in temporal lobe, which belong to parietal
lobe. Moreover, these brain regions are the main parts of front parietal network (FPN).
FCS was also significantly enhanced in some important brain regions on which
language functions were dependent, such as Temporal_Pole_Mid_R (TPOmid.R) in

Table 2: Brain regions with significantly enhanced FCS in distinctive sub-networks of
normal subjects

Number Brain region Abbreviations
(L: left R: right)

MNI coordinates

X (mm) Y (mm) Z (mm)

19 Supp_Motor_Area_L SMA.L -5.32 4.85 61.38

24 Frontal_Sup_Medial_R SFGmed.R 9.10 50.84 30.22

33 Cingulum_Mid_L DCG.L -5.48 -14.92 41.57

34 Cingulum_Mid_R DCG.R 8.02 -8.83 39.79

68 Precuneus_R PCUN.R 9.98 -56.05 43.77

86 Temporal_Mid_R TPOmid.R 57.47 -37.23 -1.47

Table 3: Brain regions with significantly enhanced FCS in distinctive sub-networks of
eMCI subjects

Number Brain region Abbreviations
(L: left R: right)

MNI coordinates

X (mm) Y (mm) Z (mm)

1 Precentral_L PreCG.L -38.65 -5.68 50.94

8 Frontal_Mid_R MFG.R 37.59 33.06 34.04

13 Frontal_Inf_Tri_L IFGtriang.L -45.58 29.91 13.99

34 Cingulum_Mid_R DCG.R 8.02 -8.83 39.79

57 Postcentral_L PoCG.L -42.46 -22.63 48.92

68 Precuneus_R PCUN.R 9.98 -56.05 43.77
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temporal lobe. However, FCS has begun to weaken in the brain regions related to
cognitive functions of eMCI subjects. For example, the connectivity pattern of some
brain regions in frontal lobe, such as Frontal_Mid_R (MFG.R), is quite different from
that of normal subjects. Precentral_L (PreCG.L) and Frontal_Inf_Tri_L (IFGtriang.L)
are the major brain regions to control behavioral movements. The FCSs of the two
brain regions of eMCI subjects were abnormal compared with those of normal subjects,
indicating that the behavior and movement of eMCI subjects are different from the
normal subjects.

The top 200 functional connectivities with the highest correlation coefficients were selected
as significant functional connectivities, and the number of sub-networks was set to r=2.
NMF and method optimal direction (MOD) in dictionary learning were applied to
factorize the aggregation matrices of normal subjects and eMCI subjects. Figs. 6 and 8
show the visualization of the sub-networks extracted by NMF and MOD, respectively. In
addition, k-means clustering was also applied to cluster the aggregation matrices and
calculate the average values of the column vectors clustered to the same clusters. Fig. 7
shows the visualization of the sub-networks extracted by k-means clustering.

From the above results, we find that the FCS of some brain regions, such as Precuneus_R
(PCUN.R) and Frontal_Sup_Medial_R (SFGmed.R), in the two common sub-networks
extracted by GNMF are significantly higher than those in the two common sub-networks
extracted by NMF. However, there are no significant differences between the two
common sub-networks and between the two distinctive sub-networks extracted by
k-means clustering and MOD. Tabs. 4-6 show the results of two-sample t-test for the

Figure 6: Visualization of the sub-networks extracted by NMF
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common sub-networks and the distinctive sub-networks extracted by NMF, k-means
clustering and MOD, respectively.

In Tabs. 4-6, there were more samples tested in the two common sub-networks when h was
equal to 0. It indicated that the results of the above three methods could reflect the similarity

Figure 7: Visualization of the sub-networks extracted by k-means clustering

Figure 8: Visualization of the sub-networks extracted by MOD
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between the common sub-networks of normal subjects and eMCI subjects. However, there
were only a small number of samples tested in the two common sub-networks and the two
distinctive sub-networks when h was equal to 1. It indicated that most samples of the two
common sub-networks were from the same distribution, while it was difficult to identify
whether most samples of the two distinctive sub-networks come from different
distribution. There were fewer samples tested in the two common sub-networks than
those in the two distinctive sub-networks when p was less than 0.05. Especially in Tabs.
5 and 6, there were very few samples tested in the two common sub-networks and the
two distinctive sub-networks when p was less than 0.05. It indicated that the results

Table 4: Results of two-sample t-test for the sub-networks extracted by NMF

Index Number of samples

Normal-BFS#1 and eMCI-BFS#1 Normal-BFS#2 and eMCI-BFS#2

h=0 31 52

h=1 59 38

p<0.05 59 38

p<0.01 51 28

Table 5: Results of two-sample t-test for the sub-networks extracted by k-means clustering

Index Number of samples

Normal-BFS#1 and eMCI BFS#1 Normal BFS#2 and eMCI-BFS#2

h=0 42 62

h=1 48 28

p<0.05 48 28

p<0.01 27 18

Table 6: Results of two-sample t-test for the sub-networks extracted by MOD

Index Number of samples

Normal-BFS#1 and eMCI-BFS#1 Normal-BFS#2 and eMCI-BFS#2

h=0 80 63

h=1 10 27

p<0.05 10 27

p<0.01 5 13
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obtained by the above three methods could hardly reflect the difference between the
distinctive sub-networks of normal subjects and eMCI subjects. The number of samples
tested in the two common sub-networks was even more than the number of samples
tested in the two distinctive sub-networks when p was less than 0.01. It indicates that
there was no significant difference between the distinctive sub-networks of normal
subjects and eMCI subjects.

4 Discussions

The idea of key node is introduced to analyze the node attributes of sub-networks as a means
of verifying the validity of extracting sub-networks by the above method [Aharon, Elad,
Bruckstein et al. (2006); Jiao, Xia, Cai et al. (2018)]. A certain number of highly defined
brain regions are key nodes, which can measure the importance of different nodes in sub-
networks [Chang and Glover (2010)]. The top 10 brain regions with the highest degree
were extracted as the key nodes in each sub-network. Figs. 9-12 shows the degrees of
key nodes obtained by different methods, respectively, where the distance between the
two polylines of the same color reflects the difference of the degrees of key between the
sub-network of normal subjects and the sub-network of eMCI subjects.

In Figs. 9-12, the two red polylines are very close to each other and even have intersecting
and overlapping parts, indicating that the degree of the key nodes in the common sub-
network of the normal subjects is not much different from that of the key nodes in the
common sub-network of the eMCI subjects. In Fig. 9, the blue-dot polyline is always
under the blue-triangle polyline, that is, the degree of the key nodes of the normal
subjects in the distinctive sub-network is always lower than that of the eMCI subjects,
indicating that the connection pattern of some brain regions in the eMCI subjects is
abnormal, reflecting the difference between the normal subjects and the distinctive sub-

Figure 9: Degrees of key nodes by GNMF
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network of the eMCI subjects. In Fig. 9, the distance between the two blue polylines is larger
than that between the two blue polylines in other figures. However, the two blue polylines in
Figs. 10-12 are very close. Especially in Figs. 11 and 12, the blue-dot polylines are below
the blue-triangle polylines, that is, the results of k-means clustering andMOD are contrary to
the results of the other two methods. The above results show that GNMF is more effective
than other methods in extracting key nodes, and most of the extracted key nodes are
consistent with the nodes with abnormal functional connectivity found by visualization.

With different weight matrix solutions, the objective function constructed will be different,
resulting in the difference of the extracted sub-networks. We applied binarization, heat

Figure 10: Degrees of key nodes by NMF

Figure 11: Degrees of key nodes by k-means clustering

862 CMES, vol.123, no.2, pp.845-871, 2020



kernel function, and cosine to construct the weight matrix K of GNMF [Cai, He, Han et al.
(2011)], and the degrees of the key nodes obtained are shown in Figs. 13-15, respectively.

By comparing Figs. 13-15, it can be found that the distance between the two red polylines
and the two blue broken lines is very small when using heat kernel function to construct the
weight matrix. The distance between two blue broken lines is the largest when applying
binarization to construct weight matrix. The distance between two red broken lines is the
largest, and the distance between two blue broken lines is the smallest when using cosine
to construct weight matrix. It shows that these weight matrix methods lead to different

Figure 12: Degrees of key nodes by MOD

Figure 13: Degrees of key nodes by binarization
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similarity between the common sub-networks and difference between the distinctive sub-
networks. If it is just to illustrate the similarity between the common sub-networks, it is
better to use heat kernel function. However, solving the weight matrix by binarization
can simultaneously reflect the similarity between the common sub-networks and the
difference between the distinctive sub-networks.

In GNMF, each sample finds out its k nearest neighbor samples and assigns values to the
elements in K to form a weight matrix. If the value of k is too large, it may lead to the
underfitting of k-Nearest Neighbor model, while if the value of k is too small, it may lead

Figure 14: Degrees of key nodes by heat kernel function

Figure 15: Degrees of key nodes by cosine
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to the over-fitting of k-Nearest Neighbor models. Therefore, different values of k have
certain influence on the similarity between common sub-networks and the difference
between specific sub-networks. Besides 5 is selected as the default value, 4, 5 and 7
values are selected for the experiment. The degrees of key nodes of different k values are
shown in Figs. 16-19.

The distance between the two red polylines is the largest when k is equal to 2, but the
distance between the two red polylines is the smallest when k is equal to 5. When k is
less than 5, as k gets larger and larger, the distances between the two red polylines and
between the two blue polylines get smaller and smaller. This shows that when the

Figure 16: Degree of key nodes when k=2

Figure 17: Degree of key nodes when k=4
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number of adjacency points increases, the similarity between the two common sub-networks
becomes larger and larger, while the difference between the two distinctive sub-networks
becomes smaller and smaller. When the default value of k is 5, the two sub-networks
obtained have the best effect and can more obviously reflect the similarity between the
common sub-networks and the difference between the distinctive sub-networks.

5 Conclusions

Brain functional network is one of the most important technical ways to reveal the
pathological mechanism of brain diseases. We propose a method on extracting sub-networks

Figure 18: Degree of key nodes when k=5

Figure 19: Degree of key nodes when k=7
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from brain functional networks. The dynamic functional networks are vectorized and
assembled into some aggregation matrices, and GNMF is used to factorize the aggregation
matrix into several FCVs, which are restored to sub-networks. We carried out visualization,
two-sample t-test and analysis of node attribute. Experimental results show that compared
with other matrix factorization algorithms, the proposed method can more effectively
analyze the similarity between common sub-networks and the difference between
distinctive sub-networks of normal subjects and eMCI subjects. Although other algorithms
can reveal the similarity between the common sub-networks, they cannot well reflect the
differences between the distinctive sub-networks. Therefore, the dynamic sub-network
extraction based on GNMF can not only provide research ideas for determining the core
nodes in brain functional network, but also provide important theoretical basis for the
analysis of the pathophysiological mechanism of eMCI. However, the process of GNMF is
uncertain and can lead to multiple scenarios of factorization results, and this approach
focuses on the extraction of data and metrics. As a result, the following research will turn
to the use of machine learning algorithm [Sun and Zhang (2019); Yu, Zeng, Liu et al.
(2019); Jiang and Zhang (2019)] to classify sub-networks and study the evolution of brain
functional connectomes.
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