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Abstract: The Ensemble Kalman Filter (EnKF), as the most popular sequential data 
assimilation algorithm for history matching, has the intrinsic problem of high computational 
cost and the potential inconsistency of state variables updated at each loop of data 
assimilation and its corresponding reservoir simulated result. This problem forbids the 
reservoir engineers to make the best use of the 4D seismic data, which provides valuable 
information about the fluid change inside the reservoir. Moreover, only matching the 
production data in the past is not enough to accurately forecast the future, and the 
development plan based on the false forecast is very likely to be suboptimal. To solve this 
problem, we developed a workflow for geophysical and production data history matching by 
modifying ensemble smoother with multiple data assimilation (ESMDA). In this work, we 
derived the mathematical expressions of ESMDA and discussed its scope of applications. 
The geophysical data we used is P-wave impedance, which is typically included in a basic 
seismic interpretation, and it directly reflects the saturation change in the reservoir. Full 
resolution of the seismic data is not necessary, we subsampled the P-wave impedance data 
to further reduce the computational cost. With our case studies on a benchmark synthetic 
reservoir model, we also showed the supremacy of matching both geophysical and 
production data, than the traditional reservoir history matching merely on the production data: 
the overall percentage error of the observed data is halved, and the variances of the updated 
forecasts are reduced by two orders of the magnitude.  
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1 Introduction 
As many of the oil fields come to the late stage of production, in order to achieve a higher 
recovery of the hydrocarbon, secondary or tertiary production is introduced, by injecting 
water or gas, or even chemicals to the reservoir. For heavy oil, hot steam injection or 
formation combustion may also be conducted. Due to the complexity and the heterogeneity 
of the reservoir, the improved oil recovery operation methods may still leave the bypass 
hydrocarbon zone upswept, resulting a low recovery factor.  
In order to have a successful operation for those brown fields, more detailed and accurate 

 
1 University of the Chinese Academy of Sciences, Beijing, 100049, China. 
2 Institute of Porous Flow and Fluid Mechanics, The Chinese Academy of Sciences, Langfang, 065007, China. 
3 Petro China Research Institute of Petroleum Exploration and Development, Beijing, 100083, China. 
* Corresponding Author: Zelong Wang. Email: wangzel69@petrochina.com.cn. 
Received: 31 October 2019; Accepted: 04 December 2019. 



 
 
 
874                                                                                          CMES, vol.123, no.2, pp.873-893, 2020 

reservoir characterizations are essential. Inverse reservoir modeling, is also known as 
history matching, with abundant production data will significantly increase the certainty of 
the reservoir models. Recently, researchers have developed different numerical methods for 
the reservoir simulation, such as Wang et al. [Wang and Sun (2016); Wang, Sun and Yu 
(2017); Wang, Sun, Gong et al. (2018); Wang (2019); Wang, Wang and Chen (2019)], made 
the numerical simulation very reliable, so the challenges are more on the geological modeling. 
Traditionally, geologists may build one deterministic static reservoir model, and reservoir 
engineers manually change the geological and PVT parameters to match the production data, 
this would result in an unrealistic representation of the “true” reservoir, even though the 
production history was matched, the forecasts from the model would be unreliable. Thanks 
to the high speed computing technology, recent reservoir modeling has been evolved into 
probabilistic modeling or statistical modeling. People generated a set of initial reservoir 
models (e.g., 100 models), each model is called a realization of the reservoir. The ensemble 
of those realizations represents the possible outcomes of the real petroleum reservoir.  
Computer assisted history matching can update those initial reservoir models, by honoring 
the history production data, thus the updated reservoir models would have a higher certainty 
of the true reservoir parameters, and the forecasts therefore will be more reliable. In recent 
decades, ensemble-based history matching methods have become very popular, such as the 
ensemble Kalman filter (EnKF) [Nævdal, Johnsen, Aanonsen et al. (2005); Aanonsen, 
Nævdal, Oliver et al. (2009)], ensemble smoother (ES) [Van Leeuwen and  Evensen (1996)], 
the ensemble Kalman smoother (EnKS) [Evensen and van Leeuwen (2000)] and their 
iterative versions [Gu and Oliver (2007); Li and Reynolds (2009); Emerick and Reynolds 
(2012a); Chen and Oliver (2013); Luo, Stodral, Lorentzen et al. (2015)]. Those methods 
share the advantages of simplicity, flexibility in implementation, and easier uncertainty 
quantification over the gradient methods [Bhakta, Luo and Nævdal (2016)].  
It is also important to acquire the detailed knowledge of the reservoir saturation profile, the 
fluid distribution and the fluid pass ways. Static, or one-time measurements of the reservoir 
properties cannot meet the need of recent reservoir management workflows, reservoir 
engineers seek to time-depend information from a variety of oilfield disciplines which 
assist to constrain, and to improve the accuracy of reservoir models and fluid distribution. 
Time-lapse saturation logging and permanent downhole gauges can continuously monitor 
some reservoir properties at the well locations, and the 4D seismic (also called as time 
lapsed seismic), which can observe the change of fluid at the field scale. 4D seismic is the 
seismic surveys acquired at the same field at different times over the production time of a 
reservoir, to present the snapshots of the fluid saturation and distribution. Before 4D 
seismic, a base-line 3D seismic survey on the reservoir before production should be 
conducted, rock physics models are established, and 4D feasibility studies on synthetic 
seismic amplitude responses to variations in reservoir conditions to decide which 4D signal 
that rock and fluid will be generated. There are some case studies about 4D seismic survey 
to optimize waterflooding in oilfield such as Ekofisk et al. [Talukdar and Instefjord (2008); 
Helland, Festervoll, Stronen et al. (2008); Lumley, Adams, Meadows et al. (2008); 
Tolstukhin, Lyngnes and Sudan (2012)]. 
Conventionally, it is quite challenging to integrate 4D geophysical data in to the workflow 
of ensemble based history matching methods, due to the inconsistency of the intrinsic data 
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properties of the production data and 4D seismic data: production data is scarce spatial and 
dense in time, yet the 4D seismic data is dense in spatial and scarce in time. For example, 
with EnKF, as proved in Reynolds’ et al. [Reynolds, Zafari and Li (2006)] and Emerick’s 
et al. [Emerick and Reynolds (2012a)]  work, by assimilating time-dense production data, 
the process works at each time step, one Gauss-Newton (GN) solution is obtained to each 
reservoir realizations in the ensemble states, and because the production data is sufficient 
in data, EnKF can accumulate several GN corrections, gradually updated the reservoir 
models with the constraint of the production data; however, the time-scarce seismic data 
would not have the same sufficient data assimilation time steps.  
In this paper, we integrated 4D seismic data into the production history matching, by 
applying a new algorithm come up with by Emerick et al. [Emerick and Reynolds (2012b)], 
ensemble smoother with multiple data assimilation (ESMDA) on a synthetic sandstone 
reservoir with waterflooding operation. Instead of sequentially assimilate the data as in 
EnKF, ESMDA assimilate all the data set in one run, including both the production data 
and time-lapse  geophysical data, thus avoid the inconsistency of the step assimilation of 
production and geophysical data. By arbitrarily set the times of data assimilation, Emerick 
et al. [Emerick and Reynolds (2012b)] proved the multiple data assimilation is similar to 
an iterative ES with smaller GN corrections.  

2 Methodology 
We first formulate the EnKF and ES formulas, from there we derived the set of equations 
of ESMDA. We then discuss its scope of applications, and lastly we compared it with EnKF, 
showing its potential application in geophysical and production data history matching. 

2.1 Ensemble kalman filter (EnKF) 
The EnKF is a Monte Carlo method based on Markov chain approach. First, it samples many 
realizations from the prior probability density function (PDF). Second, for each realization, 
it uses the model forecast function (in history matching, the forecast function is the reservoir 
simulator) to estimate the dynamic data at the next time step. Third, it uses those updated 
reservoir realizations to calculate the approximation of the predicted covariance.  
For the equations in this paper, we denote a vector or a matrix with a bold font, and a scalar 
with a plaintext. In the application in reservoir history matching, here we define the extended 
state variable xk as the parameter to be estimated at the time step k, which contains reservoir 
static geological parameters, dynamic parameters, and measurement data.  

𝒙𝒙𝒌𝒌 = �
𝒎𝒎𝒌𝒌
𝑷𝑷𝒌𝒌
𝒅𝒅𝒌𝒌

�          (1) 

where 𝒎𝒎𝒌𝒌 is the estimation of static geological parameters at the time k, which dimension is 
𝑁𝑁𝑚𝑚 × 1; 𝑷𝑷𝒌𝒌 is the dynamic parameters (e.g., reservoir pressure, fluid saturation, etc. ), which 
dimension is 𝑁𝑁𝑝𝑝 × 1; 𝒅𝒅𝒌𝒌  is the measurement data (e.g., oil rate, water rate, bottom-hole 
pressure, or 4D seismic data), which dimension is 𝑁𝑁𝑛𝑛 × 1. 𝑁𝑁𝑚𝑚, 𝑁𝑁𝑝𝑝, 𝑁𝑁𝑛𝑛 are the number of 
static parameters in a single reservoir realization, the number of dynamic parameters at a 
single time step, and the number of measurement at that time step respectively.  
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The EnKF consists of two sets of equations: the state forecast equation, and the update 
equation. The forecast equations are: 

𝒅𝒅𝒌𝒌
𝒇𝒇 = 𝒇𝒇�𝒙𝒙�𝒌𝒌−𝟏𝟏

𝒖𝒖�  (2) 

𝒙𝒙�𝒌𝒌
𝒇𝒇 = 𝒙𝒙�𝒌𝒌−𝟏𝟏

𝒖𝒖 (3) 

where the function f(x) represents the reservoir fluid simulation. Assume the fluid PVT 
properties and the production schedule stays the same, the forecast is determined by the 
reservoir dynamic parameters at the previous time step, which means the extended state 
variable 𝒙𝒙�𝒌𝒌−1

𝒖𝒖 contains all the information of the input to the reservoir fluid simulator; 𝒅𝒅𝒌𝒌
𝒇𝒇  

is the forecast from the simulator. The superscript f and u stand for “forecast” and “update” 
respectively, indicate the variable is at the forecast or update stage of the EnKF method. 
The update equations are: 

𝒙𝒙�𝒌𝒌
𝒖𝒖 = 𝒙𝒙�𝒌𝒌

𝒇𝒇 + 𝑪𝑪𝒌𝒌
𝒇𝒇𝑯𝑯𝑻𝑻 �𝑯𝑯𝑪𝑪𝒌𝒌

𝒇𝒇𝑯𝑯𝑻𝑻 + 𝑹𝑹�
−𝟏𝟏

(𝒅𝒅𝒌𝒌
𝒇𝒇 − 𝒅𝒅𝒌𝒌𝒐𝒐) (4) 

where 𝑪𝑪𝒌𝒌
𝒇𝒇 is the covariance matrix of 𝒙𝒙�𝒌𝒌

𝒇𝒇, with the dimension of  𝑁𝑁𝑛𝑛 × (𝑁𝑁𝑛𝑛 + 𝑁𝑁𝑚𝑚 + 𝑁𝑁𝑝𝑝); 
R is the measurement error (regarded as white noise) covariance matrix, with the dimension 
of 𝑁𝑁𝑛𝑛 × 𝑁𝑁𝑝𝑝;  𝒅𝒅𝒌𝒌𝒐𝒐 is the measurements at time step k, H is the linearization operator, which 
can be expressed as 
𝑯𝑯 = [𝑶𝑶 𝑰𝑰] (5) 

where O is the null matrix, which dimension is 𝑁𝑁𝑛𝑛 × (𝑁𝑁𝑛𝑛 +𝑁𝑁𝑚𝑚); I is the identity matrix, 
which dimension is 𝑁𝑁𝑛𝑛 × 𝑁𝑁𝑝𝑝. 
For the simplicity of the expression, people define Kalman gain K matrix as 

 𝑲𝑲 = 𝑪𝑪𝒌𝒌
𝒇𝒇𝑯𝑯𝑻𝑻 �𝑯𝑯𝑪𝑪𝒌𝒌

𝒇𝒇𝑯𝑯𝑻𝑻 + 𝑹𝑹�
−𝟏𝟏

  (6) 

Therefore Eq. (4) can be expressed as 

𝒙𝒙�𝒌𝒌
𝒖𝒖 = 𝒙𝒙�𝒌𝒌

𝒇𝒇 + 𝑪𝑪𝒌𝒌
𝒇𝒇𝑯𝑯𝑻𝑻 �𝑯𝑯𝑪𝑪𝒌𝒌

𝒇𝒇𝑯𝑯𝑻𝑻 + 𝑹𝑹�
−𝟏𝟏

(𝒅𝒅𝒌𝒌
𝒇𝒇 − 𝒅𝒅𝒌𝒌𝒐𝒐) (7) 

As the formulation of the EnKF shows, it require a large time series data to be assimilated in 
order to sufficiently update the prior model. This means highly computational cost on running 
the reservoir simulation for tremendously many times. Moreover, EnKF has to storage of the 
intermediate variables, which are required in restarting the reservoir simulator, and 
potentially may cause the inconsistency of the full-step and step-wise simulations. 

2.2 Ensemble smoother (ES) 
The ensemble smoother (ES) is an ensemble based method for data assimilation, it can be 
applied in petroleum reservoir history matching. Similar to ensemble Kalman filter (EnKF), 
ES uses an ensemble to approximate the mean and the variance, and applies a variance-
minimizing update scheme. There are many literatures discussed the EnKF for data 
assimilation, while the application of the ES is much less.  
Van Leeuwen et al. [Van Leeuwen and Evensen (1996)] proposed ES, in comparison with 
the recursive updating scheme of EnKF by assimilating data in time, ES estimates the 
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global update in space-time domain in one go, to avoid the recursive updating of the 
realizations by restarting the reservoir simulator. In nonlinear dynamic models, and 
especially with chaotic dynamics, EnKF works better than ES because the sequential 
updates on the ensemble keep the model close to the true solution represented by the 
observations [Skjervheim and Evensen (2011)]. 
In petroleum reservoir history matching problems, with ES, because the elimination of 
restarting the simulation, there is no need to store the state variables such as reservoir 
pressure and fluid saturation, we only need to update geological parameters (e.g., 
permeability, porosity) 𝒎𝒎𝒌𝒌. The forecast equations are: 
𝒅𝒅𝒇𝒇 = 𝒈𝒈(𝒎𝒎� 𝒖𝒖) (8) 

𝒎𝒎� 𝒌𝒌
𝒇𝒇 = 𝒎𝒎� 𝒌𝒌−𝟏𝟏

𝒖𝒖 (9) 

where the function  𝒈𝒈(𝒙𝒙) represents the reservoir fluid simulation, all time steps forecasts 
are included in a large vector 𝒅𝒅𝒇𝒇. Pay attention that the 𝒅𝒅𝒇𝒇 is different from 𝒅𝒅𝒌𝒌

𝒇𝒇  of the EnKF 
equations as previously discussed, whereas 𝒅𝒅𝒌𝒌

𝒇𝒇  is the measurement data only at the time 
step k. 𝒅𝒅𝒇𝒇 and 𝒅𝒅𝒌𝒌

𝒇𝒇  has the following relationship: 

𝒅𝒅𝒇𝒇 = [𝒅𝒅𝟏𝟏
𝒇𝒇 ,𝒅𝒅𝟐𝟐

𝒇𝒇 ,𝒅𝒅𝟑𝟑
𝒇𝒇 ,⋯ ,𝒅𝒅𝒕𝒕

𝒇𝒇]𝑻𝑻 (10) 
The standard ES updating formula is shown in Eq. (11) 

𝒎𝒎𝒋𝒋
𝒂𝒂 = 𝒎𝒎𝒋𝒋

𝒇𝒇 + 𝑪𝑪𝑴𝑴𝑴𝑴
𝒇𝒇 (𝑪𝑪𝑴𝑴𝑴𝑴

𝒇𝒇 + 𝑹𝑹)−1(𝒅𝒅𝒖𝒖𝒖𝒖,𝒋𝒋 − 𝒅𝒅𝒋𝒋
𝒇𝒇) (11) 

for j=1, 2, …, Ne with Ne denoting the number of the ensemble members, the super script 
a and f  indicate the updated state and the prior state respectively, so 𝒎𝒎𝒋𝒋

𝒇𝒇 is the prior model 
parameter of the ensemble member j, and 𝒎𝒎𝒋𝒋

𝒂𝒂 is the model parameter of the ensemble 
member j, estimated at the updated state. 𝑪𝑪𝑴𝑴𝑴𝑴

𝒇𝒇  is the cross-covariance matrix between the 
prior vector of model parameters 𝒎𝒎𝒇𝒇, see Eq. (12), and the vector of predicted data, 𝒅𝒅𝒇𝒇; 
𝑪𝑪𝑴𝑴𝑴𝑴
𝒇𝒇  (see Eq. (13)) is the auto-covariance matrix of the predicted data; R is the covariance 

matrix of the measurement errors, which can usually be assumed Gaussian. 𝒅𝒅𝒖𝒖𝒖𝒖  is the 
perturbed measurement data, 𝒅𝒅𝒖𝒖𝒖𝒖~𝑵𝑵(𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐,𝑹𝑹) , with 𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐 denoting the vector of the 
observed data. 

𝑪𝑪𝑴𝑴𝑴𝑴
𝒇𝒇 =

1
𝑁𝑁𝑁𝑁 − 1

�𝒎𝒎𝒇𝒇 −
1
𝑁𝑁𝑁𝑁

�𝒎𝒎𝒋𝒋
𝒇𝒇

𝑁𝑁𝑁𝑁

𝑗𝑗=1

��𝒅𝒅𝒇𝒇 −
1
𝑁𝑁𝑁𝑁

�𝒅𝒅𝒋𝒋
𝒇𝒇

𝑁𝑁𝑁𝑁

𝑗𝑗=1

�

𝑇𝑇

 (12) 

𝑪𝑪𝑴𝑴𝑴𝑴
𝒇𝒇 =

1
𝑁𝑁𝑁𝑁 − 1

�𝒅𝒅𝒇𝒇 −
1
𝑁𝑁𝑁𝑁

�𝒅𝒅𝒋𝒋
𝒇𝒇

𝑁𝑁𝑁𝑁

𝑗𝑗=1

��𝒅𝒅𝒇𝒇 −
1
𝑁𝑁𝑁𝑁

�𝒅𝒅𝒋𝒋
𝒇𝒇

𝑁𝑁𝑁𝑁

𝑗𝑗=1

�

𝑇𝑇

 (13) 

ES assimilates the entire time series data and updates the model in one go, for nonlinear 
problems which may lead over correction and to get unacceptable results, so ES is not a 
popular method in reservoir history matching.  
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2.3 Ensemble smoother with multiple data assimilation (ESMDA) 
Emerick et al. [Emerick and Reynolds (2012b)] published a multiple data assimilation 
(MDA) method, they assimilated the same data for multiple times, and they showed that 
MDA is superior to the single data assimilation in reservoir history matching. The ESMDA 
algorithm follows [Emerick and Reynolds (2012b)]:  
Step 1: Arbitrarily select a number of data assimilations, Na, and the coefficients αi for i= 
1,…, Na, satisfying the following relationship: 

�
𝟏𝟏
𝜶𝜶𝒊𝒊

= 𝟏𝟏
𝑵𝑵𝒂𝒂

𝒊𝒊=𝟏𝟏

 (14) 

Step 2: The updating loops, for i=1 to Na: 
a) Run the entire ensemble from the beginning (t=0). 
b) For each realization of that ensemble, add white noise to the observation data 

using 𝒅𝒅𝒖𝒖𝒖𝒖 = 𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐 +�𝜶𝜶𝒊𝒊𝑹𝑹𝟏𝟏/𝟐𝟐𝒛𝒛𝒅𝒅, where 𝒛𝒛𝒅𝒅~𝑵𝑵(𝟎𝟎, 𝑰𝑰). 
c) Update the ensemble using the standard ES update equation 

    𝒎𝒎𝒋𝒋
𝒂𝒂 = 𝒎𝒎𝒋𝒋

𝒇𝒇 + 𝑪𝑪𝑴𝑴𝑴𝑴
𝒇𝒇 (𝑪𝑪𝑴𝑴𝑴𝑴

𝒇𝒇 + 𝜶𝜶𝒊𝒊𝑹𝑹)−𝟏𝟏(𝒅𝒅𝒖𝒖𝒖𝒖,𝒋𝒋 − 𝒅𝒅𝒋𝒋
𝒇𝒇) (15) 

The ESMDA algorithm flow chart shows as Fig. 1.  

 
Figure 1: The algorithm flow chart of ESMDA 

2.4 The derivation and application conditions of ESMDA 
Inspired by Rommelse [Rommelse (2009)], Emerick et al. showed that in the linear 
Gaussian case, a MDA updates loop is equivalent to a single update, and the multiple data 
assimilation can improve the performance of the EnKF [Emerick and Reynolds (2012a)]. 
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They extended the same idea into ES [Emerick and Reynolds (2012b)]. Here we review 
the fundamental of the derivation.  
For linear problem as  
𝒅𝒅 = 𝑮𝑮𝒎𝒎 (16) 

If the probability of 𝒎𝒎 has a Gaussian distribution. The prior model parameters 𝒎𝒎𝒇𝒇  ~ 
N(mpr,CM), therefore,   

𝒎𝒎𝒇𝒇 = 𝒎𝒎𝒑𝒑𝒑𝒑 + 𝑪𝑪𝑴𝑴
𝟏𝟏/𝟐𝟐𝒛𝒛𝒎𝒎 (17) 

where 𝒛𝒛𝒎𝒎~𝑵𝑵(𝟎𝟎, 𝑰𝑰). 
We add the white noise to the measurement data to get  𝒅𝒅𝒖𝒖𝒖𝒖 

 𝒅𝒅𝒖𝒖𝒖𝒖 = �
𝒅𝒅𝒖𝒖𝒖𝒖𝟏𝟏
⋮

𝒅𝒅𝒖𝒖𝒖𝒖𝑵𝑵𝒂𝒂
� (18) 

and 𝒅𝒅𝒖𝒖𝒖𝒖𝒊𝒊  ~N(𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐, 𝜶𝜶𝒊𝒊𝑹𝑹), the superscript i indicate the ith data assimilation. The objective 
function of history matching is  

𝑶𝑶(𝒎𝒎) =
𝟏𝟏
𝟐𝟐 �
𝒎𝒎−𝒎𝒎𝒇𝒇�𝑻𝑻𝑪𝑪𝑴𝑴−𝟏𝟏�𝒎𝒎−𝒎𝒎𝒇𝒇�

+
𝟏𝟏
𝟐𝟐

(𝑮𝑮𝒎𝒎−  𝒅𝒅𝒖𝒖𝒖𝒖)𝑻𝑻𝑪𝑪𝑴𝑴−𝟏𝟏(𝑮𝑮𝒎𝒎−  𝒅𝒅𝒖𝒖𝒖𝒖) 
 (19) 

To minimize the objective function, the necessary condition is that the zero gradient of 
𝑶𝑶(𝒎𝒎), and its solution is  

𝒎𝒎� 𝒂𝒂 = 𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 �𝑪𝑪𝑴𝑴−𝟏𝟏 �𝒎𝒎𝒑𝒑𝒑𝒑 + 𝑪𝑪𝑴𝑴
𝟏𝟏
𝟐𝟐 𝒛𝒛𝒎𝒎�+ 𝑮𝑮�𝑻𝑻𝑪𝑪𝑴𝑴�

−𝟏𝟏 �𝒅𝒅�𝒐𝒐𝒐𝒐𝒐𝒐 + 𝑪𝑪𝑴𝑴
𝟏𝟏
𝟐𝟐�� (20) 

where 𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 is the covariance of the posteriori [Tarantola (2005)] , which can be expressed as 

𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 = �𝑪𝑪𝑴𝑴−𝟏𝟏 + 𝑮𝑮𝑻𝑻𝑪𝑪𝑴𝑴−𝟏𝟏𝑮𝑮�
−𝟏𝟏 = 𝑪𝑪𝑴𝑴 − 𝑪𝑪𝑴𝑴𝑮𝑮𝑻𝑻�𝑪𝑪𝑴𝑴 + 𝑮𝑮𝑪𝑪𝑴𝑴𝑮𝑮𝑻𝑻�

−𝟏𝟏𝑮𝑮𝑪𝑪𝑴𝑴 (21) 

Define 𝒎𝒎𝑴𝑴𝑴𝑴𝑷𝑷  is the maximum a posteriori, according to [Tarantola (2005)], it can be 
expressed as  

𝒎𝒎𝑴𝑴𝑴𝑴𝑷𝑷 = 𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷�𝑪𝑪𝑴𝑴−𝟏𝟏𝒎𝒎𝒑𝒑𝒑𝒑 + 𝑮𝑮𝑻𝑻𝑪𝑪𝑴𝑴−𝟏𝟏 𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐�
−𝟏𝟏 

            = +𝑪𝑪𝑴𝑴𝑮𝑮𝑻𝑻�𝑪𝑪𝑴𝑴 + 𝑮𝑮𝑪𝑪𝑴𝑴𝑮𝑮𝑻𝑻�
−𝟏𝟏( 𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐 − 𝑮𝑮𝒎𝒎𝒑𝒑𝒑𝒑) 

(22) 

Because  𝑚𝑚𝑝𝑝𝑝𝑝~𝑁𝑁(𝒎𝒎𝑴𝑴𝑴𝑴𝑷𝑷,𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀) , due to its Gaussianity, we only have to prove the 
following equations 
𝑬𝑬[𝒎𝒎� 𝒂𝒂] = 𝒎𝒎𝑴𝑴𝑴𝑴𝑷𝑷 (23) 
𝑪𝑪𝑶𝑶𝑪𝑪[𝒎𝒎� 𝒂𝒂] = 𝑬𝑬[(𝒎𝒎� 𝒂𝒂 −𝒎𝒎𝑴𝑴𝑴𝑴𝑷𝑷)(𝒎𝒎� 𝒂𝒂 −𝒎𝒎𝑴𝑴𝑴𝑴𝑷𝑷)𝑻𝑻] = 𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 (24) 

Based on Eq. (20), we write in the form of its expectation  
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𝑬𝑬[𝒎𝒎� 𝒂𝒂] = 𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 �𝑪𝑪𝑴𝑴−𝟏𝟏 �𝒎𝒎𝒑𝒑𝒑𝒑 + 𝑪𝑪𝑴𝑴
𝟏𝟏
𝟐𝟐 𝑬𝑬[𝒛𝒛𝒎𝒎] + 𝑮𝑮𝑻𝑻𝑪𝑪𝑴𝑴−𝟏𝟏( 𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐 + 𝑪𝑪 �𝑴𝑴 

𝟏𝟏
𝟐𝟐 𝑬𝑬[𝒛𝒛𝒅𝒅�]�� 

=𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷�𝑪𝑪𝑴𝑴−𝟏𝟏𝒎𝒎𝒑𝒑𝒑𝒑 + 𝑮𝑮𝑻𝑻𝑪𝑪𝑴𝑴−𝟏𝟏 𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐� 

=𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷

⎩
⎨

⎧
𝑪𝑪𝑴𝑴−𝟏𝟏𝒎𝒎𝒑𝒑𝒑𝒑+[𝑮𝑮𝑻𝑻 …𝑮𝑮𝑻𝑻]

⎣
⎢
⎢
⎡
𝟏𝟏
𝜶𝜶𝟏𝟏
𝑪𝑪𝑴𝑴−𝟏𝟏 … 𝟎𝟎
⋮ ⋱ ⋮
𝟎𝟎 … 𝟏𝟏

𝜶𝜶𝑵𝑵𝒂𝒂
𝑪𝑪𝑴𝑴−𝟏𝟏⎦

⎥
⎥
⎤
�
 𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐
⋮

 𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐
�

⎭
⎬

⎫
 

=𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷

⎩
⎨

⎧
𝑪𝑪𝑴𝑴−𝟏𝟏𝒎𝒎𝒑𝒑𝒑𝒑+[𝑮𝑮𝑻𝑻 …𝑮𝑮𝑻𝑻]

⎣
⎢
⎢
⎡  𝟏𝟏
𝜶𝜶𝟏𝟏
𝑪𝑪𝑴𝑴−𝟏𝟏𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐
⋮

 𝟏𝟏
𝜶𝜶𝑵𝑵𝒂𝒂

𝑪𝑪𝑴𝑴−𝟏𝟏𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐⎦
⎥
⎥
⎤

⎭
⎬

⎫
 

=𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 �𝑪𝑪𝑴𝑴−𝟏𝟏𝒎𝒎𝒑𝒑𝒑𝒑 + �∑ 𝟏𝟏
𝛼𝛼𝑖𝑖

𝑵𝑵𝒂𝒂
𝟏𝟏 �𝑮𝑮𝑻𝑻𝑪𝑪𝑴𝑴−𝟏𝟏 𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐� 

(25) 

The sufficient and necessary condition for Eq. (20) equals to Eq. (25) is 

�∑ 1
𝛼𝛼𝑖𝑖

𝑁𝑁𝑁𝑁
1 �=1 (26) 

Similarly, we can prove 

𝑪𝑪𝑶𝑶𝑪𝑪[𝒎𝒎� 𝒂𝒂] = 𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷�𝑪𝑪𝑴𝑴−𝟏𝟏 + 𝑮𝑮𝑪𝑪𝑴𝑴𝑮𝑮𝑻𝑻�
−𝟏𝟏𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 

= 𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷

⎩
⎪
⎨

⎪
⎧

𝑪𝑪𝑴𝑴−𝟏𝟏 + [𝑮𝑮𝑻𝑻 …𝑮𝑮𝑻𝑻]

⎣
⎢
⎢
⎢
⎡
𝟏𝟏
𝜶𝜶𝟏𝟏

𝑪𝑪𝑴𝑴−𝟏𝟏 … 𝟎𝟎

⋮ ⋱ ⋮

𝟎𝟎 …
𝟏𝟏
𝜶𝜶𝑵𝑵𝒂𝒂

𝑪𝑪𝑴𝑴−𝟏𝟏⎦
⎥
⎥
⎥
⎤

�
𝑮𝑮
⋮
𝑮𝑮
�

⎭
⎪
⎬

⎪
⎫

𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 

= 𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 �𝑪𝑪𝑴𝑴−𝟏𝟏 + ��
𝟏𝟏
𝜶𝜶𝒊𝒊

𝑵𝑵𝒂𝒂

𝟏𝟏

�𝑮𝑮𝑻𝑻𝑪𝑪𝑴𝑴−𝟏𝟏𝑮𝑮�𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 

= 𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷�𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷−𝟏𝟏 �𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 = 𝑪𝑪𝑴𝑴𝑴𝑴𝑷𝑷 

(27) 

The derivation is based on the assumption that 𝑪𝑪𝑴𝑴 is a full rank matrix, which means an 
infinitely large ensemble size for ES (or EnKF). There are unlimited options of the 
coefficient 𝛼𝛼𝑖𝑖 and Na satisfy Eq. (26), for linear problems with Gaussian distributions, they 
all give the correct posteriori. So, we summarize 3 conditions to apply ESMDA: 1) linear 
or near linear problems; 2) Gaussian distribution of the priori; 3) sufficiently large 
ensemble size.  
The reservoir fluid simulator is a very complicated nonlinear function, but the relationships 
of oil rate, water cut, reservoir pressure to the permeability and porosity, within a certain 
range, can be regarded as a close linear function. For reservoir history matching problems, 
by balancing the efficiency and accuracy, the ensemble size should be larger than 100.  
In comparison of EnKF and ESMDA, theoretically ESMDA has the advantage of significantly 
lower computational cost and shorter running time, due to the following two differences:  
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(1)  EnKF is a recursive estimation which sequentially assimilate the measurement data 
once a step (usually one day as to match the daily production data), therefore the longer 
the production history, and the more assimilations will be made, and more accurate 
will the reservoir model be updated; whereas ESMDA is a smothering estimate which 
assimilate the entire history of the measurement dataset in one go, the user arbitrarily 
set a number of assimilating the same data multiple times, which number is usually 
quite small, resulting a much faster running time than EnKF.  

(2) EnKF needs to store the state variables as Eq. (1) shows, and at each data assimilation 
step, EnKF uses the stored variables from the previous time step as the input to the 
simulator, to run only one step simulation. At the end of the entire data assimilation steps, 
it run the full simulation from day 0 to the end to check the consistency. This method not 
only take a large memory of the computer, but also potentially resulting severe 
inconsistency of the full-step and step-wise simulations; however, ESMDA does not 
restore those intermediate variables, because only a full-step simulation is required. 

2.5 Geophysical and production data history matching workflow 
Here we propose a standard workflow for geophysical and production data history matching. 
Step 1: Initial ensemble Building. With the best geological knowledge through stochastic 
modeling to build the initial reservoir models. 
Step 2: Production data preparation. Analyze the available well measurements, with 
certain quality control, eliminate the abnormal data with obvious errors.  
Step 3: Geophysical data up-scaling. Usually seismic data has much finer grids than the 
reservoir modeling on the simulator, resulting a tremendous huge data to be much. To 
reduce the data size and computational cost, upscale or under sample a small but 
representative subset of the seismic data.  
Step 4: Observation data rescaling. Geophysical data combined with production data 
forms the observation data to be history matched. Different kinds of measurement data and 
geophysical data may greatly varied with their magnitudes. Set proper rescaling factors for 
all the observation data have a similar magnitude.  
Step 5: Set ESMDA history matching program (See Chapter 2.3), input the initial 
ensemble and rescaled observation data into the program.  
Step 6: Check the validity of the updated ensemble. Inspect the updated reservoir models 
whether they are consistent with the geological understandings, run the reservoir simulator 
to see if the forecasted data matched the observation.  

3 Case studies 
Following the work flow we proposed, we conducted two case studies to test our ESMDA 
program. For both cases, we simulate a waterflood process on a synthetic reservoir. The 
reservoir structure model is from the SAIGUP project [Walsh and Manzocchi (2002)], 
which is 3D corner-point geometry, consists 40×120×20 cells, 78,720 of which are active 
cells. The permeability and porosity field is generated by sequential Gaussian simulation 
(SGSim), see Tab. 1. Both the porosity and the logarithm of permeability has a Gaussian 
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distribution. The reservoir is assumed without any active aquifer, and the initial state is 
detailed in Tab. 2, and the relative permeability curve is shown in Fig. 2.  

Table 1: Key parameters of the snythetic reference reservoir model 

Parameters (Unit) Mean value Variation 

Horizontal permeability (mD) 317.902 2.7519×108 
Vertical permeability (mD) 31.7902 2.7519×106 
Porosity 0.1160 0.29 

Table 2: Initial state of the reservoir 

Parameters Value (Unit) 

Initial reservoir pressure 300 (Bars) 
Initial oil saturation 0.8 
Initial water saturation 0.2 

 

 
Figure 2: Relative permeability curve 

The true reservoir is one realization of the SGSim, as the reference model, the other 
realizations are the initial reservoir models, see Fig. 3. The values of the permeability in 
the figures are shown in the unit of square meters. There are five injection wells and 5 
producing wells. P1, P2,…, P5 are the oil producing wells, I1, I2,…, I5 are the water 
injection wells. All producing wells are operated under a constant bottomhole pressure 
(BHP) of 290 bars, and the injection wells are operated at a fixed injection rate of 500 m3/d 
of water. We simulate the operation under that condition for 6570 days. 
We build our own black-oil simulator with Implicit Pressure Explicit Saturation (IMPES) 
method on Matlab, with functions from Matlab reservoir simulation toolbox [Lie, Krogstad, 
Ligaarden et al. (2012)]. The input to the simulator includes the block-wise geological 
parameters and reservoir dynamic state variables, e.g., 3-way permeability and porosity, 
NTG, reservoir pressure and saturation, as well as the well operational parameters such as 
well location, BHP and water injection rates. The output of the simulator is the production 
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data for this case study are well measurements, including well oil production rate, well water 
production rate and BHP. 4D seismic data we matched is primary wave (P-wave) impedance.  
Apply the ESMDA algorithm as we discussed above, and we set Na=4, 𝛼𝛼1=𝛼𝛼2=𝛼𝛼3=𝛼𝛼4=4.  

 
(a) 

 
(b) 

Figure 3: The water flooding operation well allocations and the horizontal permeability 
models of the reservoir: (a) reference model, and (b) 4 realizations of the prior models 

By definition the P-wave impedance is shown in Eq. (28) 
𝒁𝒁 = 𝝆𝝆𝒐𝒐𝒂𝒂𝒕𝒕𝑪𝑪 (28) 

where z is the P-wave impedance, 𝝆𝝆𝒐𝒐𝒂𝒂𝒕𝒕 is the bulk density of the fluid saturated rock, and 
V is the acoustic velocity of the primary wave read from the log. 
To model the density of saturated rocks, we used a linear average, also known as Wood’s 
law, see Eq. (29) 
𝝆𝝆𝒐𝒐𝒂𝒂𝒕𝒕 = ∅𝝆𝝆𝒇𝒇 + (𝟏𝟏 − ∅)𝝆𝝆𝒎𝒎 (29) 

where 𝜌𝜌𝑓𝑓  and 𝜌𝜌𝑚𝑚 are the density of the saturating fluid and the density of the material 
constituting the rock matrix respectively, ∅ is porosity of the rock.  
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The P-wave velocity V can be calculated by applying Raymer’s equation [Raymer, Hunt 
and Gardner (1980)], on the condition that porosity is smaller than 0.37, see Eq. (30). 
𝑪𝑪 = (𝟏𝟏 − ∅)𝟐𝟐𝑪𝑪𝒎𝒎𝒂𝒂 + ∅𝑪𝑪𝒇𝒇 (30) 

where 𝑉𝑉𝑚𝑚𝑁𝑁 and 𝑉𝑉𝑓𝑓 are the P-wave velocity of the material constituting rock matrix and the 
interstitial fluid respectively. 
In the first case study, we only assimilate production data, the ESMDA updated models are 
shown in Fig. 4.   

 
(a) 

 
(b) 

Figure 4: The ESMDA updated permeability models of the reservoir, assimilates 
production data only: (a) mean of all the 100 updated models, and (b) 4 realizations of the 
updated models 
The production data we matched are the oil production rates and water production rates of 
the 5 producing wells, and the bottom-hole pressure (BHP) of the 5 water injection wells. 
Fig. 5 shows the production data matching result. The green solid lines are the forecasts 
from the prior models, the red dash line is the observed production data, and the black solid 
lines are the forecasts form the updated model applied the ESMDA algorithm on the 
production data only.  
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Figure 5: The results of history matching on the production data only 
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Figure 6: The top view of the P-wave impedance sampling points 

In the second case study, besides the same production data assimilated in the first case 
study, we also integrated the 4D seismic data. In a waterflood operation, one important part 
is to locate the remaining oil, thus monitoring the fluid saturation change over time and 
space. P-wave impedance data directly reflect the saturation and porosity changes. In this 
case study, the pressure sensitivity can be neglected, so the porosity stays the same over 
years. Due to the extreme size of the P-wave impedance data set, we subsampled one P-
wave impedance point in every 100 blocks, Fig. 6 shows the P-wave impedance spatial 
sampling points on the reservoir. 
We assimilate the subsampled P-wave impedance for 10 times, in contrast, the well 
measurements are assimilated for 6570 times. Fig. 7 shows the ESMDA updated 
reservoir models.  

 
(a) 
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(b)  

Figure 7: The ESMDA updated permeability models of the reservoir, assimilates 
production data and 4D seismic data: (a) mean of all the 100 updated models, and (b) 4 
realizations of the updated models 
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Figure 8: The results of history matching on both the production and the geophysical data 

In order to quantitatively compare the accuracy of the forecasts from the update models of 
those two case studies, we defined the 2 sets of key statistical parameters of those 
forecasted data:  
a) The percentage error of the mean of the updated model forecasts, which means the 

percentage of the absolute value of the difference between the mean of updated model 
predictions and its corresponding recorded data, over the same recorded data. We 
denote it as e, see Eq. (31). 

𝒆𝒆 =
𝒂𝒂𝒐𝒐𝒐𝒐 �

∑ 𝒈𝒈�𝒎𝒎� 𝒖𝒖
𝒋𝒋�𝑵𝑵

𝒋𝒋=𝟏𝟏
𝑵𝑵 − 𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐�

𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐
× 𝟏𝟏𝟎𝟎𝟎𝟎% (31) 

To be more specific, on time t, the percentage errors on the oil rate, water production rate 
of the producing wells, denoted as eoPi,t and ewPi,t; the percentage errors of the updated 
model forecasts on the BHP of the injection wells are denoted as ebhpIi,t; 
b)  The variation of the updated forecasts, denoted as 𝜎𝜎2𝑓𝑓, see Eq. (32).  
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𝝈𝝈𝟐𝟐𝒇𝒇 =
∑ �𝒈𝒈�𝒎𝒎� 𝒖𝒖

𝒋𝒋� −
∑ 𝒈𝒈�𝒎𝒎� 𝒖𝒖

𝒋𝒋�𝑵𝑵
𝒋𝒋=𝟏𝟏

𝑵𝑵 �
𝟐𝟐

𝑵𝑵
𝒋𝒋=𝟏𝟏

𝑵𝑵
 

(32) 

To be more specific, on time t, 𝜎𝜎2opi,t, 𝜎𝜎2wpi,t and 𝜎𝜎2bhpIi,t, which represents the variance of 
the updated forecasts on oil rate, water rate and BHP of the perspective wells, respectively.  
For both sets of the statistical parameters, the subscript i=1, 2, 3, …, 5, indicating the well 
name numbers, the subscript t indicating the forecast on time t, and the subscript P and I 
indicating a producing well and an injection well respectively. Tabs. 3 and 4 shows those 
statistical parameters on day 6570, which is the last day of the history matching. The 
percentage errors and the variance from Case study 2 is generally much smaller than those 
from Case study 1, indicating a higher confidence in the forecasts from the updated models 
in Case study 2.  

Table 3: Percentage errors of  case study 1 and case study 2, on day 6570 
 eoP1,6570 eoP26570 eoP3,6570 eoP4,6570 eoP5,6570 
Case study 1 4.1% 1.84% 0. 7% 2.7% 1.9% 
Case study 2 2.6% 1.6% 1.6% 1.1% 1.9% 
 ewP1,6570 ewP26570 ewP3,6570 ewP4,6570 ewP5,6570 
Case study 1 23% 0% 170% 11.8% 13.6% 
Case study 2 3.3% 0% 16% 6.8% 35% 
 ebhpI1,657

 
ebhpI2657

 
ebhpI3,6570 ebhpI4,657

 
ebhpI5,6570 

Case study 1 0.006% 0.007% 0.006% 0.006% 0.008% 
Case study 2 0.007% 0.006% 0.009% 0.003% 0.005% 

 
Table 4: Variances of  case study 1 and case study 2, on day 6570 

 𝝈𝝈𝟐𝟐oP1,6570 𝝈𝝈𝟐𝟐oP2,6570 𝝈𝝈𝟐𝟐oP3,6570 𝝈𝝈𝟐𝟐oP4,6570 𝝈𝝈𝟐𝟐oP5,6570 
Case study 1 503.15 33.39 69.78 18.9 83.53 
Case study 2 10.13 3.12 2.68 1.49 4.42 

 𝝈𝝈𝟐𝟐wP1,6570 𝝈𝝈𝟐𝟐wP2,6570 𝝈𝝈𝟐𝟐wP3,6570 𝝈𝝈𝟐𝟐wP4,6570 𝝈𝝈𝟐𝟐wP5,6570 
Case study 1 514.80 0.012 2.61 31.54 1.28 
Case study 2 6.44 0.10 0.11 2.36 0.05 

 𝝈𝝈𝟐𝟐bhpI1,657

 
𝝈𝝈𝟐𝟐bhpI2,6570 𝝈𝝈𝟐𝟐bhpI3,657

 
𝝈𝝈𝟐𝟐bhpI4,657

 
𝝈𝝈𝟐𝟐bhpI5,657

 Case study 1 2.94 st-4 1.82 s0-4 1.42 s0-4 6.31 s0-5 9.52 s0-5 
Case study 2 4.49 st-6 7.09 st-6 7.25 st-6 3.00 st-6 2.44 st-6 

By visually comparing the Figs. 5 and 8, it is also clearly the integration of the seismic and 
production data ESMDA history matching yields a superior results both in model updating 
and the well measurements matching. And from Figs. 7 and 4, with the assimilation on 4D 
seismic data in case study 2, each updated reservoir realizations captured the correct high 
permeability pathways, resulting the mean of those realizations are more resemble to the 
“true” reservoir: however, in case study, the each updated reservoir realizations varied in 
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their permeability patterns, resulting the mean of those realizations less informative in 
showing the real geological features. 
We also recorded the CPU running time for these two case studies. The program has been 
run on a workstation HP® Z240, with dual 3.50 GHz Intel® Xeon® CPU E3-1240 v5. The 
entire elapsed time for case study 1 is 11276.176 seconds; for the second case study, even 
though with the additional subsampled geophysical data, the observation vector  𝑑𝑑𝑢𝑢𝑢𝑢 
almost doubled its size, the entire elapsed time is almost the same, resulting as 11287.026 
seconds. These two case studies share the same number of simulation runs (500 runs each). 
This shows the CPU running time is not noticeable influenced by the vector size, due to 
effective high matrix computing functions from Matlab.  
Seismic data not only provide the structural constraints on geology, some seismic attributes 
(e.g., P-wave impedance) also reflects the fluids change in reservoir. With the additional 
information from the seismic data, the model corrections are more significant and accurate. 
Moreover, after a well interpreted seismic data and with a carefully designed subsampling 
method, integrating geophysical data into history matching does not require much 
additional computing cost. 

4 Conclusions   
In this paper, we reviewed the EnKF and ES inverse modeling methods and their 
formulations, and we derived the ESMDA, discussed its application scope, and compared 
the two cases studies on the ESMDA reservoir inverse modeling, one with only production 
data assimilation, the other integrate the seismic data and production data together. The 
following conclusions are obtained: 

a) For linear problems, ES is equivalent to Gauss-Newton, and it can assimilate the entire 
time series data and update the model in on go. ES has the highest efficiency among the 
ensemble based methods we discussed. 

b) For nonlinear problems, e.g., reservoir fluid simulator, ES gives unacceptable results, due 
to its overcorrection. ESMDA was proposed for reservoir inverse modeling problems. 

c) ESMDA is superior to the EnKF in assimilation time scarce seismic data, and higher 
computing efficiency in time dense data assimilation. 

d) 4D seismic provide an additional information with fluid changes in reservoir to estimate 
the spatial reservoir properties. The integration of seismic and production history 
matching yields a superior result.  
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