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Abstract: In this paper, the mathematical model describing the third-grade non-
Newtonian blood flow suspended with nanoparticles through porous arteries is exactly 
solved. The present physical model was solved in the research literature via the optimal 
homotopy analysis method and the collocation method, where the obtained solution was 
compared with the numerical fourth-order Runge-Kutta solution. However, the present 
paper only introduces a new approach to obtain the exact solution of the concerned 
system and implements such exact solution as a reference to validate the published 
approximate solutions. Several remarks on the previously published results are observed 
and discussed in detail through tables and graphs. In view of the present calculations, the 
obtained results in the literature by Ghasemi et al. [Ghasemi, Hatami, Sarokolaie et al. 
(2015)] may need revisions. Furthermore, it is found that the obtained approximate 
results in the relevant literature agree with the current exact ones up to only two or three 
decimal places, at most. Hence, the present approach along with the obtained results 
reflexes the effectiveness and efficiency of our analysis when compared with the 
corresponding study in the literature. Moreover, the present results can be directly 
invested for similar future problems of the same constructions. 
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1 Introduction 
Presently, the study of nanofluid flow has gained the attention of many researchers 
[Metal and Gegel (1979); Karwe and Jaluria (1991); Chan (2009); Choi and Eastman 
(1995); Saidur, Leong and Mohammad (2011); Wang and Mujumdar (2007, 2008)] and is 
now of practical applications in engineering and medical sciences. Experiments showed 
that the thermal conductivity of a base-fluid can be enhanced by adding a small fraction 
of nanoparticles to such base-fluids [Xuan (2003); Chamkha, Rashad, El-Zahar et al. 
(2019); El-Zahar, Rashad and Seddek (2019)], and accordingly the heat transfer 
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coefficient was improved for Newtonian nanofluids [Bachok, Ishak and Pop (2010); Aly 
and Ebaid (2016); Hamad (2011); Ebaid and Al Sharif (2015); Ebaid, Al Mutairi and 
Khaled (2014); Mabood, Khan and Rashidi (2017); Aly and Ebaid (2013)]. The progress 
in nanofluids including both types of Newtonian and non-Newtonian fluids are listed in 
the literature [Yadav, Bhargava and Agrawal (2013); Valinataj-Bahnemiri, Ramiar, 
Manavi et al. (2015); Yadav, Lee, Cho et al. (2016); Yadav (2017a, 2017b); Hady, 
Ibrahim, Abdel-Gaied et al. (2011); Hatami and Ganji (2013); Hady, Eid and Ahmed 
(2014); Eid (2016, 2017)]. 
Usually, the mathematical models describing such kind of problems are governed by 
systems of coupled linear/nonlinear ordinary and partial differential equations. To solve 
such systems, the researchers often resort to approximate numerical/analytical methods. 
However, the accuracy of the approximate methods should be validated in order to trust 
their results. 
It has been shown in the literature Ebaid et al. [Ebaid (2014); Ebaid and Khaled (2014); 
Khaled, Ebaid and Almutairi (2014); Ebaid and Alatawi (2014); Almazmumy and Ebaid 
(2017); Ebaid, El-Zahar, Aljohani et al. (2019)] that some of the published approximate 
numerical/analytical solutions were not accurate enough. Moreover, the exact solution of any 
system is capable of detecting the accuracy of the approximated one by performing 
comparisons. As an example, Ghasemi et al. [Ghasemi, Hatami, Sarokolaie et al. (2015)] 
analyzed the system describing the blood flow suspended with nanoparticles through porous 
arteries using the Optimal Homotopy Analysis Method (OHAM) and the Collocation Method 
(CM) to obtain approximate analytical and numerical solutions, respectively. 
Besides, they implemented the fourth-order Runge-Kutta method (4RKM) to validate 
their approximate analytical and numerical solutions where the exact solution is still 
unavailable. Therefore, the objective of this paper is to derive the exact solution of the 
system describing the blood flow suspended with nanoparticles through porous arteries 
under the influence of a magnetic field in the form:  

( )
22 2

2
2 2

1 1Λ 3d dv d v dv dv d v dv P M v c Gr Br
dr dr r dr dr r drdr dr
µ µ θ φ

    + + + + = + + − −    
    

   (1)            

22

12
1 0d d d d dNb Nt
r dr dr dr drdr

θ θ θ φ θα α  + + + = 
 

                                                             (2) 

2 2

2 2
1 1 0d d d dNb Nt
r dr r drdr dr

θ θ φ φ   
+ + + =   

   
                                                (3) 

 subject to  
( )1 1,v =  ( )2 0v =                                                           (4) 

( )1 1,θ = ( )2 0θ =                                                                                          (5) 

( )1 1,φ =  ( )2 0φ =                                                                                             (6) 

where ( )v r , ( )rθ , and ( )rφ  are, respectively, the fluid velocity, the temperature, and 
the nanoparticles concentration. Also, µ  is the viscosity of nanofluid, M  is the 
magnetic parameter, P  is the porosity parameter, c  is the pressure gradient, Λ  is the 
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third-grade parameter, Br  is the Brownian diffusion constant, Gr  is the Grashof number, 
Nb  is Brownian motion parameter, Nt  is the thermophoresis parameter, and α  and 1α  
are the material modules. The boundary conditions in Eqs. (4)-(6) describe the values of 
( )v r , ( )rθ , and ( )rφ  at the boundary of the inner and the outer coaxial cylinders. In 

terms of the temperature, the viscosity of the non-Newtonian nanofluid was considered as 
Vogel’s model and given by: 

( )0 /
0

A Be θ θµ µ +=                                                                                      (7) 
where A  and B  are constants and the subscript 0 denotes to the ambient condition. The 
paper is organized as follows. The exact solutions of Eqs. (2)-(3) with the boundary 
condition in Eqs. (5)-(6) will be obtained in Section 2. Section 3 is devoted to discuss two 
special cases. In Section 4, the numerical results of ( )v r , ( )rθ , and ( )rφ  will be 
conducted for the purpose of comparisons with the corresponding results obtained by 
Ghasemi et al. [Ghasemi, Hatami, Sarokolaie et al. (2015)] literature. The obtained 
results are summarized and concluded in Section 5.  

2 Exact solutions of ( )θ r  and ( )rφ  

Let us begin this section with obtaining the explicit relation between ( )rθ  and ( )rφ . 
Integrating Eq. (3) twice with respect to r  results in  

( )1 2lnNb Nt a r aθ φ+ = +                                                                                        (8) 

where 1a  and 2a  are two constants to be determined. According to the boundary 
conditions in Eqs. (5)-(6), the constants 1a  and 2a  can be obtained as  

2
1 ,

ln2
aa  = − 

 
 2a Nt Nb= +                                                                                      (9) 

Eq. (8) implies that  
1ad Nb d

dr Ntr Nt dr
φ θ   = −   

  
                                                                                        (10) 

Inserting Eq. (10) into Eq. (2), yields  
22 22

1 1
2

( ) ( )1 0a Nb Nt Nt Nbd d d
Nt r dr Nt drdr

αθ θ θ
α α

 + −   + + =   
    

                               (11) 

Eq. (11) can be simplified by assuming that  

1 ,a Nb Nt
Nt

λ
α

+
=

2 2
1( ) ( ) ,Nt Nb

Nt
ασ

α
−

=  ( ) dr
dr
θψ =                                    (12) 

and therefore Eq. (11) reduces to  

( ) 2 0r
r

d
dr

ψψ λ σψ + + = 
 

                                                                                      (13) 

which is Bernoulli non-linear differential equation in ψ . In order to solve Eq. (13), the 
next assumption is useful  
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( ) ( )
1r
r

χ
ψ

=                                                                                                                 (14) 

Accordingly, Eq. (13) reduces to the following linear differential equation in χ :  

( )r
r

d
dr
χ λ χ σ − = 

 
                                                                                                  (15) 

The solution of Eq. (15) can be obtained as  

( ) 3 ,
1

r r a r λσχ
λ

 = + − 
 such that  λ =1                                                               (16) 

where 3a  is a constant. Therefore  

( ) ( )
3

1

1

1

a r
r

r r λσ
λ

ψ
χ

=
  + − 

=                                                                        (17) 

Hence, the temperature ( )rθ  can be calculated from the last equation in Eq. (12) and 
given as  

( ) ( )
1

3 31 1

dr r dr

r a r r a
r r dr

λ

λ λ
θ

σ σ
λ λ

ψ
−

−
=

   + +   −

= =

−   

∫∫ ∫                                            (18) 

and thus  

( ) 1
3 4

1 ln ,
1

r r a aλσθ
σ λ

−  = + +  −  
 such that  σ = 0                                          (19) 

where 4a  is an additional constant. Applying the conditions in Eq. (5) on Eq. (19), we 
then get the following system:  

3 4
1 ln 1

1
a aσ

σ λ
   + + =  −  

                                                                                      (20) 

1
3 4

1 ln 2 0
1

a aσσ
σ λ

−   + + =  −  
                                                                         (21) 

Solving this system, the constants 3a  and 4a  are determined in a simplest form as  
1

3
(2) 1

1 1
ea
e

λ σ

σ
σ
λ

− −
=  

− − 
                                                                                       (22) 

1

4
1 (2) 11 ln

1 1
a

e

λ

σ
σ

σ λ

−

−

  − = −    − −    
                                                                          (23) 
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Inserting Eqs. (22) and (23) into Eq. (19) and simplifying, we obtain ( )rθ  in its final 
form as  

( )
( )

( )
1 1

1

1 (2) 111 ln ,
(2) 1

e r e
r

e

σ λ λ σ

λ σ
θ

σ

− −

−

 − + −
 = +
 − 

σ = 0, λ =1.                                  (24) 

We have from Eq. (8) that  

( ) ( ) ( )1 2lna a Nbr r r
Nt Nt Nt

φ θ   = + −   
  

                                                                       (25) 

Using Eqs. (9) and (24) in Eq. (25) we obtain the following final form of ( )rφ :  

( ) ( )
( )

( )
( )

1 1

1

1 (2) 1ln
1 1 ln

ln 2 (2) 1

e r erNb Nbr
Nt Nt e

σ λ λ σ

λ σ
φ

σ

− −

−

 − + −      = − + −           −   
                    (26) 

3 Special cases 
3.1 At 0σ →   
In this case, we have from Eq. (12) that  

 
2

1
Nb
Nt

α  =  
 

                                                                                                               (27) 

Here, the exact solutions of ( )rθ  and ( )rφ  can be obtained by calculating the limits of 
Eqs. (24) and (26), respectively, as 0σ → , and given by  

 ( )
1 1

1
(2)

(2) 1
rr

λ λ

λθ
− −

−

−
=

−
                                                                                                   (28) 

and  

 ( ) ( )
( )

1

1

ln 11 1
ln 2 1 (2)

rNb Nb rr
Nt Nt

λ

λφ
−

−

   −   = − + +        −     
                                                (29) 

3.2 At 1→λ  
As 1λ → , we have from Eqs. (9) and (12) that  

( )1 ,
ln 2

Nb Nta
 +

= −  
 

 ( )1 1 Nta
Nb

α  = −  
 

                                                           (30) 

The relations in Eq. (30) are compacted to give the following restriction on α , Nb , and Nt :  

 ( ) ( )
1 0

ln 2
Nt Nb Nt
Nb

α
 + − + =       

                                                                                      (31) 

In this case, Eq. (13) becomes  
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( )1d r
dr r
χ χ σ − = 

 
                                                                                                   (32) 

The solution of Eq. (32) can be obtained as  
( ) ( ) 5lnr r r a rχ σ= +                                                                                                     (33) 

where 5a  is a constant. Therefore  

( ) ( ) ( ) 5

1 1
lnr r r a

r
rχ σ

ψ = =
+

                                                                                     (34) 

Hence, the temperature ( )rθ  can be calculated from the last equation in Eq. (12) and 
given as  

( ) ( ) ( ) ( )
1

5 5
‍

ln ln
dr r drr dr

r r a r r a
rθ ψ

σ σ

−

=
+

= =
+∫ ∫ ∫                                                      (35) 

and thus  

 ( ) ( )( )5 6
1 ln lnr r a aθ σ
σ

= + +                                                                                        (36)         

where 6a  is an additional constant. Applying the conditions in Eq. (5) on Eq. (36), we 
then get the following system:  

( )5 6
1 ln 1a a
σ

+ =                                                                                                     (37) 

( )( )5 6
1 ln ln 2 0a aσ
σ

+ + =                                                                                        (38) 

Solving this system, the constants 5a  and 6a  are determined in a simplest form as  
( )

5
ln 2

1
a

e σ

σ
−=

−
                                                                                                                (39) 

( )
6

ln 211 ln
1

a
e σ

σ
σ −

 
= −   − 

                                                                                                   (40) 

Inserting Eqs. (39) and (40) into Eq. (36) and simplifying, we obtain ( )rθ  in its final 
form as  

 ( ) ( ) ( )
( )

ln11 ln 1 1 ,
ln 2

r
r e σθ

σ
−

  
= + − +      

σ = 0                                                             (41) 

Implementing Eq. (8) and Eq. (41), we obtain ( )rφ  as  

( ) ( ) ( ) ( )
( )

ln11 ln ln 1 1 ,
ln 2

rNbr r e Nb
Nb Nt

σαφ
σ

−
  −   = + − − + =              

0,Nt = 0                  (42) 

where the relation in Eq. (31) is also implemented to obtain the last equation. 
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4 Comparisons with published results 
In their research paper, the authors Ghasemi et al. [Ghasemi, Hatami, Sarokolaie et al. 
(2015)] obtained the approximate analytical solutions for the present problem via the 
OHAM and the CM. They have implemented 4RKM as a reference method to stand on 
the accuracy of their approximate solutions. However, it has been shown in the previous 
section that the exact solutions for ( )rθ  and ( )rφ  were successfully obtained, hence, 
such exact solutions are to be invested here to estimate the accuracy of the published 
results. In addition, our numerical calculations for ( )v r  is based on substituting the exact 
forms for ( )rθ  and ( )rφ  into (1) and then solving the resulting equation via 
MATHEMATICA. When all constants are assumed to be units, 1c = − , and 

2Nt Nb= = , the obtained approximate ( )rθ , ( )rφ , and ( )v r  via the CM by Ghasemi 
et al. [Ghasemi, Hatami, Sarokolaie et al. (2015)] were expressed as: 

( ) ( ) ( )( ) ( )( )22 2.400839451 2 1 1.044530104 4 1r r r r r rθ = − + − − − − −                  (43) 

( ) ( ) ( )( ) ( )( )22 0.6971357470 2 1 0.7482338079 4 1r r r r r rφ = − − − − + − −                (44) 

( ) ( ) ( )( ) ( )( )22 0.6618326283 2 1 0.1908202534 4 1v r r r r r r= − + − − − − −                 (45) 

The CM approximations in Eqs. (43)-(45) and the exact solutions are depicted in Fig. 1, 
Figs. 2 and 3. It is observed from these figures that the CM approximation in Eq. (45) for 
( )v r  is too close to the corresponding exact solution, while the CM approximations in 

Eqs. (43)-(44) for ( )rθ  and ( )rφ , respectively, are shifted by some amount from the 
corresponding exact solutions. In addition, the obtained errors by the CM are displayed in 
Fig. 4 which demonstrates that ( ) ( ) ( )| | |v r r rError Error Errorθ φ< < . Moreover, Fig. 4 

indicates that the maximum errors of the CM for ( )rθ , ( )rφ , and ( )v r  are 0.015 , 
0.020 , and 0.007 , respectively. For that, the CM approximation of ( )v r  is of higher 
accuracy than the approximations of ( )rθ  and ( )rφ  when 2Nt Nb= = . 

 
Figure 1: Exact and CM solutions for ( )rθ  at 2Nt Nb= =  
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Figure 2: Exact and CM solutions for ( )rφ  at 2Nt Nb= =  

 

 
Figure 3: Exact and CM solutions for ( )v r  at 2Nt Nb= =  
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Figure 4: Errors of CM for ( )rθ (Black), ( )rφ (Red) and ( )v r (Blue) 

Numerically, the values of ( )rθ , ( )rφ , and ( )v r  by the CM using Eqs. (43)-(45) and 
the OHAM by Ghasemi et al. [Ghasemi, Hatami, Sarokolaie et al. (2015)] are listed in 
Tabs. 1-3, respectively, along with the obtained corresponding errors. The results of Tabs. 
1-3 reveal that the CM and the OHAM are of similar accuracy when 2Nt Nb= = , but 
the situation may be changed at another set of values of the parameter Nt  and Nb  as 
discussed below. The numerical results listed in Tabs. 4-6 show that the CM is more 
accurate than the OHAM when 1Nt Nb= =  and this conclusion can also be observed 
from Tabs. 7-9 when 0.5Nt Nb= = . 
As a final remark, we have noticed that the calculations reported by the authors Ghasemi  
et al. [Ghasemi, Hatami, Sarokolaie et al. (2015)] (Tabs. 1 and 2) for the values of ( )rθ  
and ( )rφ  in the domain ( )1,2r ∈  were introduced in an incorrect manner. For example, 
when using Eqs. (43)-(44) to calculate ( )rθ  and ( )rφ  we can easily detect that the 
resulting values are completely different than those published ones, listed in (Tab. 1 and 
2). In addition, we noticed that the previously obtained approximate results via the CM 
and OHAM agree with the current exact ones up to only two or three decimal places, at 
most. Consequently, the above discussion confirms the advantage of our approach over 
the previous published study. 
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Table 1: Comparison of the present exact solution with CM and OHAM in predicting 
( )rθ  values at  

r Exact (Present) CM   OHAM   Error 
CM   OHAM   

1.0 1.000000 1.000000 1.000000 0.000000 0.000000 
1.1 0.986319 0.975348 0.975348 0.010971 0.010971 
1.2 0.965227 0.950665 0.950665 0.014562 0.014562 
1.3 0.933858 0.919683 0.919683 0.014175 0.014175 
1.4 0.888604 0.876135 0.876135 0.012469 0.012469 
1.5 0.825000 0.813754 0.813754 0.011246 0.011246 
1.6 0.737609 0.726273 0.726273 0.011336 0.011336 
1.7 0.619889 0.607424 0.607423 0.012466 0.012466 
1.8 0.464068 0.450940 0.450940 0.013128 0.013128 
1.9 0.260995 0.250555 0.250555 0.010440 0.010440 
2.0 0.000000 0.000000 0.000000 0.000000 0.000000 

Table 2: Comparison of the present exact solution with CM and OHAM in predicting 
( )rφ  values at 2Nt Nb= =  

r Exact (Present) CM   OHAM   Error 
CM   OHAM   

1.0 1.000000 1.000000 1.000000 0.000000 0.000000 
1.1 0.738674 0.753985 0.753985 0.015311 0.015311 
1.2 0.508704 0.528446 0.528446 0.019742 0.019742 
1.3 0.309119 0.327872 0.327872 0.018754 0.018753 
1.4 0.140543 0.156754 0.156754 0.016211 0.016211 
1.5 0.005075 0.019579 0.019579 0.014504 0.014504 
1.6 -0.093752 -0.079161 -0.079161 0.014591 0.014591 
1.7 -0.150959 -0.134979 -0.134979 0.015980 0.015980 
1.8 -0.160062 -0.143384 -0.143384 0.016677 0.016678 
1.9 -0.112993 -0.099888 -0.099888 0.013106 0.013105 
2.0 0.000000 0.000000 0.000000 0.000000 0.000000 

Table 3: Comparison of the present exact solution with CM and OHAM in predicting 
( )v r  values at 2Nt Nb= =  

r Exact (Present) CM   OHAM   Error 
CM   OHAM   

1.0 1.000000 1.000000 1.000000 0.000000 0.000000 
1.1 0.897589 0.893674 0.88704 0.003915 0.003915 
1.2 0.796681 0.791807 0.77952 0.004875 0.004874 
1.3 0.696941 0.693254 0.67648 0.003687 0.003687 
1.4 0.598041 0.596869 0.57696 0.001172 0.001172 
1.5 0.499650 0.501510 0.48000 0.001860 0.001860 
1.6 0.401408 0.406029 0.38464 0.004621 0.004621 
1.7 0.302906 0.309282 0.28992 0.006377 0.006376 
1.8 0.203649 0.210125 0.19488 0.006476 0.006476 
1.9 0.102991 0.107413 0.09856 0.004423 0.004422 
2.0 0.000000 0.000000 0.000000 0.000000 0.000000 
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Table 4: Comparison of the present exact solution with CM and OHAM in predicting 
( )rθ  values at 1Nt Nb= =  

r Exact (Present) CM   OHAM   Error 
CM   OHAM   

1.0 1.000000 1.000000 1.000000 0.000000 0.000000 
1.1 0.950456 0.950804 0.943005 0.000348 0.007451 
1.2 0.891648 0.892162 0.877897 0.000514 0.013751 
1.3 0.822834 0.823382 0.804134 0.000548 0.018700 
1.4 0.743280 0.743773 0.721176 0.000493 0.022104 
1.5 0.652257 0.652645 0.628480 0.000388 0.023777 
1.6 0.549042 0.549304 0.525506 0.000262 0.023536 
1.7 0.432918 0.433061 0.411713 0.000143 0.021205 
1.8 0.303174 0.303223 0.286558 0.000049 0.016616 
1.9 0.159102 0.159100 0.149501 0.000002 0.009601 
2.0 0.000000 0.000000 0.000000 0.000000 0.000000 

Table 5: Comparison of the present exact solution with CM and OHAM in predicting 
( )rφ  values at 1Nt Nb= =  

r Exact (Present) CM   OHAM   Error 
CM   OHAM   

1.0 1.000000 1.000000 1.000000 0.000000 0.000000 
1.1 0.774537 0.778529 0.786719 0.003992 0.012182 
1.2 0.582283 0.586949 0.601669 0.004666 0.019386 
1.3 0.420142 0.424174 0.443704 0.004032 0.023562 
1.4 0.285866 0.156754 0.311676 0.129112 0.025810 
1.5 0.177818 0.180689 0.204439 0.002871 0.026621 
1.6 0.094815 0.097807 0.120847 0.002992 0.026032 
1.7 0.036013 0.039384 0.059754 0.003371 0.023741 
1.8 0.000832 0.004332 0.020012 0.003500 0.019180 
1.9 -0.011101 -0.008430 0.000476 0.002671 0.011577 
2.0 0.000000 0.000000 0.000000 0.000000 0.000000 

Table 6: Comparison of the present exact solution with CM and OHAM in predicting 
( )v r  values at 1Nt Nb= =  

r Exact (Present) CM   OHAM   Error 
CM   OHAM  

1.0 1.000000 1.000000 1.000000 0.000000 0.000000 
1.1 0.898404 0.884070 0.876846 0.075959 0.021558 
1.2 0.798095 0.771594 0.758641 0.026501 0.039454 
1.3 0.698725 0.662605 0.645457 0.036120 0.053268 
1.4 0.599962 0.557135 0.537369 0.042827 0.062593 
1.5 0.501474 0.455216 0.434451 0.046258 0.067023 
1.6 0.402917 0.356880 0.336778 0.046037 0.066139 
1.7 0.303922 0.262158 0.244421 0.041764 0.059501 
1.8 0.204087 0.171083 0.157457 0.033004 0.04663 
1.9 0.102956 0.083686 0.075959 0.019270 0.026997 
2.0 0.000000 0.000000 0.000000 0.000000 0.000000 
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Table 7: Comparison of the present exact solution with CM and OHAM in predicting 
( )rθ  values at 0.5Nt Nb= =  

r Exact (Present) CM   OHAM   Error 
CM   OHAM   

1.0 1.000000 1.000000 1.000000 0.000000 0.000000 
1.1 0.914213 0.907045 0.907045 0.007168 0.007168 
1.2 0.824900 0.824985 0.812185 0.000085 0.012715 
1.3 0.732227 0.732347 0.715547 0.000120 0.016680 
1.4 0.636341 0.636458 0.617258 0.000117 0.019083 
1.5 0.537373 0.537446 0.517446 0.000073 0.019927 
1.6 0.435439 0.435438 0.416238 0.000001 0.019201 
1.7 0.330643 0.330562 0.313762 0.000081 0.016881 
1.8 0.223081 0.222946 0.210146 0.000135 0.012935 
1.9 0.112841 0.112716 0.105516 0.000125 0.007325 
2.0 0.000000 0.000000 0.000000 0.000000 0.000000 

Table 8: Comparison of the present exact solution with CM and OHAM in predicting 
( )rφ  values at 0.5Nt Nb= =  

r Exact (Present) CM   OHAM   Error 
CM   OHAM   

1.0 1.000000 1.000000 1.000000 0.000000 0.000000 
1.1 0.810780 0.815088 0.821989 0.004308 0.011209 
1.2 0.649031 0.654126 0.666394 0.005095 0.017363 
1.3 0.510750 0.515209 0.531310 0.004459 0.020560 
1.4 0.392805 0.396431 0.414833 0.003626 0.022028 
1.5 0.292702 0.295887 0.315056 0.003185 0.022354 
1.6 0.208418 0.211673 0.230075 0.003255 0.021657 
1.7 0.138287 0.141882 0.157984 0.003595 0.019697 
1.8 0.080925 0.084610 0.096878 0.003685 0.015953 
1.9 0.035161 0.037951 0.044852 0.00279 0.009691 
2.0 0.000000 0.000000 0.000000 0.000000 0.000000 

Table 9: Comparison of the present exact solution with CM and OHAM in predicting 
( )v r  values at 0.5Nt Nb= =  

r Exact (Present) CM   OHAM   Error 
CM   OHAM   

1.0 1.000000 1.000000 1.000000 0.000000 0.000000 
1.1 0.898944 0.882342 0.874947 0.016602 0.023997 
1.2 0.798978 0.768684 0.755572 0.030294 0.043406 
1.3 0.699768 0.658997 0.641834 0.040771 0.057934 
1.4 0.601000 0.553252 0.533690 0.047748 0.067310 
1.5 0.502366 0.451422 0.431100 0.050944 0.071266 
1.6 0.403554 0.353479 0.334022 0.050075 0.069532 
1.7 0.304249 0.259393 0.242415 0.044856 0.061834 
1.8 0.204121 0.169163 0.156236 0.034958 0.047885 
1.9 0.102826 0.082682 0.075445 0.020144 0.027381 
2.0 0.000000 0.000000 0.000000 0.000000 0.000000 
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5 Conclusion 
The exact solution of the system describing the third grade non-Newtonian blood flow 
suspended with nanoparticles through porous arteries was provided. Moreover, the exact 
solutions for two useful special cases were obtained. The developed exact solutions, for 
the phenomenon at hand, were compared with the published approximate results in the 
research literature using the OHAM and the CM. The comparisons revealed that, in most 
cases, the CM was of higher accuracy than the OHAM. Furthermore, the CM and OHAM 
results obtained by Ghasemi et al. [Ghasemi, Hatami, Sarokolaie et al. (2015)] agree with 
the current exact solutions up to only two decimal places in most of the investigated cases. 
The developed exact approach may be trustily recommended to study similar physical 
models in future. 
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