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Abstract: With the development of the service-oriented computing (SOC), web service 
has an important and popular solution for the design of the application system to various 
enterprises. Nowadays, the numerous web services are provided by the service providers 
on the network, it becomes difficult for users to select the best reliable one from a large 
number of services with the same function. So it is necessary to design feasible selection 
strategies to provide users with the reliable services. Most existing methods attempt to 
select services according to accurate predictions for the quality of service (QoS) values. 
However, because the network and user needs are dynamic, it is almost impossible to 
accurately predict the QoS values. Furthermore, accurate prediction is generally time-
consuming. This paper proposes a service decision tree based post-pruning prediction 
approach. This paper first defines the five reliability levels for measuring the reliability of 
services. By analyzing the quality data of service from the network, the proposed method 
can generate the training set and convert them into the service decision tree model. Using 
the generated model and the given predicted services, the proposed method classifies the 
service to the corresponding reliability level after discretizing the continuous attribute of 
service. Moreover, this paper applies the post-pruning strategy to optimize the generated 
model for avoiding the over-fitting. Experimental results show that the proposed method 
is effective in predicting the service reliability. 
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1 Introduction 
Web services provide a standard means of communication among the different software 
applications on Internet. With the increasing number of web services with the same 
function, the application process requires qualitative selection of automatic service 
candidates [Yu, Zhang and Lin (2007)]. The reliable running of service process depends 
on both functional and nonfunctional service attributes, which are highly influenced by 
the quality of the selected web service [Silic, Delac and Srbljic (2013)]. To get an 
efficient service application, the service selection process should evaluate the reliability 
of web services according to both functional and nonfunctional service attributes 
[Avizienis, Laprie, Randell et al. (2004)]. The real relia bility of web service is affected 
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by many service attributes, such as response time, availability and throughput. Using the 
different evaluating attributes may result in a totally different reliability to the same web 
service, even in the same evaluating method. In addition, adopting mass attributes in the 
evaluating process results in the increasing of the computing time, which eventually is 
bound to reduce the effectiveness of evaluating results. Hence, how to quickly predict the 
service reliability before or during the application execution becomes a big challenge.  
The researchers have proposed some definitions about the service reliability. The 
traditional definition of the service reliability is system-centric, such as availability, 
successability [Lyu (1996)]. Some literatures present the user-centric definitions, such as 
user-perceived reliability [Wang and Trivedi (2009)], or reliability on demand 
[Cortellessa and Grassi (2007)]. However, it should be noted that the service invocations 
are discrete and relatively sparse events. So the user-centric definition is more suitable for 
web services. Based on the above analysis, we focus on the prediction for the user-centric 
reliability in this paper. We define service reliability as the probability that the service 
invocation is successfully received under the specified conditions and time constraints. At 
present, there are a variety of different prediction methods for web services quality 
[Wang, Wang and Ding (2013); Silic, Delac, Krka et al. (2014); Wu, Xu, Lu et al. (2015); 
Xu, Zheng and Lyu (2015); Zheng, Trivedi, Qiu et al. (2015); Honamore, Dev and 
Honmore (2016); Wang, Wang, Yu et al. (2016); Yu and Huang (2016); Kumar and 
Sureka (2017); Thinh (2017); Wang, Yang and Yu (2017); White, Palade and Clarke 
(2017); Chen and Ha (2018)]. The most popular methods for predicting reliability of web 
services are mainly based on the collaborative filtering technology [Zheng and Lyu 
(2010); Zheng, Ma, Lyu et al. (2010); Yu and Huang (2016); Wu, Zhang, Luo et al. 
(2018); Wang, Chen, Shang et al. (2019)]. The advantage of this technology is the service 
reliability can be predicted, even if we cannot get some important prediction data. 
However, many other technologies are also used in the service prediction, such as k-
means clustering [Su and Khoshgoftaar (2009); Maamar and Benahmed (2019); Yang, 
Zhou and Yang (2019)], Markov [Almulla, Almatori and Yahyaoui (2011); Zheng, 
Trivedi, Qiu et al. (2015)], HMM [Rahnavard, Najjar and Taherifar (2010); Honamore, 
Dev and Honmore (2016)], graph reduction [Cardoso, Sheth, Miller et al. (2004)], and 
fuzzy logic [Almulla, Almatori and Yahyaoui (2011); Honamore and Rath (2016)]. 
In this paper, we present a reliability prediction model based on the decision tree, and 
propose a prediction algorithm. The advantage of the decision tree technology is we can 
get the minimal and optimal attribute set for evaluating the reliability of web service by 
selection of the optimal split attributes and pruning process, and reduce the evaluating 
time. Our method applies the quality of web services to construct the service 
classification tree. By discretizing the continuous attribute of service, an optimum 
reliability model for web services is built and can quickly predict the reliability level of 
the given service. 
The rest of paper is organized as follows. In Section 2, we describe the basic construction 
process of the decision tree. In Section 3, we present our reliability prediction process for 
web services by extracting the service data from the net-work. In Section 4, we propose 
our reliability prediction model for web services. In Section 5, we evaluate the proposed 
method by QWS database and show our experimental results. Finally, we present our 
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conclusions in Section 6. 

2 Construction of decision trees 
A decision tree is a representation of a decision procedure for determining the class of a 
given instance [Utgoff (1989)]. Generally, a decision tree consists of three kinds of node: 
root node, child node and leaf node. Each node of the tree specifies either a class name or 
a specific test that partitions the space of instances at the node according to the possible 
outcomes of the test [Kaur and Kaur (2019)]. A root node includes the universal set of 
instances. A leaf node denotes a classification result. Each child node represents a test for 
one attribute. Each subset of the partition corresponds to a classification sub-problem for 
that subspace of the instances, which is solved by a sub-tree. A decision tree can be seen 
as a divide-and-conquer strategy for object classification [Utgoff (1989)]. The decision 
tree is built recursively according to a given training set. In each recursion step, an 
instance is divided into a sub-tree with maximum similarity. And the current node is 
expanded recursively on each of all subsets of the training set which are defined by the 
instance attributes. A basic construction algorithm of decision tree is described in Tab. 1. 

Table 1: Construction algorithm of decision tree 

Input: training set 1 1{( , ), , ( , )}=  n nD y yx x , attribute set 1{ , , }=  mA a a  

Output: a decision tree CDTree and N which is the root node 
01: to generate a node N; 
02: if  ,1∀ ∈ ≤ ≤iy C i n  then 
03:     to mark N as a leaf node of C; 
04:     return; 
05: end if 
06: if =∅A  or any attribute of any two x had the same value then 
07:     to mark N as a leaf node of the class with maximum number in D;  
08:     return; 
09: end if 
10: select the optimal split attribute *a  from A; 
11: for each value *

va  in *a  do 
12:     to generate a sub-tree of N; 
13:     ⊆vD D  and ∀ ∈ vd D , =* *

d va a ; 
14:     if =∅vD  then 
15:         to mark the sub-tree of N as a leaf node of the class with maximum number in 

 16:         return; 
17:     else 
18:         to mark *( , \ { })vD A aCDTree  as a sub-tree; 
19:     end if 
20: end for 
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In Tab. 1. The D is the training set, and each training instance is denoted by a set of 
attribute-value pairs ix  and a class label iy . The A is a set of attributes which describes 

an instance in D. For each attribute ja  in A, v
ja  indicates the possible value of ja . The 

CDTree is a decision tree function, and it returns a decision tree according to the given 
training set. 
In the construction algorithm of decision tree, the most critical issue is how to get the 
goodness of split measure. Generally, there are three measure to be used in selecting the 
optimal split attributes. They include the information gain, gain ratio and Gini index 
[Mingers (1989)]. In this paper, we use the Gini index to measure the optimal split attribute.  

3 Reliability prediction process 
As mentioned before, we focus on the prediction of web service reliability according to 
the given training set. In Fig. 1, we present the prediction process of service reliability. 

Training SetNetwork

…

… 
Decision Tree for 

Web Services

construct

extract data

send a prediction request

Usersreturn the prediction resultGeneration Strategy 
of Decision Tree

 

Figure 1: Prediction process for the web service reliability 
As can be seen in Fig. 1, reliability prediction process is consisted of three phases: data 
extracting phase, constructing decision tree phase and prediction phase. Prior to construct 
decision tree, we perform collecting the quality data of web services from the network. 
Then, we use the generated training set and the given generation strategy of decision tree 
to construct the decision tree for web services. Finally, when the user sends a reliability 
prediction request, the prediction result of the reliability can be generated by the decision 
tree for web services and return to the user. 

4 Prediction model 
This section describes each step of constructing the service decision tree and defines how 
reliability prediction are calculated from the reliability level.  
A service training set is formally defined as follows: 
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1 1{( , ), , ( , )}=  n nS r rs s                                                                                                        (1) 

where is  is a web service and 1≤ ≤i n , and ir  is the reliability level of the service is . 

A service attribute set is formally defined as follows: 

1{ , , }=  mQoS qs qs                                                                                                             (2) 

where jqs  is a service attribute of web services, such as response time, availability. 

4.1 Reliability levels 
In here, we define five reliability levels 1 2 3 4 5{ , , , , }= R R R R RR  in this paper, which are 
shown in Tab. 2. 

Table 2: Reliability levels 

Reliability Levels Reliability Range 

1R  [0.9, 1.0] 

2R  [0.8, 0.9) 

3R  [0.7, 0.8) 

4R  [0.6, 0.7) 

5R  [0.0, 0.6] 

4.2 Select the optimal split attribute 
In this paper, we use the Gini index to select the optimal split attribute, and the services 
are partitioned into subset according to the values of that attribute. 
The Gini index is proposed by Breiman et al. [Breiman, Friedman, Stone et al. (1984)] in 
1984. The Gini function measures the ‘impurity’ of an attribute with respect to the classes 
[Mingers (1989)]. The Gini function is formally defined as follows: 

2
'

1 ' 1
( ) 1

= ≠ =

= = −∑∑ ∑k k k
k k k k

Gini S p p p
R R

                                                                                      (3) 

where R  is the number of reliability levels, kp  is the probability of the kth reliability 
level services in the set S. 
The Gini Index method was used to split off the largest category into a separate group, 
with the default split size set to enable growing the tree. In this case, we estimate the 
reliability level probabilities with the actual relative frequencies. Thus the impurity of the 
attribute jqs  is as follows: 

1
_ ( , ) ( )

=

=∑
j

j
j

vV
v

j
v

S
Gini index S qs Gini S

S
                                                                             (4) 
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where jV  denotes the number of different value of the attribute jqs  in S, S  denotes the 

number of instances in S, jvS denotes the number of instances with value jv  of attribute 

jqs  in S. The smaller the Gini index is the higher the purity of S. Therefore, we select the 
attribute *qs   with minimum value of the Gini index as the split attribute. 

*
1

arg min _ ( , )
≤ ≤

= j
j m

sq Gini index S qs                                                                                      (5) 

4.3 Dealing with continuous value 
In the quality of web service, many attributes are the continuous attributes. Thus we use 
the bi-partition method to deal with them in this paper. 
If the attribute jqs  is a continuous attribute, we first use the Quicksort ordering algorithm 
to order the instances from small to large according to the values of jqs . Assume that the 
ordered values are 1, , mv v . Consider for [1, 1]∈ −j m , the value 1( ) / 2+= +j jv v v  and 
the splitting is as follows: 

1 { | }v
k kS v v v= ≤                                                                                                                   (6) 

2 { | }v
k kS v v v= >                                                                                                                  (7) 

For each value v, the Gini index is computed by considering the splitting above. The 
value ′v  for which _ ( , , )′jGini index S qs v  is minimum is set to be the classification 
threshold of the attribute jqs . 

4.4 Prediction algorithm 
According to the above description, we present our prediction process in Tabs. 3 and 4. 
The service construction algorithm is a construction procedure of classification way for 
the service reliability level according to the given service set. In Tab. 3, the S is the 
service set, and each service is marked by a reliability level sign. The QoS is a set of 
attributes which describes a service in S. The ST is a service decision tree, and it returns a 
service decision tree according to the given service set S and attribute set QoS. The 
function ComputeClassFrequence() counts the service number of each reliability level in 
the service set S. The OneReliabilityLevel denotes that there is one reliability level in the 
service set S. The FewServices means that the service set S is a null set. 
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Table 3: Service construction algorithm 

Input: service set 1 1{( , ), , ( , )}=  n nS r rs s , 

attribute set 1{ , , }=  mQoS qs qs  

Output: a service decision tree ST 
01: ComputeClassFrequence(S); 
02: if OneReliabilityLevel or FewServices then 
03:     return; 
04: end if 
05: create a decision node N; 
06: if attribute qs is continuous then 
07:     find classification threshold;  
08: end if 
09: for each attribute qs do 
10:     ComputeGiniIndex(S); 
11: end for 
12: N = AttributeWithSmallerGiniIndex; 
13: for each ′S  in the splitting of S 
14:     if ′ = ∅S  then 
15:         Child of N is a leaf; 
16:     else 
17:         Child of N = ( , )′S QoSST ; 
18:     end if 
 19: end for 

The level prediction algorithm is a prediction process to the given service using above 
generated service decision tree in the service construction algorithm.  In Tab. 4, the ST is 
a service decision tree, and the level prediction algorithm can classify the given service 
′s  by the function ClassficationService () and ST. 

Table 4: Level prediction algorithm 

Input: service set 1 1{( , ), , ( , )}=  n nS r rs s ,  

attribute set 1{ , , }=  mQoS qs qs ,  

predicted service ′s   

Output: the reliability level of ′s ; 

01: ( , )S QoSST ; 

02: ClassficationService ( ′s ,ST); 

03: return the reliability level of ′s ; 
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4.5 Pruning 
In order to avoid the over-fitting of the service decision tree, we use the service tree 
pruning algorithm in Tab. 5 to obtain a right sized tree. Firstly, we build a complete 
service decision tree by the service construction algorithm in Tab. 3. Then, we remove 
sub-trees that are not contributing significantly towards generalization accuracy. 
In the first stage, a sequence of increasingly smaller trees is built on the training data. In 
the second stage, one of these trees is chosen as the pruned tree, based on its 
classification accuracy on a pruning set. 

Table 5: Service pruning algorithm 

Input: running service set 1 1{( , ), , ( , )}= p n nS r rs s ,  

pruning attribute set 1{ , , }= p mQoS qs qs ,  

the decision tree ST, 
Output: a service pruning tree SP 
01: testTree=ST; SP=ST; 
02: while each node in ST 
03:     deleteLeaf(testTree); 
04:     if ComputeAccuracy(testTree) > 

  05:         SP=testTree; 
06:     end if 
07:     testTree=SP; 
08: end while  

5 Experiments 
In this section, we present the evaluate results that supports our claims that our reliability 
prediction model improves the prediction accuracy. To prove our claims, we use the 
QWS database [Al-Masri and Mahmoud (2007)] to conduct the experiments and analyze 
the results. The QWS database collects 2507 real web services, and each service is 
described by 11 parameters including service name, description, operation name, 
description, message name, and message description tags. Tab. 6 shows 8 attributes of 
web service we used in the experiments. 

Table 6: Attributes in QWS 
Attributes Definition 
Response Time Time taken to send a request and receive a response 
Availability Number of successful invocations/total invocations 
Throughput Total Number of invocations for a given period of time 
Successability Number of response/number of request messages 
Compliance The extent to which a WSDL document follows WSDL specification 
Best Practices The extent to which a Web service follows WS-I Basic Profile 
Latency Time taken for the server to process a given request 
Documentation Measure of documentation (i.e., description tags) in WSDL 
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To evaluate prediction accuracy for web service, we use the standard error measures: 
mean absolute error MAE. The MAE represents the average magnitude of errors for the 
predicted reliability values: 

ˆ−
=
∑N

j jj
p p

MAE
N

                                                                                                         (8) 

where N is the cardinal number of the prediction set, jp  real reliability level is from 
QWS, while ˆ jp  is the predicted reliability level. 
In our experiments, we select 1500 web services from QWS as the training set, 500 
services as the pruning set, and 500 services left are used as test set. Firstly, we separately 
use the 500, 1000 and 1500 training data to generate the service decision trees. Then, we 
use 500 pruning data to separately prune the three service decision trees, and get the 
pruned service trees. The pruned service tree by 500 training data includes three split 
attributes: best practices, compliance and availability. The pruned service tree by 1000 
training data includes three split attributes: best practices, availability, documentation and 
response time. The pruned service tree by 1500 training data includes the same attributes 
with the second pruned service tree. Next, we use the above two split attribute sets (‘best 
practices, compliance, availability’ & ‘best practices, availability, documentation, 
response time’) to generate the service decision trees and pruned service trees. At the 
same time, we get two split attribute sets (‘best practices, availability’ & ‘best practices’) 
according to the pruned trees. We use the two split attribute sets again to generate the 
new service decision trees. Finally, we compare the accuracy, MAE and running time of 
the five groups with different split attribute sets and the number of training data. 

 

Figure 2: Accuracy comparison with the different split attributes 
Fig. 2 shows the comparison results of the prediction accuracy with different split 
attribute sets and the number of training data. In Fig. 2, ‘all’ denotes that the split 
attribute set includes all attributes in Tab. 2; ‘split1’ denotes that the split attribute set 
includes best practices, compliance and availability; ‘split2’ denotes that the split attribute 
set includes best practices and availability; ‘split3’ denotes that the split attribute set 
includes best practices, availability, documentation and response time; ‘split4’ denotes 
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that the split attribute set includes best practices. When we consider all attributes as the 
split attribute set, the prediction accuracies are the lowest in three groups of test sets. The 
prediction accuracies of ‘split1’ are the highest in the second and third groups. As shown 
in the figure, when the training data is above certain level, the split attribute set ‘split1’ 
can get the higher prediction accuracy. This is because best practices, compliance and 
availability contain more useful information for evaluating the reliability of web service. 
Without the attribute ‘compliance’, this leads to the worse performance when adopting 
the split attribute set ‘split2’ to predict the service reliability. Moreover, the execution 
results of ‘all’, ‘split3’ and ‘split4’ are not ideal due to the lack of useful attributes or the 
adoption of disturbed attributes. 

 
Figure 3: MAE comparison with the different split attributes 

Fig. 3 shows the comparison results of the mean absolute error with different split 
attribute sets and the number of training data. The MAE of ‘split1’ are the lowest in the 
second and third groups. Consequently, when the training data is above certain level, the 
split attribute set ‘split1’ can get the lower mean absolute error. This result again 
demonstrates that, the attributes ‘best practices, compliance and availability’ are closely 
related with the reliability of service. 
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Figure 4: Running time comparison with the different split attributes 

Fig. 4 shows the comparison results of the mean absolute error with different split 
attribute sets and the number of training data. The running time of ‘all’ is the longest in 
three groups. The running time of ‘split4’ is the shortest. Consequently, the number of 
attributes in the split set is positively related to the running time. The more the attribute 
number is, the longer the running time is. By contrast, the less the attribute number is, the 
shorter the running time is. 

 
Figure 5: Un-pruning and post-pruning comparison with all attributes 

Fig. 5(a) shows the accuracy comparison result of the un-pruning and post-pruning with 
‘all’ split attribute set. Fig. 5(b) shows the MAE comparison result of the un-pruning and 
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post-pruning with ‘all’ split attribute set. We can see that the accuracy is increased 
appreciably from Fig. 5(a), and the MAE is reduced appreciably from Fig. 5(b). Fig. 5(c) 
shows the running time comparison result of the un-pruning and post-pruning with ‘all’ 
split attribute set. We can see that the running time has a rapid growth with the increasing 
number of training data. Fig. 5 explains the significance of pruning. We can achieve the 
closely related attribute set, improve the performance result, and reducing the running time. 

 

Figure 6: Un-pruning and post-pruning comparison with the different split attributes 

Fig. 6(a) shows the accuracy comparison result of the un-pruning and post-pruning with 
the different split attributes. Fig. 6(b) shows the MAE comparison result of the un-
pruning and post-pruning with the different split attributes. Similar to Fig. 5, the three 
accuracies with different split sets are increased appreciably after the pruning, and the 
three MAEs are reduced appreciably after the pruning. Fig. 6(c) shows the running time 
comparison result of the un-pruning and post-pruning with the different split attributes. 
We can see that the running time of ‘split1’ is shortest from Fig. 6(c).  
As the figures show, our method is effective for the reliability prediction of web services. 
Our experimental results show that we can get the higher prediction accuracy and the 
shorter running time when we use the attributes ‘best practices, compliance and 
availability’ as the split attribute set. 

6 Conclusions 
Aiming at the dynamic of the network and user needs, this paper proposes a prediction 
approach of the service reliability level by constructing the service decision tree. We 
utilize the decision tree method to derive a reliability prediction model that classifies 
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services into the corresponding reliability level according to the related attribute values. 
A selection method of optimal split attribute and a bi-partition method for dealing with 
the continuous attribute are presented to support the reliability prediction model. To solve 
the over-fitting problem of the model and improve the prediction accuracy, we exploit a 
service tree post-pruning method. The experiments based on a real-world dataset reveal 
that the proposed method provide a high accuracy of prediction without noticeably 
increased running time. The proposed method contributes to reliability prediction in a 
high-dynamic computing environment. 
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