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Abstract: With the rapid development of mobile wireless Internet and high-precision 
localization devices, location-based services (LBS) bring more convenience for people over 
recent years. In LBS, if the original location data are directly provided, serious privacy 
problems raise. As a response to these problems, a large number of location-privacy 
protection mechanisms (LPPMs) (including formal LPPMs, FLPPMs, etc.) and their 
evaluation metrics have been proposed to prevent personal location information from being 
leakage and quantify privacy leakage. However, existing schemes independently consider 
FLPPMs and evaluation metrics, without synergizing them into a unifying framework. In 
this paper, a unified model is proposed to synergize FLPPMs and evaluation metrics. In 
detail, the probabilistic process calculus (called δ-calculus) is proposed to characterize 
obfuscation schemes (which is a LPPM) and integrate α-entropy to δ-calculus to evaluate 
its privacy leakage. Further, we use two calculus moving and probabilistic choice to model 
nodes’ mobility and compute its probability distribution of nodes’ locations, and a 
renaming function to model privacy leakage. By formally defining the attacker’s ability and 
extending relative entropy, an evaluation algorithm is proposed to quantify the leakage of 
location privacy. Finally, a series of examples are designed to demonstrate the efficiency of 
our proposed approach. 
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1 Introduction 
With the widespread usage of mobile devices equipped with high-precision localization 

 
☆This is an extended version of our conference paper [Ding, Li, Guo et al. (2018)]. 
1 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006, China. 
2 Institute of Information Engineering, CAS, Beijing, 100093, China. 
3 Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy Science, Urumqi, 830011, China. 
4 Key laboratory of Speech Language Information Processing of Xinjiang, Urumqi, 830046, China. 
5 University of Chinese Academy of Sciences, Beijing, 100049, China. 
6 Guilin University of Electronic Technology, Guilin, 541004, China. 
7 Department of Electrical and Computer Engineering, Duke University, Durham, 27708, USA. 
* Corresponding Authors: Ran Li. Email: liran@iie.ac.cn; Jingquan Ding. Email: dingjq@ms.xjb.ac.cn. 
Received: 22 January 2020; Accepted: 28 February 2020. 



 
 
 
1324                                                                       CMC, vol.63, no.3, pp.1323-1342, 2020 

capabilities, such as mobile phones [Yin, Guo, Zhang et al. (2019)], intelligent cars [Tian, 
Gao, Su et al. (2019)], and wearable devices [Tian, Luo, Qiu et al. (2020)], location-
based services (LBS) have gained great success in the mobile wireless Internet. LBS (e.g., 
navigation, point of interest (POI), and motion data publishing) is changing our daily 
lives at an unprecedented speed. Specifically, users can guide themselves to places that 
they have never been. With the help of LBS, they also can query nearby POIs with 
location. Recently, the publishing of running or cycling trajectories has become a new 
fashion in the circle of friends. Furthermore, trajectories publishing can also help 
optimize the city resource and prevent traffic congestion. In addition, LBS can be easily 
integrated in many other fields, such as crowdsensing systems [Li, Sun, Lu et al. (2020)], 
edge computing systems [Tian, Shi, Wang et al. (2019)], and IoT-Based network [Yin, 
Luo, Zhu et al. (2020)]. 
However, as users enjoy the convenience of LBS, location privacy has become a major 
concern. Location-based Service providers can infer the users’ preferences and behavior 
habits by counting uses’ location information and their search history. What’s more, 
adversaries can obtain users’ trajectories by monitoring their communication, thus carry 
out trail, rob or theft of empty houses, which seriously threaten the safety of users’ life 
and property [Yin and Liu (2019)]. 
Nowadays, a large number of efforts have been spent on preserving location privacy, 
which can be roughly be divided into two categories: (1) the threat analysis of location 
privacy, the formalization of related attacks, and the design of the appropriate LPPMs 
[Zheng, Cai, Li et al. (2017)], and (2) the evaluation and measurement of location privacy 
[Olteanu, Huguenin, Shokri et al. (2017)]. Beyond that, several efforts have been spent on 
acquiring the true location of users from the anonymized locations. 
In the first category, three schemes, the elimination scheme (ES) [Abul, Bonchi, Nanni et 
al. (2014); Pandit, Polina, Kumar et al. (2014); Dong and Pi (2018)], the anonymity 
scheme (AS) [Sweeney (2002); Freudiger, Manshaei, Hubaux et al. (2013)], and the 
obfuscation scheme (OS) [Xiao and Xiong (2015); Zhang, Zhong, Han et al. (2016)] have 
been proposed. ES is to confuse the linkage relationship of locations at continuous time 
series through eliminating the trajectory of the real user, thus, preventing trajectory from 
being leakage. In the anonymity scheme, Sweeney [Sweeney (2002)] interrupted the 
connection between the true identity and privacy information. Through this approach, the 
true identity is protected. In OS, noise is added into the user information and prevents 
attackers from discovering the relevance between user’s location and identities, thus 
degrading the possibility of location attack [Wang, Yang, Han et al. (2017)]. However, 
these schemes do not formally and theoretically verify their efficiencies. 
To address the above problem, a large number of efforts are spent on adopting (or 
designing) formal methods to mine vulnerability and improve the protective efficacy of 
LPPMs [Arapinis, Chothia, Ritter et al. (2010); Guo, Zhang, Zhang et al. (2018)]. 
Additionally, many of the metrics Emara et al. [Emara, Woerndl, Schlichter et al. (2015); 
Niu, Li, Zhu et al. (2015)] are proposed to measure evaluate the effectiveness (including 
accuracy, correctness and certainty) of the LPPMs. 
The requirements for adopting formal methods to design LPPMs and evaluate their 
degree of privacy have been widely recognized. However, in the existing approaches, the 
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design scheme is often separated from evaluation metrics, and this separation might cause 
that the selected formal tool for evaluating LPPMs might not match the designed LPPMs. 
As a result, users’ location privacy cannot be measured precisely. This makes it harder to 
guarantee location privacy. Therefore, we should closely combine assessments into the 
designed LPPMs to guarantee location privacy. 
In this paper, we propose a probabilistic process calculus, called δ-calculus, to formalize 
the LPPMs and measure the privacy level of LPPMs by using the relative entropy. The 
main contributions of this paper are as follows: Through adding location calculus into π 
calculus, we propose a δ-calculus to formalize the obfuscation schemes. In detail, a suit 
of syntax and their semantics is designed to formally describe LPPM. Specially, we 
design the moving calculus to model nodes’ mobility and probabilistic choice calculus to 
compute the probability distribution of nodes’ locations. Two examples show that our 
proposed calculus can efficiently evaluate location traces. We propose the renaming 
function to model information leakage. Further, by formally defining the ability of an 
attacker and extending the relative entropy, we propose the evaluation algorithm to 
evaluate the degree of location privacy. We use the proposed scheme to evaluate the 
protection scheme (DUMMY-T) of trace privacy. The results demonstrate that our 
scheme can accurately quantify location privacy.  
The rest of the paper is organized as follows: Related work is introduced in Section 2, 
and Section 3 presents the probabilistic automata for this paper. We propose the syntax 
and semantics of our δ-calculus in Section 4. Section 5 provides some evaluation results 
of our proposed location privacy measuring. Section 6 shows some experiment issues. 
Finally, we conclude our work in Section 7. 

2 Related work 
In this paper, we mainly focus on location-privacy protection mechanisms and their 
metrics methods, so we also discuss the related work in these two aspects. 

2.1 Location-privacy protection mechanisms 
In general, protection mechanisms of location-privacy can be divided into 3 categories: 
the elimination scheme (ES) [Abul, Bonchi, Nanni et al. (2014); Pandit, Polina, Kumar et 
al. (2014); Dong and Pi (2018)], the anonymity scheme (AS) [Sweeney (2002); Freudiger, 
Manshaei, Hubaux et al. (2013); ], and the obfuscation scheme (OS) [Xiao and Xiong 
(2015); Zhang, Zhong, Han et al. (2016)]. 
In the aspect of ES, by exploiting the inherent uncertainty of the whereabouts of the 
moving object, Abul et al. [Abul, Bonchi, Nanni et al. (2014)] designed a co-localization-
based LPPMs to eliminate the outlier trajectories of users’, and cluster them, thus, 
enhancing users’ privacy. Pandit et al. [Pandit, Polina, Kumar et al. (2014)] proposed a 
novel server-central framework (called CLOPRO) to generalize a new query content and 
protected location privacy in continuous LBS by eliminating some attributes from the 
original query and confusing the temporal link of locations. Dong et al. [Dong and Pi 
(2018)] presented a frequent-path-based approach (called TOPF) for preserving privacy 
in trajectory data publishing. In their work, information of infrequent road was removed 
and all trajectories were divided into candidate groups, and provided a balance between 
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the data usability and data privacy. However, in ES, attackers can use the uneliminated 
content of the original trajectory to infer the real location of users. 
In the anonymity scheme, location privacy is guaranteed by hiding the relationship 
between users’ true identity and their sensitive location. Generally, the anonymity 
scheme can be divided into two categories: cloaking methods [Sweeney (2002)], and 
pseudonym change [Freudiger, Manshaei, Hubaux et al. (2013)], where k-anonymity is a 
common method in cloaking techniques where require at least k users in the anonymity 
set. Through k-anonymity protection, an attacker cannot distinguish the user from the 
other k-1 users [Roberto and Rakesh (2005); Niu, Li, Zhu et al. (2014)], thus providing 
anonymity. Except basic k-anonymity schemes, several variants are proposed to protect 
location privacy. Ye et al. [Ye, Li, Xu et al. (2014)] proposed an l-diversity-based LPPMs 
to maintain the heterogeneity of anonymity trajectories and depersonalized user’s 
characteristic. In the aspect of pseudonym change, mix zone where users collectively 
changed their pseudonyms is one of the frequently used solutions to protect location 
privacy. By frequently changing pseudonyms, Beresford et al. [Beresford and Stajano 
(2003)] proposed the Mixzone to prevent the locations they visit from being identified. 
Besides, many efforts are spent on the combination of k-anonymity with pseudonyms. 
For example, Liao et al. [Liao, Sun, Zhang et al. (2017)] hid user’s real trajectory by 
combining k-anonymity [Pramanik, Lau, Zhang et al. (2016)], Mix-zone [Liu, Zhao, Pan 
et al. (2012)], MixGroup [Yu, Kang, Huang et al. (2016)] together. Although this kind of 
work has disrupted the relationship between user ID and query, attackers with 
background knowledge can still guess the real location of the user. 
OS reduced the location accuracy by adding noise into users’ information. Using geo-
obfuscation, Wang et al. [Wang, Yang, Han et al. (2017)] proposed a location privacy-
preserving framework for assigning tasks to protect users’ locations. By adding noise, it 
is difficult for attackers to guess the real location by analyzing the query results. Xiao et 
al. [Xiao and Xiong (2015)] proposed a systematic solution to preserve location privacy 
with rigorous privacy guarantee. Their work reduced the sensitivity of a single node 
transmission by rendering indistinguishability between the real events and the fake ones. 
To balance the quality of service and privacy protection, the noise should be accurately 
added, which required to quantify and evaluate the similarity between the obfuscated 
trajectory and the real trajectory. However, it is an important challenge to quantify them. 

2.2 Formal analysis of location privacy and its metrics 
Many efforts are spent on formally analyzing and discovering location privacy to 
decrease the risk brought by the vulnerability of LPPMs. Arapinis et al. [Arapinis, 
Chothia, Ritter et al. (2010)] used the applied π calculus to analyze the unlinkability and 
anonymity of identities and demonstrated that the RFID e-passport of French is linkable. 
In consequence, a person who uses this e-passport can be traced physically by a 
malicious attacker. Brusó et al. [Brusó, Chatzikokolakis, Hartog et al. (2010)] defined 
both untraceability and forward privacy, and they formally proved the privacy guarantees 
of the OSK protocol (an encryption method named after the authors: Miyako Ohkubo, 
Koutarou Suzuki and Shingo Kinoshita). Dahl et al. [Dahl, Delaune, Steel et al. (2010)] 
also used the applied π calculus to demonstrate that the cryptographic mix-zones (CMIX) 



 
 
 
δ-calculus: A New Approach to Quantifying Location Privacy                            1327 

protocol doesn’t provide privacy guarantees in specific scenarios. Guo et al. [Guo, Zhang, 
Zhang et al. (2018)] measured the degree of privacy disclosure by adopting evaluating the 
privacy leakage level with uncertainty of the adversary’s speculating the user’s identity 
by formalizing the proportion of users using the pseudonym algorithm in the system. Liu 
et al. [Liu, Zhao, Pan et al. (2012)] proposed a metric method to quantify the system’s 
resilience to the side information. An optimization formulation with cost and traffic 
constraints is presented to model the multiple mix zones placement problem. However, 
the formal privacy protection model LPPMs is not enough. How to measure the effect of 
different privacy protection algorithms is an important standard in the design of privacy 
protection algorithms. 
To measure the LPPMs, a large amount of effort has been spent on studying metrics 
(accuracy, correctness and certainty) to measure location privacy for specific scenarios 
[Yin, Sun, Wang et al. (2018)]. For example, Emara et al. [Emara, Woerndl and 
Schlichter (2015)] used the uncertainty to describe the ambiguity of the actual location 
that can be disguised by posterior distributions. Through this approach, location privacy 
of a given user can be quantified [Niu, Li, Zhu et al. (2015)]. The validity of the 
uncertainty metric relies on the knowledge of probability mass believed by an adversary. 
However, the changes of the assigned probabilities will be influenced by the inaccuracy 
of context information. As a result, the choice of the attacker may be tainted with 
uncertainty [Fischer, Katzenbeisser, Eckert et al. (2008)].  
Since uncertainty cannot be adopted to accurately evaluate location privacy, many new 
metric (e.g., inaccuracy) have been proposed, where for an observed location and its 
distributions estimated by an adversary, the inaccuracy is defined as the discrepancy 
between the actual posterior distributions of its possible location. Because, the tracking 
error is taken into account in the inaccuracy metric, the metric is an appropriate approach 
to evaluating the privacy. Unfortunately, there is still a gap between the current location 
privacy protection model and the privacy protection effect evaluation algorithm. When 
the model is not consistent with the rules of evaluation index, it will be difficult to ensure 
the effect of LPPM. There is an urgent need to design a way to integrate the two in a 
unified architecture. 

3 Probabilistic automata 
In our work, we use probabilistic automata to describe the formal semantics of the 
proposed δ-Calculus. To achieve this goal, we compactly retrospect the probabilistic 
automata [Herescu and Palamidessi (2000); Deng, Pang and Wu (2006)] in this section, 
as follows. 
Let X  be a set of discrete events and pb  be a probability function over X , pair ( ),X pb  

is a discrete probabilistic space, that is, ( ]0,1X →  with constrain ( ) 1
x X

pb x
∈

=∑ . Given 
a set Y  of discrete events, its set of probabilistic spaces are defined on 

: ( ) {( , ) | }Y Prob Y X pb X Y= ⊆ . 

Definition 1. The tuple 0{ , , , }M S s A= ∆  is a probabilistic automata, where 
(1) S  is a set of the pre-defined states; 
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(2) 0s S∈  is the initial state; 
(3) A  is a set of actions; 
(4)  is sub-set of Cartesian product between S  and , 
and the element of ∆  is called transition group. 
For a probabilistic automata , a tree (denoted as ( )tree M  is obtained by 
unfolding M , as follows. Informally, we first mark the root 0n  of ( )tree M  as 0s ; next, 

if node n  of ( )tree M  is marked as s , then for transition group  and any 

( ),a s X∈ , then there exists a node n′  in ( )tree M  and an arc from n to n′  such that this 
arc is marked as action a and probability p , where ( ),p pb a s= . Given probabilistic 

automata M , the set of nodes of  is defined as . 

Generally, there may exist multiple groups for a given state of probabilistic automata. In 
this case, schedulers will select one group during an automata running. Formally, the 
scheduler for M  can be represented by function ξ : , defined 
as follows:  if )),(( ,X pbs ∈∆ , where n  is marked as s . Informally, each 
node of the tree of M  is assigned to a transition group by the scheduler. Given a 
probabilistic automata 0{ , , , }M S s A= ∆  and a scheduler ξ , we can obtain the execution 
tree of M  under the scheduler ξ (written as ( ; )etree M ξ ) by removing all the relevant 
arcs for transitions groups which do not be chosen by ξ . Formally, given a ( )tree M , its 
sub-tree (written as ( ; )etree M ξ ) is defined as follows: (1) the root node of ( ; )etree M ξ  
is the root of ( )tree M  and the label of the root node of ( ; )etree M ξ  is the same with that 
of ( )tree M . (2) Let n  be a node of ( ; )etree M ξ , ( ) ( , )n X pbξ =  holds if and only if for 
any ( )  ,a s X∈ , there is an arc from n  to n′ (where n′  is in ( ; )etree M ξ ) such that this 
arc is tagged with action a  and probability p  (where ( ),p pb a s= ). For simplicity, we 
define a shorthand for the notation, as follows. 

{ | }i

i ips s i Iα→ ∈ .                 (1) 

If and only if ( ,({( , ) | }, ))i is a s i I pb∈ ∈∆  and for each i I∈ , ( , )i i ip pb a s=  holds, where 
I  is an index set. If I  is irrelevant, we will replace it with the notation { }i

i i ips sα→ . 

4 δ-calculus 
4.1 Syntax 
Communication devices (also called nodes) which might be comprised in the mobile 
wireless Internet run at locations and they may move from locations the other locations. For 
simplicity, we use notations M  or N  to denote the set of devices and use notations P  or 
Q  to denote the set of processes. The syntax for nodes of δ-calculus is defined as follows. 
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, :: [| |]( , ) | | | ( ) | 0i ii
N M z P p loc rad M N loc Nν= ⋅ ⋅∑              (2) 

In term [ ]| | ( ),i ii
z P p loc rad⋅∑ , z  denotes the node name (e.g., node ID) and rad  

denotes the communication radius. P  stands for a process and ip  is a positive 
probability, that is, ( ]0,1ip ∈  and =1ii

p∑ ; Notation iloc  represents the possible 

location. [ ]| | ( ),i ii
z P p loc rad⋅∑  means that node z  runs process P  with probability ip  

at location iloc , and the maximum communication distance of node z  is rad . M|N 
denotes that nodes M  and N  run in parallel. The restriction operator is denoted by 
symbol ν , and ( )locν ⋅  is used to constrain the range of locations. 0  denotes an inactive 
node. A process is defined as followed: 

, :: .  |  ( ).  |   |  !  |  ( )  

|  MV .  |  
i ii

P Q ST P S x P p P P x P

f P nil

ν= ⋅∑              (3) 

where processes .ST P  and ( ).S x P  denote “sending T  over channel S , then running as 
P ” and “receiving x  over channel S , then running as P ”, respectively. Probabilistic 
process i ii

p P∑  denotes that process iP  is selected to run with probability ip , where 

( ]0,1ip ∈  and =1ii
p∑ . !P  is used to replicate P  and ( )xν ⋅ . P  is used to restrict x  in 

P . MV .f P  is a move calculus, where function : ( )f Loc Prob Loc→  maps a location to 
probabilistic location spaces. Let ( ) ( , )f loc Loc' pb=  and 0{ }nLoc' loc loc′ ′= … , assuming 
that P  are now at loc , MV .f P  is used to denotes that process P  will reach location 

iloc′  with probability ( )ipb loc′ , 1 i n≤ ≤ . Notation nil  is an empty process. In δ-calculus, 
we use both S  and T  to denote terms and their syntax are defined as followed. 

, ::  |  S x aT =                   (4) 
Where x  is an element of the countable set of variables and a  is an element of the 
countable set of channel names. 

4.2 Semantics 
Combining normal π calculus with node names, locations and communication distances, 
we can get δ-calculus. Using a transition system tagged by actions ,α β , we define its 
operational semantics, as follows: 

                 (5) 

where τ  is a silent action, ( )a M  and ( )a x  denote the output of term M and the input of 
x  on channel a , respectively. Generally, an attacker may deduce the true location of 
nodes by monitoring their communications. To simulate this behavior, { }i

i i ips sα→  is 

extended to , , ;{ }i

i i i j i iz p l zs sα→ , indicating that receiver jz  knows that node jz  at iloc  has 

performed iα . Note: node jz  can obtain this knowledge only after completing the 
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communication with node jz , thus this extension is used in the COM rule. In other rules, 

jz , iloc  and jz  should be neglected, denoted by “-”. We use the LOC-SUM rule to 
simulate the location-choice behavior. In the LOC-SUM, through executing τ , 
[ ]| | ( ),i ii

z P p loc rad⋅∑  becomes [ ]| ),| ( iz P loc rad  with probability iloc . Because the 
LOC-SUM does not require communication, no node can record the location of node z , 
denoted by “-” as shown in Tab. 1. In the PRO-SUM rule, processes are randomly 
selected, that is, [| |]( , )i ii

z p P loc rad∑  becomes [ ]| ),| ( iz P loc rad with probability iloc  
by executing . From the OUT rule, we can see that: (1) [| . |]( , )z aT P loc rad  outputs T  
over channel a  with probability loc  and then it runs as [| |]( , )z P loc rad , (2) an attacker 
cannot access z’s names and locations, because nodes z  only outputs terms and it does 
not communicate with other nodes. From the IN rule, we can see that, 
after [| ( ). |]( , )z a x P loc rad  accepts x  over channel a , it runs as [| |]( , )z P loc rad . The 
COM rule simulates the interaction between two nodes, in detail, given two nodes z′  and 
z′′ , their interaction completes if the following conditions are satisfied: (1) nodes z′′  is in 
the communication ranges of z′  (that is, || ||loc loc rad′′ ′ ′− < , where | ||loc loc′′ ′−  denotes 
the physical distance between location loc′  and location loc′′ ) and (2) z′  synchronizes 
with z′′ . If the above conditions are satisfied simultaneously, z′′  will accept data sent by 
z′  (that is, z′′  will use x  to substitute T ). As shown in the COM rule, z′′  will get the 
name and location of z′  after interacting with z′ . In the PAR rule, wildcard “*” is either 
“-”, a location or a node name. Note: after PAR is used, new information about locations 
and names cannot be obtained by interactive nodes. The REP rule (the replication rule) 
denotes that a process repeatedly executes at the given location. We use RES1 to denote 
the constraint at locations, that is, actions at the restricted location should be allowed to 
be executed. RES2 means that actions on the channels different from y are allowed. 

Table 1: Operational semantics of δ-Calculus 

LOC-SUM  

PRO-SUM  

OUT  

IN  

COM  

if || ||loc loc rad′′ ′ ′− <  

PAR  
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REP  

RES1  

RES2  

If we use δ-calculus to simulate a LPPM S , then S ’s behavior, denoted by ( )tds S , can be 
considered as a set of trace distributions (denoted as ( )tds S ). We obtain ( )tds S  via unfolding 
the δ-calculus. Next we give two simple examples to show the use of our δ-calculus. 
Example 1. We assume two entities (i.e., a node and a sink, denoted by 1z  and az , 
respectively) exist in a wireless communication system. Node 1z  at location 1loc  delivers 
information info  to az  with probability 1p , and at location 1loc′  with probability 11 p− ; 
Let az  be always in the range of communication of 1z , (i.e., az  can always receive info  
from 1z ). We can use δ -calculus to simulate this system, as follows: 

_1 |SYS Node Sink=             

1 1 1 1 1 1[| ( ) |]( (1 ) , )Node z send info p loc p loc r′+ −⋅=               (6) 

{ _ }[| ( ) |]( , )Sink  z a send x loc rad=           

where 1|| ||loc loc rad− <  and 1|| ||loc loc rad′ − < . 
Fig. 1 shows the probabilistic execution of Example 1. In Fig. 1, there are 8 of execution 
sequences (i.e., 1 8t t… ), where trace 1t  indicates that if the send action is asynchronous 
with the receive action (i.e., they don’t shake hands), then node az  does not get the 
information about 1z  from 1t . In traces 3t  and 4t , az  records locations ( 1loc  and 1loc′ , 
respectively) of 1z . In the two traces, az  observes two traces: 1( , , )p z loc  and 

1(1 , , )p z loc− ′ , that is, az  knows that 1z  stayed either at location 1loc  with probability 

1p , or at location 1loc′  with probability 11 p− . 
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τ

1 1 1 1 1 1[| ( ) |]( (1 ) , ) | [| ( ) |]( , )az send info p loc p loc rad z send x loc rad′+ −

pi,-,-;-

1 1 1[| ( ) |]( , ) [| ( ) |](| , )az send xz send info loc rad loc rad
τ1-pi,-,-;-

1 1 1[| ( ) |]( , )z send info loc rad

1,-,-;-

0

τ

0 0

1,-,-;-
τ

1,-,-;-

1 1 1[| ( ) |]( , )z send info loc rad′
[| ( ) |]( , )az send x loc rad

( )send x

0 0

1,-,-;-

1 1 1 1[| ( ) |]((1 ) , [| ( ) |) ]( , )| az send xz send info p l lococ rad rad′−

1 1 1 1 1 1[| ( ) |]( (1 ) , )z send info p loc p loc rad′+ −

pi,-,-;- 1-pi,-,-;-

1 1 1[| ( ) |]( , )z send info loc rad
1 1 1 1[| ( ) |]((1 ) , )z send info p loc rad′−

00

1,-,-;- 1,-,-;-1,-,-;- 1,-,-;- 1,-,-;-

τ τ

[| ( ) |]( , )az send x loc rad

( )send x

0

1,-,-;-

( )send info

1,-,-;-

t1 t2 t3 t4 t5 t6 t7 t8

11, , ; az loc z 11, , ; az loc z′

( )send x

( )send x

( )send x

( )send x

( )send info
( )send info ( )send info

( )send info

 

Figure 1: The probabilistic execution of Example 1 
In Example 1, if the side constraint 1|| ||loc loc rad− <  becomes 1|| ||loc loc rad− > , and 
the remaining constraints keep unchanged, then, according to on the operational 
semantics, the only knowledge owned by az  is that 1z  stays at 1loc′ . In another word, 1z  
doesn’t realize that 1z  stayed at location 1loc . 
Example 2. Consider the system: 

_ 2 |SYS Node Sink=           

1

0 0 0 1 1

[| ( ). ( ). .

( ) |]( (1 ) , )
authNode z send req receive x MVf

send info p loc p loc rad+⋅

=

−
              (7) 

[| ( ). ( ). ( ) |]( , )a authSink z send x receive ack send x loc rad=        

where (1) 00 2 3 4( ) ({ , , }, )lf loc loc loc loc pb= , 0 2 2( )locpb loc p= , 0 3 3( )locpb loc p= , 

0 4 4( )locpb loc p= ; (2) 11 5 6 7( ) ({ , , }, )locf loc loc loc loc pb= , 1 5 5( )locpb loc p= , 1 6 6( )locpb l p= , 
and 1 7 7( )locpb loc p= . Assume that 1|| || ,iloc loc rad rad− <  ( 0 7i = … ). 

In this example, 1z  can infer that az  stayed at loc  with probability 1. Accordingly, az  
will infer that the traces of 1z  are 0 2loc loc→ , 0 3loc loc→ , 0 4loc loc→ , 1 5loc loc→ , 

1 6loc loc→  and 1 7loc loc→ , with probabilities 0 2p p , 0 3p p , 0 4p p , 1 5p p , 1 6p p , and 

1 7p p , respectively. 

5 Measuring location privacy 
Surely, a LPPM always reveals location information more or less. In general, in an attack, 
if the amount of location leakage is less than a given threshold value, then this leakage 
can be accepted. This involves two issues (that is, the attacker model, and quantifying 
location leakage). In this section, we discuss them separately. 
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5.1 Modeling attackers 
An adversary may infer location information by playing the role of normal users to 
interact with them, and monitoring their communication. Generally, adversaries are 
divided into two categories: strong attackers and weak attackers. If a LPPM under a 
strong attack is secure, then it is also secure under a weak attack. Thus, we should 
simulate the strong attacker. Informally, an attacker is to be strong, if it can gather all 
locations of the normal users at anywhere or anytime. 
Definition 2. An attacker is strong, if an output action (i.e., ( )a T ) is performed 
anywhere or anytime and the attacker can gather the location where action a happens.  
In Examples 1 and 2, if an attacker can act as the sink, then it is strong (because it can 
obtain all locations once the output  action happens). Next, we illustrate an example of a 
weak attacker. 
Example 3. Consider the system: 

_ 3 |SYS Node Attacker=            

1 0 0 0 1 1[| ( ) |]( (1 ) , )authNode z send req p loc p loc rad= + −⋅               (8) 

[| ( ) |]( , )aAttacker z send x loc rad=           

where, 0 1|| ||loc loc rad− >  or 1 1|| ||loc loc rad− > . 
In Examples 1 and 2, if an attacker can act as the sink, then it is strong (because it can 
obtain all locations once the output  action happens). Next, we illustrate an example of a 
weak attacker. 
Example, if 1z  is at 0loc , the attacker az  cannot track 1z ’s location 0loc  (because 

0 1|| ||loc loc rad− > , and az  is not in the communication range of 1z ). Similarly, when 1z  
is at location 1loc , az  cannot record 1z ’s location. So, az  is not strong. 

5.2 Quantifying location privacy 
Given LPPM M  and an attacker ATT  simulated by δ-calculus, we use a set of trace 
distributions (obtained by unfolding |M ATT , written as ( )|tds M ATT ) to describe 
ATT ’s interactions with M . An attacker implicitly obtains nodes’ locations of by 
recording these traces. 
Given a set X  of trace distributions, a metric D  on a set X  can be defined as function 

:D X X R+× → . Generally, metric D  is required to satisfy the following three axioms: 
non-negative (i.e., for all 1 2,x x X∈ , formula 1 2( , ) 0D x x ≥  holds), coincidence (i.e., for 
all 1 2,x x X∈ , 1 2( , ) 0D x x =  if and only if 1 2x x= ), symmetry (i.e., for all 1 2,x x X∈ , 

1 2 2 1( , ) ( , )D x x D x x= ) and subadditivity (i.e., for all 1 2 3, ,x x x X∈ , 1 2( , )+D x x  

2 3 1 3( , ) ( , )D x x D x x≥ ), where R+  is the set of non-negative real numbers.  
To protect location privacy, many LPPMs add false locations into true locations to 
prevent an attacker from inferring the true location. For simplicity, we use LOC  to 
denote the set of locations. To measure location privacy, we define the re-naming 
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function as :LOCf LOC LOC→ , which permutes loc LOC∈  to lo Oc L C′∈  ( ooc cl l= ′/ ). 
That is, for each location in LOC , the following conditions are satisfied: (1) 

( )f loc loc=/  forever, and (2) 1 2loc loc=/  implies 1 2( ) ( )LOC LOCf loc f loc=/ . We use LOCF  to 
represent the set of all renaming functions LOCf  on LOC . 
Definition 3. Given a LPPM M  and a metric D , M  is privacy-preserved under D  on a 
set of locations LOC  if formula : ( , ( )) 0loc LOC locf F D M f M∀ ∈ =  holds; M  is called ς -
privacy if : ( , ( ))loc LOC locf F D M f M ς∀ ∈ ≤ . 

Theorem. Given two metrics 1D  and 2D , and a LPPM M , if M  is privacy-preserved 
under 1D , M  is strong privacy- preserved under 2D . ς -privacy preservation of M  
under 1D  doesn’t imply ς -privacy preservation under 2D . 

Proof. Because M  is the privacy-preserved under 1D , 1( , ( )) 0locD M f M =  holds. 
According to the coincidence axiom of metric spaces, we have ( )locM f M= , thus, 

2 ( , ( )) 0locD M f M = . This means that M  is the privacy- preserved under 2D . The second 
part is direct. 
In our paper, we use α-entropy as a quasi-metric to evaluate location privacy, because 
relative entropy meets the axiom of nonnegative and coincidence. 
Definition 4. For discrete probability distributions u  and u′ , the relative entropy of u′  
from u  is defined to be 

( )( || ') log( ) ( )
'( )KL i

u iD u u u i
u i

=∑                 (9) 

where 00log 0
0
= , 

00log 0
q
= , 0log

0
q
= ∞  and i I∈  is an index set. Because the 

behavior of a node is simulated as a set of trace distributions, KLD  is extended to EKLD  as 
follows (Similarly to Kapus [Kapus (2017)]). 

Definition 5. Given two sets ( { }i iU u=  and { }j jU u′ ′= ) of probability distributions, the 
relative entropy of U ′  from U  is defined as 

(U || U ') sup inf ( || )EKL i j KL i jD D u u′=              (10) 

where inf φ = ∞  and sup 0φ = . 
Measuring location privacy: Assume that node M  is protected under the LPPM and 

( )tds M  denotes M ’s trace distribution, then the amount of leakage of local privacy is 
. 

Example 4. Considering that a wireless communication system owns a base station bz  
and nodes 1Z . Assuming that node 1z  at location 1loc  sends data to bz , and the goal of 
attacker az  is to get 1z ’s location by observing their communications. We also assume 
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that in LPPM, false locations (e.g., false location 1loc′ ) is used to protect 1z . The system 
can be simulated as: 

             

           (11) 

           
           

That is, node 1z  sends data to bz  at location 1loc  with probability 1p  or at location 1loc′  
with probability 11-p . Base station bz  at location accepts the data loc . If az  is in the 
range of communication radius of 1z  (that is, the distance between 1loc  and 1loc′ , and 
loc  is less than communication radius 1rad  of 1z ), and then attacker az  can accept the 
data sent by 1z  and conjecture 1z ’s location. Let the only permutation function f  on 
LOC  be 1 1( )f loc loc′=  and 1 1( )f loc loc′ = . That is, 

1 1 1 1 1 1 (info)|( ) [| ( (1 ) , )]locf Node z send p loc p loc rad′= + − ,           (12) 

The leakage amount of location privacy will be  

1 1
1 1

1 1

1( ( ) || ( ( ))= log (1 )log
1KL loc

p pD tds M tds f M p p
p p

−
+ −

−
.          (13) 

0.6 1
Probability pi

A
m

ou
nt

 o
f L

oc
at

io
n 

Le
ak

ag
e 

0

2

1

4

0.2 0.4 0.8

3

 

Figure 2: Amount of location leakage  
Fig. 2 shows the amount of location leakage of M  when ip  changes. From this figure, 
we can see that: the amount gained by az  equals 0 if 0.5ip =  (that is, az  cannot deduce 
the location of node 1z ) and the leakage amount becomes infinite if either 0ip →  or 

1ip →  holds (This means that az  can accurately deduce the true location of 1z ). This is 
accordance with our intuition, (i.e., the capability of the LPPM is zero if ip  approaches 
to 0 or 1, and it reaches 1 if ip  approaches to 0.5). This shows that our measurement is 
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accurate. According to the above analyses, we summarize our proposed approach to 
measuring location privacy, as shown in Tab. 2. 

Table 2: Operational semantics of δ-Calculus 
1 For the LPPM P  to be measured, the LPPM P  is formally defined using the δ-calculus 

syntax as shown in Section 4.1.  
2 Computing all the trajectories of the LPPM P  (including both the truth and the dummy) 

with a probability distribution, using the δ-calculus semantics as shown in Section 4.2. 

3 Defining a set 
LOCF  of renaming functions, where the mapping function 

LOCf F∈  on LOC  

satisfies two conditions: (1) ( )f loc loc≠  and (2) 
1 2loc loc≠  implies ( ) ( )1 2f loc f loc≠  . 

4 Computing the probability distribution ( )tds P  and ( )( )tds f P  of traces of P  and ( )f P , 

respectively.  
5 Quantifying location privacy by using , where 

if P∈  and 1 i n≤ ≤ . 

6 Experiments 
In this section, we use the proposed δ-calculus to evaluate trace privacy protected by 
DUMMY-T [Niu, Gao, Li et al. (2016)]. In DUMMY-T, a set of realistic dummy 
locations for each snapshot is generated to guarantee the minimum cloaking region and 
resist from attacks performed by adversaries with background information. Then, 
DUMMY-T connects the dummy locations together into the dummy paths with 
considering the location reachability. 
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Figure 3: The leakage amount vs. 
1Al

p  and 
1Bl

p  
The idea of DUMMY-T is shown in Fig. 3. Specifically, to protect users’ true trajectories 
from the LBS server, DUMMY-T need generate k-1 dummy trajectories based on k-
anonymity method. The trajectory in blue (triangle) is the user’s real route, and the routes 
in green (square) and pink (circle) are dummy paths. Each trajectory can be divided into 5 
snapshots with 5 timestamp 1t  to 5t . The obfuscation region of each snapshot is denoted 
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as 1 R  to 5R , the message from LBS server at each timestamp can be denoted as 1mes  to 
5mes . For each snapshot, DUMMY-T generates a set of dummy locations which cannot 

be distinguished from others easily, and connects the dummy locations into k-1 dummy 
paths with considering the reachability. Finally, users get several dummy trajectories 
which the adversary cannot be guessed the real one from them. 
Using δ -calculus, we can describe DUMMY-T, as follows: 

|− =DUMMY T C SERVER               

( ) [ ]1 1 1 1 1 1 1 1,]( ) .[  .  A A B B C C uc s mes p loc p loc p loc rad c MV m= + + 2C T ,         

( ) [ ]2 2 2 2 2 2 2 2[ ]( ), .  .A A B B C C uc s mes p loc p loc p loc rad c MV m= + +2 3T T ,         

( ) [ ]3 3 3 3 3 3 3 3[ ]( ), .  .A A B B C C uc s mes p loc p loc p loc rad c MV m= + +3 4T T ,         (14) 

( ) [ ]4 4 4 4 4 4 4 4[ ]( ), .  .A A B B C C uc s mes p loc p loc p loc rad c MV m= + +4 5T T ,         

( ) [ ]5 5 5 5 5 5 5 5[ ]( , . .)  A A B B C C uc s mes p loc p loc p loc rad c MV m= + +5T 0 ,         

( ) ( )[ ]! ,  .ssr s x loc rad=SERVER               

Where the moving functions 1m ~ 5m  are defined as follows: 

( ) ( ) ( ) { } { } { }{ }1 1 1 1 1 1 2 2 2, ,  A B C A B Cm loc m loc m loc loc loc loc= = = ;          

( ) ( ) ( ) { } { } { }{ }2 2 2 2 2 2 3 3 3, ,  A B C A B Cm loc m loc m loc loc loc loc= = = ;          

( ) ( ) ( ) { } { } { }{ }3 3 3 3 3 3 4 4 4 , ,  A B C A B Cm loc m loc m loc loc loc loc= = = ;          (15) 

( ) ( ) ( ) { } { } { }{ }4 4 4 4 4 4 5 5 5 , ,  A B C A B Cm loc m loc m loc loc loc loc= = = ;          

( ) ( ) ( )5 5 5 5 5 5 5 5 5,  ,  A A B B C Cm loc loc m loc loc m loc loc= = = .           

The definition of functions 1m  shows that, from 1Aloc , 1Bloc  or 1Cloc , user can move any 
one of points 2Aloc , 2Bloc , and 2Cloc . Functions 2m - 4m  are similar with 1m . According 
to operational semantics shown in Section 4.2, by monitoring traces (including the true 
traces and dummy traces) of user U , SERVER  can obtain 81 traces and their 
probability distribution, i.e., { 1 2 3 4 5 1 2 3 4 5:A A A A A A A A A Ap p p p p loc loc loc loc loc→ → → → , 

1 2 3 4 5 1 2 3 4 5:A A A A B A A A A Bp p p p p loc loc loc loc loc→ → → → , …, 1 2 3 4 5 1:C C C C C Cp p p p p loc  

2 3 4 5C C C Cloc loc loc loc→ → → → }, where 1 2 3 4 5 1 2 3:A A A A A A A Ap p p p p loc loc loc→ →  

4 5A Aloc loc→ →  denotes that trace 1 2 3 4 5A A A A Aloc loc loc loc loc→ → → →  is observed 
with probability 1 2 3 4 5A A A A Ap p p p p  by SERVER .  

Next, we define permutation function f . According to Section 5.2, there are 32 
permutation functions { }1 32, ,F f f= …  that satisfy the following two conditions: (1) 

( )
i ix xf loc loc=/  and (2) i jx xloc loc=/  implies ( ) ( )

i jx xf loc f loc≠ , where ix iloc X∈ , 
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jx jloc X∈ , , ,{ }
i i ii A B CX loc loc loc= , , ,{ }

j j jj A B CX loc loc loc= , 1 , 3i j≤ ≤ . Next, we 
discuss the leakage amount of privacy location in the following cases: 
Case 1: In this case, the moving functions 1m ~ 5m  are assumed to be rational (i.e., the 
mobile client moves with a reasonable velocity between the time intervals that the client 
sends messages 1m ~ 5m , in the other word, SERVER  cannot perceive any abnormality). 
Given permutation function f  and its inverse function 1f − , we can evaluate the leakage 
amount of privacy location, as follows. 

1 1 2 2 3 3 4 4 5 5
1

5

5
1

5
1

( )
1

log
i

i

i

x
i

x
ix X x X x X x X x X

f x
i

p
LA p

p −

=

=∈ ∈ ∈ ∈ ∈

=

 
  =   
   
 

∏
∏∑ ∑ ∑ ∑ ∑

∏
            (16) 

The minimum amount is evaluated as 
1 5

min
x xp p

LA
…  that can be easily obtained by solving the 

first and second derivatives. Next, we give an example of its solution. In this example, we 
assume that, the SERVER  has known the true trace point in 2R  to 5R  and it does not 
know the true point in 1R . In this case, the leakage amount relies on 

1Alocp , 
1Blocp  and 

1Clocp , where 
1 1 1

1
A B Cloc loc locp p p+ + = . We can evaluate the information leakage with regard 

to 
1Alocp  and 

1Blocp , shown in Fig. 4. When one of the three parameters equals 0, then the 

leakage amount of location privacy reaches the maximum; if 
1 1 1
= =

A B Cloc loc locp p p , then 
leakage amount of location privacy is zero. This is consistent in our intuition.  
Case 2: In this case, at least one of the moving functions 1m ~ 5m  is assumed to be 
irrational (i.e., the distance between two dummy points is great than a reasonable distance 
and SERVER  can perceive this abnormality). For example, we assume 
that ( ) ( ) ( ) { } { } { }{ }1 1 1 1 1 1 2 2 2, ,  A B C A B Cm loc m loc m loc loc loc loc= = = , but the distance 
between point 1Aloc  and point 2Aloc  are greater than a reasonable value. In this case, once 
SERVER  observes three traces 1 2A Aloc loc→ , 1 2B Bloc loc→  and 1 2C Cloc loc→ , then it 
can infer that at least one point between 1Aloc  and 2Aloc  is dummy. Thus, we can evaluate 
the leakage amount of privacy location, as follows. 

            (17) 

where , . Given ixp ，we can directly obtain . 
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Figure 4: The leakage amount vs. 
1Alocp  and 

1Blocp  

7 Conclusion 
In this paper, we propose δ-calculus to formalize obfuscation-based schemes and measure 
location privacy. Probabilistic automata is adopted to formally characterize the semantics 
of δ-calculus. Specially, two calculus moving and probabilistic choices are proposed to 
model nodes’ mobility and compute its probability distribution of nodes’ locations. 
Further, the renaming function is proposed to model privacy leakage. By formally 
defining the attacker’s ability and extending relative entropy, we propose an evaluation 
algorithm to quantify the leakage of location privacy. Experimental results demonstrate 
that our scheme can accurately quantify the location leakage. Through the proposed δ-
calculus, the gap between the obfuscation-based scheme and its measurement is 
decreased. In the future, the following work should be conducted. (1) In this paper, we 
only integrate privacy measurement into obfuscation-based schemes. Obviously, it is 
necessary to design a formal language to describe both elimination and anonymization 
schemes and synergize them into the quantitative measurement framework. Through this 
approach, more LPPMs are verified and measured. (2) Although we develop a 
measurement algorithm to evaluate the privacy leakage, this algorithm is not integrated 
into the existing tool (such as PRISM [Pramanik, Lau, Zhang et al. (2016)]). It is of great 
importance to integrate them to automatically calculate the privacy level. 
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