
Computers, Materials & Continua CMC, vol.63, no.3, pp.1357-1371, 2020

CMC. doi:10.32604/cmc.2020.09929 www.techscience.com/journal/cmc

Crosstalk Aware Register Reallocation Method for Green
Compilation

Sheng Xiao1, 2, *, Jing Selena He3, Xi Yang4, Yazhe Wang1 and Lu Jin1

Abstract: As nanoscale processing becomes the mainstream in IC manufacturing, the
crosstalk problem rises as a serious challenge, not only for energy-efficiency and
performance but also for security requirements. In this paper, we propose a register
reallocation algorithm called Nearby Access based Register Reallocation (NARR) to
reduce the crosstalk between instruction buses. The method includes construction of the
software Nearby Access Aware Interference Graph (NAIG), using data flow analysis at
assembly level, and reallocation of the registers to the software. Experimental results
show that the crosstalk could be dramatically minimized, especially for 4C crosstalk, with
a reduction of 80.84% in average, and up to 99.99% at most.

Keywords: Crosstalk, energy efficiency, register reallocation, green compilation.

1 Introduction
With the progress of technological development, the size of embedded devices becomes
smaller and smaller, so the bus lines lay out more and more intensively, making the
crosstalk a more and more serious challenge for the circuit design. The increments of
crosstalk not only influence the scalability and performance of the embedded system, but
also consume more power, making the device more vulnerable to overheat and to
malicious attacker. The additional power consumption of crosstalk can particularly be
used by attackers through the Differential Power Analysis to get the security and hidden
information of the system, such as revealing hidden hardware faults on integrated
circuits, accessing cryptographic keys, and getting the actual executing codes of the
microprocessors [Mangard, Oswald and Standaert (2011); Zhang, Fang, Li et al. (2016);
Park, Xu, Jin et al. (2018); Liu, Yarom, Ge et al. (2015)]. Furthermore, the extra power
needed increases noise and decreases the lifetime of the embedded device, therefore
compromising the current “green compilation” pursuit.

1 Information Science and Engineering Department, Hunan First Normal University, Changsha, 410205, China.
2 Computer School, Wuhan University, Wuhan, 430072, China.
3 Department of Computer Science, Kennesaw State University, Kennesaw, 30144-5588, USA.
4 Hunan Guangyi Experimental Middle School, Changsha, 410205, China.
* Corresponding Author: Sheng Xiao. Email: sxiao@hnfnu.edu.cn.
Received: 29 January 2020; Accepted: 23 February 2020.

1358 CMC, vol.63, no.3, pp.1357-1371, 2020

Crosstalk is a traditional problem for circuit design and many efforts have been done for
it. Circuit designers proposed sorts of methods to reduce the crosstalk between couple
buses, such as Codec [Duan, Calle and Khatri (2009); Shirmohammadi, Mozafari and
Miremadi (2017)], buffer insertion [Halak and Yakovlev (2010)], Shielding [Mutyam
(2009)], gate sizing [Gupta and Ranganathan (2011)], and so on. Lucas et al. [Lucas and
Moraes (2009)] evaluated different crosstalk fault tolerant approaches for Networks-on-
chip (NoCs) links such that the network can maintain the original network performance
even in the presence of errors. Their results demonstrated that the use of CRC coding at
each link should be preferred if minimal area and power overhead were the main goals.
Cui et al. [Cui, Ni, Miao et al. (2017)] proposed an enhanced code based on the Fibonacci
number system (FNS) to suppress the crosstalk noise below 6C level, in which both the
redundancy of numbers and the non-uniqueness of Fibonacci-based binary codeword
were utilized to search the proper codeword. Experimental results showed that the
proposed technique decreased about 22% latency of TSVs comparing with the worst
crosstalk cases. Shirmohammadi et al. [Shirmohammadi and Sabzi (2018)] propose DR
coding mechanism, which uses a novel numerical system in generating code words that
minimizes overheads of codec and is applicable for any arbitrary width of wires.
Experimental results show that worst crosstalk-induced transition patterns are completely
avoided in wires using DR coding mechanism. Jiao et al. [Jiao, Wang and He (2018)]
proposed a crosstalk-noise-aware bus coding scheme with groundgated repeaters. This
approach minimized the routing overhead as well as power consumption of data bus
systems. The routing overhead was reduced by 12.31% with the new bus coding scheme
compared to the conventional data bus with shielding wires. Furthermore, the power
leakage and worst-case active power consumptions were reduced by 12.5% and 18.26%,
respectively, with the new crosstalk-noise-aware data bus system compared to the
previously published bus coding system in an industrial 40nm CMOS technology. Ohama
et al. [Ohama, Yotsuyanagi, Hashizume et al. (2017)] proposed a selection method of
adjacent lines for assigning signal transitions in test pattern generation. The selection
method could reduce the number of adjacent lines used in test pattern generation without
degrading the quality of test pattern that could excite the fault effect. Bamberg et al.
[Bamberg, Najafi and Garciaortiz (2019)] presented a 3D CAC method which was based
on an intelligent fixed mapping of the bits of existing 2D CACs onto rectangular or
hexagonal TSV arrangements. Their method required less hardware and reduced the
maximum crosstalk of modern TSV and metal wire buses by 37.8% and 47.6%,
respectively, while leaving their power consumption almost unaffected. However, these
methods either need extra hardware unit support or must increase the area of chip,
making them unfavorable for the development of advanced embedded devices requiring
portability and minimized cost.
With the existing Selective Shielding method, Weng et al. [Weng, Lin, and Shann (2010)]
proposed a co-hardware/software register relabeling combination to reduce the crosstalk
of instruction bus. Kuo et al. [Kuo, Chiang and Hwang (2007)] adapted also a
combination approach with instruction rescheduling, register renaming, NOP instruction
padding, and instruction opcode assignment. They proposed the software method to
eliminate the 4C crosstalk. These methods are either based on current hardware support
or having limitations, illustrated in the next section, to reduce the crosstalk.

Crosstalk Aware Register Reallocation Method for Green Compilation 1359

Register allocation is also an important component of compilers, many techniques have been
proposed, such as Graph-base register allocation [Florea and Geliert (2016); Odaira, Nakaike,
Inagaki et al. (2010)], Linear scan register allocation [Poletto and Sarkar (1999); Wimmer and
Franz (2010)], tree-based register allocation, and others [Lozano, Carlsson, Blindell et al.
(2019), Su, Wu and Xue (2017); Chen, Lueh and Ashar (2018)]. Tabani et al. [Tabani, Arnau,
Tubella et al. (2018)] propose a new register renaming technique that leverages physical
register sharing by introducing minor changes in the register map table and the issue queue.
Experimental results show that it provides 6% speedup on average for the SPEC2006
benchmarks in modern out-of-order processor. Kananizadeh et al. [Kananizadeh and
Kononenko (2018)] propose a new class of register allocation and code generation algorithms
that can be performed in linear time. These algorithms are based on the mathematical
foundations of abstract interpretation and the computation of the level of abstraction. They
have been implemented in a specialized library for just-in-time compilation. The
specialization of this library involves the execution of common intermediate language (CIL)
and low level virtual machine (LLVM) with a focus on embedded systems. But most of these
proposed methods were aiming at increasing the performance with litter spill codes, while the
crosstalk between instructions was seldom considered.
We propose here a software method Nearby Access based Register Reallocation (NARR)
to reduce the crosstalk. Though similar to the graph color register allocation method, it is
distinguished by combining the frequency of near neighbor access to assign the registers.
Our register reallocation approach is not only a software-only method requiring no
modifications in hardware, but also improves performance in reducing the instruction bus
crosstalk since it deeply analyzes the data flow.
Our contributions of this paper in crosstalk-reducing by software can be summarized:
-A proposed new register reallocation algorithm called NARR to reduce the crosstalk. It is
a pure software method without any hardware modifications and can theoretically get
extra power saving and security enhancing by reducing the crosstalk that register
renaming and other software techniques could fail to.
-A modified interference graph called Nearby Access Aware Interference Graph (NAIG)
is designed and implemented with the help of assemble-level data flow analysis and
profiling information that make the register reallocation feasible and more easily.
-Implemention of the algorithm in an evaluation of crosstalk improvement. Results show that
the NARR is an efficient algorithm in reducing crosstalk, especially in 4C class of crosstalk.
The following Section 2 illustrates the background and motivation firstly, and then
introduces our new crosstalk aware register allocation algorithm (NARR). Section 3
presents the performance evaluation using a benchmark from Mibench. Section 4 draws
some conclusions and highlights future directions.

2 Methods and materials
2.1 Crosstalk overview
Crosstalk is the noise signal for one circuit or channel of a transmission system caused by
the other circuits or channels that are usually parallel to the effected one. The strength of
crosstalk is often subject to the following factors: wire length, wire width, switching pattern

1360 CMC, vol.63, no.3, pp.1357-1371, 2020

of nearby wires, and so on. For better evaluating the delay and energy caused by crosstalk,
researchers have established the crosstalk delay model and energy model as Eqs. (1) and (2)
respectively [Moll, Roca and Isern (2003); Duan, Calle and Khatri (2009); Mutyam (2009)].

,j dd eff jk V Cτ = ⋅ ⋅ (1)

()()[() ()()2

0 1 1,0 1 1
1

2

1 1 2
n

total L dd t j j j
j

E C V bλ λ λ λ
+ − +

−

=
= + ∆ − ∆ + + ∆ − ∆ + ∆∑

()()]1, 1 2 1, 11t j n n t nb bλ λ
+ − − + −

+ + ∆ − ∆ (2)

where k is a constant determined by the driver strength and wire resistance,
, , 1 , 1

()e j j j j j jLf f absC C λ λ
− +

∆ + ⋅∆ + ⋅∆= ⋅ is the effective capacitance, 1, ,j t j t jb b
+

∆ = − is the

transmission value of thj line, jV∆ is the voltage change on the thj line, LC is the load

capacitance, CC is the coupling capacitance, and /C LC Cλ = .

The above formulas show that the different transmission pattern can influence the effect
of crosstalk significantly due to their different effective capacitance. According to the
effective capacitance of different switching patter of nearby wires in continuous cycles,
the crosstalk is classified into six classes shown in Tab. 1. (The symbols -, ↑, ↓, x stand
for no, positive and negative, any transitions, respectively.)
Currently, research work focuses on how to eliminate the 3C and 4C classes of crosstalk
and also to reduce those of other classes. But the established techniques are more or less
based on to modification of the integrated circuit that could increase the overhead of the
system and therefore can’t be used for some cost-constraint embedded systems. There are
some software researches attempting to reduce the crosstalk between instruction data
buses. Some approaches need to insert extra “NOP” instructions. Others can’t make use
of the full power of changing register because insufficient amount of program
information such as data flow is analyzed. In the next section, we will illustrate the
limitations of register renaming techniques, as well as how to overcome these limitations
by using register reallocation, with a simple example.

Table 1: Classification of crosstalk
Class Ceff,j Transition PatternsΔj-1ΔjΔj+1
0 0 x-x

0C CL ↑↑↑,↓↓↓

1C CL(1+λ) _↑↑, _↓↓,↑↑_,↓↓_

2C CL(1+2λ) ↓↑↑,↑↓↓,↑↑↓,↓↓↑,_↑_,_↓_

3C CL(1+3λ) _↑↓, _↓↑,↓↑_,↓↑_

4C CL(1+4λ) ↓↑↓,↑↓↑

Crosstalk Aware Register Reallocation Method for Green Compilation 1361

2.2 Crosstalk case study
Register renaming is used as software-only or software/hardware combined technique for
reducing the crosstalk. Since the lifetime of registers is not analyzed and the results of
register allocation are not used, Register renaming alone can’t alleviate the limitation of
register allocation which aims to use a minimal number of registers to generate a good
program performance, therefore losing potential improvement in crosstalk reduction.
Considering the example instruction lists in Kuo et al. [Kuo, Chiang and Hwang (2007)], as
illustrated in Fig. 1(a), we can see that the instruction scheduling fail to reduce the crosstalk
of instruction buses between I1 → I2 → I3. From the I2 and I3 lines, we can see that R5 is
lastly used of its previous definition in I2. And for saving registers, register allocator
assigns R5 for saving the results of I3 which causes the 4C crosstalk between I2 and I3.
From this piece of codes, R6 is not used and we assume that R6 is available too. If the
register allocator uses the R6 to replace R5 for saving the results of I3, the crosstalk will
be eliminated (shown in Fig. 1(b)). However, if we use the register renaming to rename
R5 with R6, the crosstalk between I2 and I3 will be eliminated, but the new 3C crosstalk
will occur between I1, I2 and I2, I3 (see Fig. 1(c)).
This example allows us to see the potentially better capability of register allocation in
crosstalk reduction, compared to register renaming and to other software techniques.

Crosstalk
I1:
I2:
I3:
I4:
I5:
I6:

ADD
 OR
XOR
SUB
MUL
MUL

R0,
R2,
R5,
R4,
R7,
R8,

R1,
R5,
R9,
R4,
R9,
R4,

 5
R0
R4
R8
R2
 5

101
010
011
100
000
000

0000
0010
0101
0100
0111
1000

0001
0101
1001
0100
1001
0100

0101
0000
0100
1000
0010
0101

(a)

Crosstalk
eliminated

(b)

Unexpected
new crosstalk

(c)

I1:
I2:
I3:
I4:
I5:
I6:

I1:
I2:
I3:
I4:
I5:
I6:

ADD
 OR
XOR
SUB
MUL
MUL

R0,
R2,
R6,
R4,
R7,
R8,

R1,
R5,
R9,
R4,
R9,
R4,

 5
R0
R4
R8
R2
 5

101
010
011
100
000
000

0000 0001 0101
0010 0101 0000
0110
0100
0111
1000

1001
0100
1001
0100

0100
1000
0010
0101

101 0000 0001 0101
010
011
100
000
000

0010
0110
0100
0111
1000

0110
1001
0100
1001
0100

0000
0100
1000
0010
0101

ADD
 OR
XOR
SUB
MUL
MUL

R0,
R2,
R6,
R4,
R7,
R8,

R1,
R5,
R9,
R4,
R9,
R4,

 5
R0
R4
R8
R2
 5

Figure 1: Register assignments example

1362 CMC, vol.63, no.3, pp.1357-1371, 2020

2.3 Crosstalk aware register allocation, optimization process outline
In order to get an effective optimization for the total program such as the library of system,
our optimization process utilizes the disassemble codes and the profiling results as inputs.
Then NAIG constructor is used to build the NAIG from the disassemble codes and set the
weight of it. Finally, the NARR processor analysis the NAIG to reallocation the register and
generate the optimized code. The outline of the process is presented as followed (Fig. 2).

Optimization Process

Optimized
Codes

NARR
Processor

NAIG
Constructor

Dissemble
Codes

Profiling
Results

Figure 2: Outline of the optimization process

From this outline, we can see that the kernel of the optimization is NAIG construction and
NARR process. The detail will be presented in the following two subsections.

2.4 NAIG construction
The goal of this work is to reduce the crosstalk on instruction data bus. So the more
frequently access patterns of registers pairs are, the more important the registers are. For
better illustrating the nearby accesses frequency feature combining with the register
allocation, we enhanced the original Interference graph that was widely used for register
allocation and constructed the new nearby access aware interference graph, called NAIG.
NAIG is a weighted undirected graph that can be represented by a four tuple G=(V, EI , EN,
WE). Where v∈V represents a variable or constant of the program, e(u, v)∈EI expresses
that the node u and node v cannot share the same register, e′(u′, v′)∈EN expresses that the
node u and node v may be nearby access and the weight w(e)∈WE represents the
frequency of such access pattern e (u, v).

I1: ADD R0, R1, 5
I2: OR R2, R5, R0
I3: XOR R3, R9, R4

(a)

R1 R0

R2

R4
R3

R5

R9

5

(b)

1

1

1

1

1

Figure 3: Example of NAIG

For building the NAIG, we get the disassemble code as input and suppose that there are
unlimited registers, the same as the registers called virtual registers in many compilers.

Crosstalk Aware Register Reallocation Method for Green Compilation 1363

Firstly, we change the disassemble codes to the SSA form for each basic block that makes
sure the registers are defined only once (Algorithm 1, line 1-4). Then, we use the methods
described in to construct the data flow of each basic block and get the lifetime of each
register in each instruction (line 5-6). The interference graph can be constructed of
analysis the live register in each instruction (line 7-15). After getting the interference
graph, we can use the profiling results to add the weight of edges (line 16-21). And then
we return the constructed NAIG at last (line 22). The detailed construction algorithm is
expressed in Algorithm 1. In this program, the CFG is control flow graph for the program
and each node v ∈ V ′ represents a basic block that contains number of in order executed
instructions. The Liveregi expresses the register defined before the instruction i and will
be used after the instruction that called the live register.
To reduce the cost of spill node is a very complex work because it changes the source order
of instruction by inserting extra spill codes that will make the NAIG rebuilt. Luckily, in our
algorithm, we can avoid to generate the spill codes since the source code is allocated
successfully and we can always eliminate the spill code by assigning the spill node with its
original one. The detailed reallocation algorithm is presented in next section.
Figs. 3(a) and 3(b) are the changed SSA representation and corresponding NAIG for the
first three instructions of Fig. 1(a), respectively.

Algorithm 1 NAIG construction algorithm.
Input:
 source disassemble codes, S;
 the profiling result, P:VP→VP→WE;
Output:

NAIG(V,EI,EN,WE);
1: CFG(V’,E’):=ConstructCFG(S)
2: for each V’ do
3: Translate to SSA form
4: end for
5: DS=DateFlowAnalysis(CFG)
6: Liveregi=GetLivergi(DS) based on methods in[1]
7: for each do
8: for each do
9: for each do
10: NAIG.V.add(i)
11: NAIG.V.add(j)
12: NAIG.EI.add(i,j)
13: end for
14: end for
15: end for
16: for each do
17: NAIG.V.add(i)
18: NAIG.V.add(j)
19: NAIG.EN.add(i,j)
20: NAIG.WE.add(wi,j)
21: end for
22: return NBTI;

1364 CMC, vol.63, no.3, pp.1357-1371, 2020

2.5 NARR algorithm
Based on the above NAIG, we implement our new NARR algorithm as follow: firstly, we
construct the NAIG for each function of the program (Fig. 3); then, we sort the edge of
NAIG by the decreased weight order (Algorithm 2, line 1). Since the heavily weighted
edge represents that the nodes own the edge are more frequently nearby access in
instruction date buses, we expect it in the same register or the least crosstalk registers. At
the same time, we expect the lowest spill code which will not only lose the performance
of the system, but also increase the undetected crosstalk by this algorithm, so we make
sure that no additional new spill codes will be emerged in our algorithm.
Then, we analyze the ordered edges one by one to finish the register allocation for each
node (lines 2-36). For each edge e(u, v)∈EI , we first check whether a node is assigned. If
any one of nodes u is assigned for register ri, we will choose the register other than ri but
with minimal crosstalk to assign it for v (lines 5-7). If both nodes are not assigned, we
first assign any of them to one register and then find the other suitable register as the
previous case for the other one (lines 15-19). If the two nodes are assigned with the same
register, we will try to change one assigning into another register (lines 6-14). For the
edge not in EI, we first try to assign the two nodes in the same register. If it is not
reasonable, we can handle it as the edge in EI (lines 22-34). The program detail is shown
in Algorithm 2.

Algorithm 2 NARR algorithm.
Input:
 the NAIG(V,EI,EN,WE) for each function of program;

the available registers R={ r0 , ri , … , rn }
Output:

the allocation map M: for each node V in NAIG;
1: E’ := sort EN by decreased order in WE
2: while do
3: e(u,v) :=pop the first element of E’
4: if then
5: if only one node (assuming for u) is assigned for register ri then
6: get the register with minimal cost crosstalk(ri,rj)
7: M.add(v,rj)
8: else if both u, v are assigned for the same register ri then
9: if one of this two node (assuming for u) can be changed to other register
 Set R’ without violating the IG of current analysis then
10: rj:= rk where and satisfy

11: M(u) :=rk
12: else
13: assign the two nodes foe original registers.
14: end if
15: else if both u,v are not assigned for any register then
16: ri:= get the random register that node v can be used.
17: M.add(v, ri)
18: get the register with minimal cost crosstalk(ri, rj)
19: M.add(u,rj)
20: end if

Crosstalk Aware Register Reallocation Method for Green Compilation 1365

21: else
22: if only one node (assuming for u) is assigned for register ri then
23: if ri without violate the conflict of other assignments till now then
24: M.add(v,ri)
25: else
26: assign as line 5-7
27: end if
28: else if none of node is assigned then
29: if exist an register rk can be used for both node without violate the
 conflict of the other assignments till now then
30: M.add(v,rk), M.add(u,rk)
31: else
32: assign as line 15-19
33: end if
34: end if
35: end if
36: end while
37: return M

2.6 Experimental setup for performance evaluation
The experiment is built up in Fedora 12 combined with Windows 7 home basic version.
The test cases are selected from the MIBench [Guthaus, Ringenberg, Ernst et al. (2001)].
The compiler tools are arm-linux-gcc 4.4.3, and combined with objdump 2.19.51 to get
the disassemble codes. The sim-profile tool for arm is used as profile tool to get the
access frequency of instructions. The whole experimental framework is shown in Fig. 4.
Firstly, we use the arm-linux-gcc to compile the source code to binary codes in Fedora 12
environment. Then, we disassemble and get profile information for the binary codes
respectively. After getting the disassemble codes and profile information, we use them as
input for the NARR processor to get the crosstalk aware optimized binary codes. Finally,
we compare the source binary codes to the optimized binary codes to evaluate the
performance of NARR, and analyze the improvement details in crosstalk reduction,
especially for 3C and 4C ones.

1366 CMC, vol.63, no.3, pp.1357-1371, 2020

Fedora 12 OS

Source codes

arm-linux-
gcc

Binary codes

objdump Sim-profile

Disassemble
codes

Profile
information

Windows 7 home basic OS

NARR
processing Evaluation

Optimized
binary codes

Performance
reports

Figure 4: Experiment framework

3 Results and discussions
3.1 Performance of NARR
Fig. 5 presents the decreased percentage of 4C and 3C+4C crosstalk for NARR, compared
with the results of GCC. From this benchmark, we can see that the 4C crosstalk has been
significantly reduced. In the cases such as stringsearch_large, stringsearch_small, dijkstra,
and crc, the reduction percentage of 4C crosstalk is higher than 95%, eliminating almost all
4C crosstalk of the program. And the average decrease rate is about 81%. And for 3C+4C
crosstalk, we can see that most of them are also significantly reduced except dijkstra since
the dijkstra has many conflicts between the 3C and 4C crosstalk. We force a crosstalk avoid
priority for 4C, so the dijkstra benchmark result is not so good in 3C+4C condition.
However, we still get an excellent reduction rate under the major benchmark tests for
3C+4C and the average reduction rate of all tested benchmarks is about 44%.

Crosstalk Aware Register Reallocation Method for Green Compilation 1367

Decreased percentage compared to GCC in crosstalk number

0.00% 20.00% 40.00% 80.00% 100.00%60.00%

3C+4C

Decreased percentage

B
en

ch
m

ar
k

stringsearch_large
stringsearch_small

sha
qsort

patricia
dijkstra

crc
bitcnts

4C

Figure 5: 4C and 3C+4C crosstalk reducing in crosstalk number
For better understanding the crosstalk avoid in instruction level, we also analyze the 4C
and 3C+4C crosstalk in dynamic execution with profile recorded in Fig. 6. From this
result, we can see that the 4C crosstalk shows again a good reduction and the average
decreased percentage is 80.87%. The highest reduction rate is 99.99% for the crc test
under that only two 4C crosstalk appeared in the program after optimization (shown in
Tab. 2). And for 3C+4C crosstalk, the average reduction percentage is also 37.01%,
similar to the results shown in Fig. 5. Special cases are, however, again a smaller
reduction rate recorded in 3C+4C crosstalk condition for stringsearch_large, patricia and
dijjkstra tests. The main reason could be that in an instruction, there may be some
crosstalk in the same class such as 3C. So if the instruction frequently executes, the
crosstalk data at instruction level will be less than those at crosstalk number level.
However, getting crosstalk statistics at instruction level is reasonable since the program is
executed at instruction level and the possible attackers might also try to work in the
instruction level to get the most detailed information of the system.

Table 2: Crosstalk comparison of GCC and NARR

Benchmark
3C Crosstalk 4C Crosstalk

GCC NARR NARR/
GCC GCC NARR NARR/

GCC
bitcnts 87750075 5625002 0.06410 33750073 2250001 0.0667
crc 159667218 26611206 0.1667 79833611 2 0
dijkstra 76644109 7562503 0.0987 63344776 86222 0.0014
patricia 590383 38600 0.0654 466640 19041 0.0408
qsort 1250019 400005 0.3199 1050022 100003 0.0952
sha 69017038 11570830 0.1677 39583124 4264487 0.1077
string search_small 16563 15185 0.9168 15509 57 0.0037
string search _large 3881159 352483 0.9247 705765 1334 0.0019

1368 CMC, vol.63, no.3, pp.1357-1371, 2020

Decreased percentage compared to GCC in crosstalk execution instructions

0.00% 20.00% 40.00% 80.00% 100.00%60.00%

3C+4C

Decreased percentage

B
en

ch
m

ar
k

stringsearch_large
stringsearch_small

sha
qsort

patricia
dijkstra

crc
bitcnts

4C

Figure 6: 4C and 3C+4C crosstalk reducing in execution instructions
Tab. 3 shows the evaluation results of adapting NARR to reduce the 4C and 3C+4C
crosstalk in the aspect of the whole executed instructions. We can see that after NARR,
the crosstalk percentage is significantly reduced for almost every benchmark tested, in
both 4C and 3C+4C cases, in comparison with GCC. The average percentage of 4C
crosstalk is reduced to a level of 0.89%, compared with the initially compiled result of
9.89% with GCC (with a relative reduction rate of 91% based on the GCC value).
Furthermore, under specific tests such as crc, dijkstra, etc, we get nearly 0 crosstalk in 4C
situation after NARR. And the 3C+4C crosstalk is also reduced from 40.77% for GCC to
25.85% after NARR, in average. So the NARR method is good for reducing the crosstalk,
especially for the 4C case.

Table 3: 4C and 3C+4C crosstalk reducing for the whole execution instructions

Benchmark
4C execution in structions 3C+4C execution in structions
GCC NARR GCC NARR

bitcnts 0.78% 0.31% 13.01% 5.02%
crc 7.69% 0.00% 53.85% 23.08%
dijkstra 3.08% 0.04% 34.33% 25.86%
patricia 1.51% 0.74% 24.61% 19.00%
qsort 11.27% 2.82% 46.48% 32.39%
sha 8.20% 3.02% 57.10% 31.07%
string search_small 23.10% 0.09% 48.29% 23.68%
string search_large 23.29% 0.09% 48.48% 46.73%
average 9.87% 0.89% 40.77% 25.85%

Tab. 4 shows all types of crosstalk decreased percentage compared to GCC by NARR.
We can see that the overall crosstalk is also decreased largely. For the bitcnts and qsort,
the reduction rate is up to more than 44%. The average reduction rate is also achieved to
24.24%. So our NARR method is not can get good performance for crosstalk.

Crosstalk Aware Register Reallocation Method for Green Compilation 1369

Table 4: All types crosstalk reducing in execution instructions
Benchmark GCC NARR Decreased rate
bitcnts 2781573971 1553071408 44.17%
Crc 2261952341 1809561893 20.00%
dijkstra 1606207102 1384640962 13.79%
patricia 12692958 11624053 8.42%
qsort 270214 150181 44.42%
sha 1168409001 935588937 19.93%
search_small_pro 451658 325107 28.02%
search_large_pro 10470186 8885138 15.14%
average 980253428.9 712980959.9 24.24%

4 Conclusions
Crosstalk is a challenge not only for acquiring power-efficiency and performance, but
also for satisfying the security and green requirements of an IC design since the
nanoscale manufacturing has become the mainstream now. The new method we proposed
here in crosstalk aware register reallocation is to reduce the influence of crosstalk for the
couple instruction buses. The method is a software-only technique without any needs to
modify the traditional hardware. Our NARR method can result in a reduction of 80.87%
for 4C crosstalk in average and up to 99.99% at most. The percentage of 4C and 4C+3C
crosstalk at instruction level is also reduced from the control GCC average value, by 9%
and 15% in crosstalk rate difference, respectively. It confirms so that our NARR
algorithm is effective in reducing the crosstalk especially for the 4C class. Of course, we
can combine in the future with the methods proposed in Kuo et al. [Kuo, Chiang and
Hwang (2007)] such as instruction scheduling, NOP padding to reduce further the
crosstalk interference.

Acknowledgement: This work was supported by the General Project of Humanities and
Social Sciences Research of the Ministry of Education (16YJA740039); the Foundation
Project of Philosophy and Social Science of Hunan (17YBA115).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Bamberg, L.; Najafi, A.; Garciaortiz, A. (2019): Edge effect aware low-power
crosstalk avoidance technique for 3D integration. Integration, vol. 69, no. 1, pp. 98-110.
Chen, W.; Lueh, G.; Ashar, P. J.; Chen, K.; Cheng, B. (2018): Register allocation for
Intel processor graphics. Symposium on Code Generation and Optimization, pp. 352-364.
Cui, X.; Ni, Y.; Miao, M.; Jin, Y. (2017): An enhancement of crosstalk avoidance code
based on fibonacci numeral system for through silicon vias. IEEE Transactions on Very
Large Scale Integration Systems, vol. 25, no. 5, pp. 1601-1610.

1370 CMC, vol.63, no.3, pp.1357-1371, 2020

Duan, C.; Calle, V. H. C.; Khatri, S. P. (2009): Efficient on-chip crosstalk avoidance
codec design. IEEE Transactions on Very Large Scale Integration Systems, vol. 17, no. 4,
pp. 551-560.
Florea, A.; Geliert, A. (2016): E-learning approach of the graph coloring problem
applied to register allocation in embedded systems. Sixth International Conference on
Innovative Computing Technology, pp. 173-178.
Gupta, U.; Ranganathan, N. (2011): A utilitarian approach to variation aware delay,
power, and crosstalk noise optimization. IEEE Educational Activities Department, vol. 19,
no. 9, pp. 1723-1726.
Guthaus, M. R.; Ringenberg, J.; Ernst, D. J.; Austin, T.; Mudge, T. et al. (2001):
MiBench: a free, commercially representative embedded benchmark suite. IEEE
International Symposium on Workload Characterization, pp. 3-14.
Halak, B.; Yakovlev, A. (2010): Throughput optimization for area-constrained links
with crosstalk avoidance methods. IEEE Transactions on Very Large Scale Integration
Systems, vol. 18, no. 6, pp. 1016-1019.
Jiao, H.; Wang, R. R.; He, Y. (2018): Crosstalk-noise-aware bus coding with low-power
ground-gated repeaters. International Journal of Circuit Theory and Applications, vol. 46,
no. 2, pp. 280-289.
Kananizadeh, S.; Kononenko, K. (2018): Improving on linear scan register allocation.
International Journal of Automation and Computing, vol. 15, no. 2, pp. 228-238.
Kuo, W. A.; Chiang, Y. L.; Hwang, T. T.; Wu, A. C. H. (2007): Performance-driven
crosstalk elimination at postcompiler level-the case of low-crosstalk op-code assignment.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
26, no. 3, pp. 564-573.
Liu, F.; Yarom, Y.; Ge, Q.; Heiser, G.; Lee, R. B. (2015): Last-level cache side-channel
attacks are practical. IEEE Symposium on Security and Privacy, pp. 605-622.
Lozano, R. C.; Carlsson, M.; Blindell, G. H.; Schulte, C. (2019): Combinatorial
register allocation and instruction scheduling. arXiv: Programming Languages.
https://arxiv.org/abs/1804.02452.
Lucas, A. H.; Moraes, F. (2009): crosstalk fault tolerant noc: design and evaluation.
IFIP IEEE International Conference on Very Large Scale Integration, pp. 81-93.
Mangard, S.; Oswald, E.; Standaert, F. X. (2011): One for all-all for one: unifying
standard differential power analysis attacks. IET Information Security, vol. 5, no. 2, pp.
100-110.
Moll, F.; Roca, M.; Isern, E. (2003): Analysis of dissipation energy of switching digital
CMOS gates with coupled outputs. Microelectronics Journal, vol. 34, no. 9, pp. 833-842.
Mutyam, M. (2009): Selective shielding technique to eliminate crosstalk transitions.
ACM Transactions on Design Automation of Electronic Systems, vol. 14, no. 3, pp. 1-43.
Odaira, R.; Nakaike, T.; Inagaki, T.; Komatsu, H.; Nakatani, T. (2010): Coloring-
based coalescing for graph coloring register allocation. IEEE/ACM International
Symposium on Code Generation & Optimization, pp. 160-169.

Crosstalk Aware Register Reallocation Method for Green Compilation 1371

Ohama, Y.; Yotsuyanagi, H.; Hashizume, M.; Higami, Y.; Takahashi, H. (2017): On
selection of adjacent lines in test pattern generation for delay faults considering crosstalk
effects. International Symposium on Communications and Information Technologies, pp. 1-5.
Park, J.; Xu, X.; Jin, Y.; Forte, D.; Tehranipoor, M. (2018): Power-based side-
channel instruction-level disassembler. IEEE 55th ACM/ESDA/IEEE Design Automation
Conference, pp. 1-6.
Poletto, M, A.; Sarkar, V. (1999): Linear scan register allocation. ACM Transactions on
Programming Languages and Systems, vol. 21, no. 5, pp. 895-913.
Shirmohammadi, Z.; Mozafari, F.; Miremadi, S. G. (2017): An efficient numerical-
based crosstalk avoidance codec design for NoCs. Microprocessors and Microsystems,
vol. 50, no. 1, pp. 127-137.
Shirmohammadi, Z.; Sabzi, H, Z. (2018): DR: overhead efficient RLC crosstalk avoidance
code. International Conference on Computer and Knowledge Engineering, pp. 1-6.
Su, X.; Wu, H.; Xue, J. (2017): An efficient WCET-aware instruction scheduling and
register allocation approach for clustered VLIW processors. ACM Transactions in
Embedded Computing Systems, vol. 16, no. 5, pp. 1-21.
Tabani, H.; Arnau, J.; Tubella, J.; Gonzalez, A. (2018): A novel register renaming
technique for out-of-order processors. High-Performance Computer Architecture, pp.
259-270.
Weng, T.; Lin, C.; Shann, J. J.; Chung, C. (2010): Power reduction by register
relabeling for crosstalk-toggling free instruction bus coding. International Computer
Symposium, pp. 676-681.
Wimmer, C.; Franz, M. (2010): Linear scan register allocation on SSA form.
Proceedings of the 8th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, pp. 170-179.
Zhang, J.; Fang, L.; Li, L.; Zhang, Z. (2015): A novel approach to detecting hardware
trojan horses. International Symposium on Computational Intelligence and Design, pp.
43-46.

	Crosstalk Aware Register Reallocation Method for green compilation
	Sheng Xiao0F , 2, *, Jing Selena He3, Xi Yang4, Yazhe Wang1 and Lu Jin1

	References

