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Abstract: As nanoscale processing becomes the mainstream in IC manufacturing, the 
crosstalk problem rises as a serious challenge, not only for energy-efficiency and 
performance but also for security requirements. In this paper, we propose a register 
reallocation algorithm called Nearby Access based Register Reallocation (NARR) to 
reduce the crosstalk between instruction buses. The method includes construction of the 
software Nearby Access Aware Interference Graph (NAIG), using data flow analysis at 
assembly level, and reallocation of the registers to the software. Experimental results 
show that the crosstalk could be dramatically minimized, especially for 4C crosstalk, with 
a reduction of 80.84% in average, and up to 99.99% at most. 
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1 Introduction 
With the progress of technological development, the size of embedded devices becomes 
smaller and smaller, so the bus lines lay out more and more intensively, making the 
crosstalk a more and more serious challenge for the circuit design. The increments of 
crosstalk not only influence the scalability and performance of the embedded system, but 
also consume more power, making the device more vulnerable to overheat and to 
malicious attacker. The additional power consumption of crosstalk can particularly be 
used by attackers through the Differential Power Analysis to get the security and hidden 
information of the system, such as revealing hidden hardware faults on integrated 
circuits, accessing cryptographic keys, and getting the actual executing codes of the 
microprocessors [Mangard, Oswald and Standaert (2011); Zhang, Fang, Li et al. (2016); 
Park, Xu, Jin et al. (2018); Liu, Yarom, Ge et al. (2015)].  Furthermore, the extra power 
needed increases noise and decreases the lifetime of the embedded device, therefore 
compromising the current “green compilation” pursuit.  
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Crosstalk is a traditional problem for circuit design and many efforts have been done for 
it. Circuit designers proposed sorts of methods to reduce the crosstalk between couple 
buses, such as Codec [Duan, Calle and Khatri (2009); Shirmohammadi, Mozafari and 
Miremadi (2017)], buffer insertion [Halak and Yakovlev (2010)], Shielding [Mutyam 
(2009)], gate sizing [Gupta and Ranganathan (2011)], and so on. Lucas et al. [Lucas and 
Moraes (2009)] evaluated different crosstalk fault tolerant approaches for Networks-on-
chip (NoCs) links such that the network can maintain the original network performance 
even in the presence of errors. Their results demonstrated that the use of CRC coding at 
each link should be preferred if minimal area and power overhead were the main goals. 
Cui et al. [Cui, Ni, Miao et al. (2017)] proposed an enhanced code based on the Fibonacci 
number system (FNS) to suppress the crosstalk noise below 6C level, in which both the 
redundancy of numbers and the non-uniqueness of Fibonacci-based binary codeword 
were utilized to search the proper codeword. Experimental results showed that the 
proposed technique decreased about 22% latency of TSVs comparing with the worst 
crosstalk cases. Shirmohammadi et al. [Shirmohammadi and Sabzi (2018)] propose DR 
coding mechanism, which uses a novel numerical system in generating code words that 
minimizes overheads of codec and is applicable for any arbitrary width of wires. 
Experimental results show that worst crosstalk-induced transition patterns are completely 
avoided in wires using DR coding mechanism. Jiao et al. [Jiao, Wang and He (2018)] 
proposed a crosstalk-noise-aware bus coding scheme with groundgated repeaters. This 
approach minimized the routing overhead as well as power consumption of data bus 
systems. The routing overhead was reduced by 12.31% with the new bus coding scheme 
compared to the conventional data bus with shielding wires. Furthermore, the power 
leakage and worst-case active power consumptions were reduced by 12.5% and 18.26%, 
respectively, with the new crosstalk-noise-aware data bus system compared to the 
previously published bus coding system in an industrial 40nm CMOS technology. Ohama 
et al. [Ohama, Yotsuyanagi, Hashizume et al. (2017)] proposed a selection method of 
adjacent lines for assigning signal transitions in test pattern generation. The selection 
method could reduce the number of adjacent lines used in test pattern generation without 
degrading the quality of test pattern that could excite the fault effect. Bamberg et al. 
[Bamberg, Najafi and Garciaortiz (2019)] presented a 3D CAC method which was based 
on an intelligent fixed mapping of the bits of existing 2D CACs onto rectangular or 
hexagonal TSV arrangements. Their method required less hardware and reduced the 
maximum crosstalk of modern TSV and metal wire buses by 37.8% and 47.6%, 
respectively, while leaving their power consumption almost unaffected. However, these 
methods either need extra hardware unit support or must increase the area of chip, 
making them unfavorable for the development of advanced embedded devices requiring 
portability and minimized cost. 
With the existing Selective Shielding method, Weng et al. [Weng, Lin, and Shann (2010)] 
proposed a co-hardware/software register relabeling combination to reduce the crosstalk 
of instruction bus. Kuo et al. [Kuo, Chiang and Hwang (2007)] adapted also a 
combination approach with instruction rescheduling, register renaming, NOP instruction 
padding, and instruction opcode assignment. They proposed the software method to 
eliminate the 4C crosstalk. These methods are either based on current hardware support 
or having limitations, illustrated in the next section, to reduce the crosstalk. 



Crosstalk Aware Register Reallocation Method for Green Compilation                 1359 

Register allocation is also an important component of compilers, many techniques have been 
proposed, such as Graph-base register allocation [Florea and Geliert (2016); Odaira, Nakaike, 
Inagaki et al. (2010)], Linear scan register allocation [Poletto and Sarkar (1999); Wimmer and 
Franz (2010)], tree-based register allocation, and others [Lozano, Carlsson, Blindell et al. 
(2019), Su, Wu and Xue (2017); Chen, Lueh and Ashar (2018)]. Tabani et al. [Tabani, Arnau, 
Tubella et al. (2018)] propose a new register renaming technique that leverages physical 
register sharing by introducing minor changes in the register map table and the issue queue. 
Experimental results show that it provides 6% speedup on average for the SPEC2006 
benchmarks in modern out-of-order processor. Kananizadeh et al. [Kananizadeh and 
Kononenko (2018)] propose a new class of register allocation and code generation algorithms 
that can be performed in linear time. These algorithms are based on the mathematical 
foundations of abstract interpretation and the computation of the level of abstraction. They 
have been implemented in a specialized library for just-in-time compilation. The 
specialization of this library involves the execution of common intermediate language (CIL) 
and low level virtual machine (LLVM) with a focus on embedded systems. But most of these 
proposed methods were aiming at increasing the performance with litter spill codes, while the 
crosstalk between instructions was seldom considered. 
We propose here a software method Nearby Access based Register Reallocation (NARR) 
to reduce the crosstalk. Though similar to the graph color register allocation method, it is 
distinguished by combining the frequency of near neighbor access to assign the registers. 
Our register reallocation approach is not only a software-only method requiring no 
modifications in hardware, but also improves performance in reducing the instruction bus 
crosstalk since it deeply analyzes the data flow. 
Our contributions of this paper in crosstalk-reducing by software can be summarized: 
-A proposed new register reallocation algorithm called NARR to reduce the crosstalk. It is 
a pure software method without any hardware modifications and can theoretically get 
extra power saving and security enhancing by reducing the crosstalk that register 
renaming and other software techniques could fail to. 
-A modified interference graph called Nearby Access Aware Interference Graph (NAIG) 
is designed and implemented with the help of assemble-level data flow analysis and 
profiling information that make the register reallocation feasible and more easily. 
-Implemention of the algorithm in an evaluation of crosstalk improvement. Results show that 
the NARR is an efficient algorithm in reducing crosstalk, especially in 4C class of crosstalk. 
The following Section 2 illustrates the background and motivation firstly, and then 
introduces our new crosstalk aware register allocation algorithm (NARR). Section 3 
presents the performance evaluation using a benchmark from Mibench. Section 4 draws 
some conclusions and highlights future directions. 

2 Methods and materials 
2.1 Crosstalk overview 
Crosstalk is the noise signal for one circuit or channel of a transmission system caused by 
the other circuits or channels that are usually parallel to the effected one. The strength of 
crosstalk is often subject to the following factors: wire length, wire width, switching pattern 
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of nearby wires, and so on. For better evaluating the delay and energy caused by crosstalk, 
researchers have established the crosstalk delay model and energy model as Eqs. (1) and (2) 
respectively [Moll, Roca and Isern (2003); Duan, Calle and Khatri (2009); Mutyam (2009)]. 
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The above formulas show that the different transmission pattern can influence the effect 
of crosstalk significantly due to their different effective capacitance. According to the 
effective capacitance of different switching patter of nearby wires in continuous cycles, 
the crosstalk is classified into six classes shown in Tab. 1. (The symbols -, ↑, ↓, x stand 
for no, positive and negative, any transitions, respectively.) 
Currently, research work focuses on how to eliminate the 3C and 4C classes of crosstalk 
and also to reduce those of other classes. But the established techniques are more or less 
based on to modification of the integrated circuit that could increase the overhead of the 
system and therefore can’t be used for some cost-constraint embedded systems. There are 
some software researches attempting to reduce the crosstalk between instruction data 
buses. Some approaches need to insert extra “NOP” instructions. Others can’t make use 
of the full power of changing register because insufficient amount of program 
information such as data flow is analyzed. In the next section, we will illustrate the 
limitations of register renaming techniques, as well as how to overcome these limitations 
by using register reallocation, with a simple example. 

Table 1: Classification of crosstalk 
Class Ceff,j Transition PatternsΔj-1ΔjΔj+1 
0 0 x-x 

0C CL ↑↑↑,↓↓↓ 

1C CL(1+λ) _↑↑, _↓↓,↑↑_,↓↓_ 

2C CL(1+2λ) ↓↑↑,↑↓↓,↑↑↓,↓↓↑,_↑_,_↓_ 

3C CL(1+3λ) _↑↓, _↓↑,↓↑_,↓↑_ 

4C CL(1+4λ) ↓↑↓,↑↓↑ 
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2.2 Crosstalk case study 
Register renaming is used as software-only or software/hardware combined technique for 
reducing the crosstalk. Since the lifetime of registers is not analyzed and the results of 
register allocation are not used, Register renaming alone can’t alleviate the limitation of 
register allocation which aims to use a minimal number of registers to generate a good 
program performance, therefore losing potential improvement in crosstalk reduction. 
Considering the example instruction lists in Kuo et al. [Kuo, Chiang and Hwang (2007)], as 
illustrated in Fig. 1(a), we can see that the instruction scheduling fail to reduce the crosstalk 
of instruction buses between I1 → I2 → I3. From the I2 and I3 lines, we can see that R5 is 
lastly used of its previous definition in I2. And for saving registers, register allocator 
assigns R5 for saving the results of I3 which causes the 4C crosstalk between I2 and I3. 
From this piece of codes, R6 is not used and we assume that R6 is available too. If the 
register allocator uses the R6 to replace R5 for saving the results of I3, the crosstalk will 
be eliminated (shown in Fig. 1(b)). However, if we use the register renaming to rename 
R5 with R6, the crosstalk between I2 and I3 will be eliminated, but the new 3C crosstalk 
will occur between I1, I2 and I2, I3 (see Fig. 1(c)). 
This example allows us to see the potentially better capability of register allocation in 
crosstalk reduction, compared to register renaming and to other software techniques. 
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Figure 1: Register assignments example 
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2.3 Crosstalk aware register allocation, optimization process outline 
In order to get an effective optimization for the total program such as the library of system, 
our optimization process utilizes the disassemble codes and the profiling results as inputs. 
Then NAIG constructor is used to build the NAIG from the disassemble codes and set the 
weight of it. Finally, the NARR processor analysis the NAIG to reallocation the register and 
generate the optimized code. The outline of the process is presented as followed (Fig. 2). 

    

Optimization Process

Optimized
Codes

NARR
Processor

NAIG
Constructor

Dissemble
Codes

Profiling
Results

 

Figure 2: Outline of the optimization process 

From this outline, we can see that the kernel of the optimization is NAIG construction and 
NARR process. The detail will be presented in the following two subsections. 

2.4 NAIG construction 
The goal of this work is to reduce the crosstalk on instruction data bus. So the more 
frequently access patterns of registers pairs are, the more important the registers are. For 
better illustrating the nearby accesses frequency feature combining with the register 
allocation, we enhanced the original Interference graph that was widely used for register 
allocation and constructed the new nearby access aware interference graph, called NAIG. 
NAIG is a weighted undirected graph that can be represented by a four tuple G=(V, EI , EN, 
WE). Where v∈V represents a variable or constant of the program, e(u, v)∈EI expresses 
that the node u and node v cannot share the same register, e′(u′, v′)∈EN expresses that the 
node u and node v may be nearby access and the weight w(e)∈WE represents the 
frequency of such access pattern e (u, v). 
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Figure 3: Example of NAIG 

For building the NAIG, we get the disassemble code as input and suppose that there are 
unlimited registers, the same as the registers called virtual registers in many compilers. 
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Firstly, we change the disassemble codes to the SSA form for each basic block that makes 
sure the registers are defined only once (Algorithm 1, line 1-4). Then, we use the methods 
described in to construct the data flow of each basic block and get the lifetime of each 
register in each instruction (line 5-6). The interference graph can be constructed of 
analysis the live register in each instruction (line 7-15). After getting the interference 
graph, we can use the profiling results to add the weight of edges (line 16-21). And then 
we return the constructed NAIG at last (line 22). The detailed construction algorithm is 
expressed in Algorithm 1. In this program, the CFG is control flow graph for the program 
and each node v ∈ V ′ represents a basic block that contains number of in order executed 
instructions. The Liveregi expresses the register defined before the instruction i and will 
be used after the instruction that called the live register. 
To reduce the cost of spill node is a very complex work because it changes the source order 
of instruction by inserting extra spill codes that will make the NAIG rebuilt. Luckily, in our 
algorithm, we can avoid to generate the spill codes since the source code is allocated 
successfully and we can always eliminate the spill code by assigning the spill node with its 
original one. The detailed reallocation algorithm is presented in next section. 
Figs. 3(a) and 3(b) are the changed SSA representation and corresponding NAIG for the 
first three instructions of Fig. 1(a), respectively. 

Algorithm 1 NAIG construction algorithm. 
Input: 
  source disassemble codes, S; 
  the profiling result, P:VP→VP→WE; 
Output: 

NAIG(V,EI,EN,WE); 
1: CFG(V’,E’):=ConstructCFG(S) 
2: for each V’ do 
3: Translate  to SSA form 
4: end for 
5: DS=DateFlowAnalysis(CFG) 
6: Liveregi=GetLivergi(DS) based on methods in[1] 
7: for each  do 
8:   for each do 
9:      for each  do 
10:          NAIG.V.add(i) 
11:          NAIG.V.add(j) 
12:          NAIG.EI.add(i,j) 
13:     end for 
14:   end for 
15: end for 
16: for each  do 
17:    NAIG.V.add(i) 
18:    NAIG.V.add(j) 
19:    NAIG.EN.add(i,j) 
20:    NAIG.WE.add(wi,j) 
21: end for 
22: return NBTI; 
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2.5 NARR algorithm 
Based on the above NAIG, we implement our new NARR algorithm as follow: firstly, we 
construct the NAIG for each function of the program (Fig. 3); then, we sort the edge of 
NAIG by the decreased weight order (Algorithm 2, line 1). Since the heavily weighted 
edge represents that the nodes own the edge are more frequently nearby access in 
instruction date buses, we expect it in the same register or the least crosstalk registers. At 
the same time, we expect the lowest spill code which will not only lose the performance 
of the system, but also increase the undetected crosstalk by this algorithm, so we make 
sure that no additional new spill codes will be emerged in our algorithm. 
Then, we analyze the ordered edges one by one to finish the register allocation for each 
node (lines 2-36). For each edge e(u, v)∈EI , we first check whether a node is assigned. If 
any one of nodes u is assigned for register ri, we will choose the register other than ri but 
with minimal crosstalk to assign it for v (lines 5-7). If both nodes are not assigned, we 
first assign any of them to one register and then find the other suitable register as the 
previous case for the other one (lines 15-19). If the two nodes are assigned with the same 
register, we will try to change one assigning into another register (lines 6-14). For the 
edge not in EI, we first try to assign the two nodes in the same register. If it is not 
reasonable, we can handle it as the edge in EI (lines 22-34). The program detail is shown 
in Algorithm 2. 

Algorithm 2 NARR algorithm. 
Input: 
    the NAIG(V,EI,EN,WE) for each function of program; 

the available registers R={ r0 , ri , … , rn } 
Output: 

the allocation map M: for each node V in NAIG; 
1: E’ := sort EN by decreased order in WE 
2: while do 
3:  e(u,v) :=pop the first element of E’ 
4:  if then 
5:     if only one node ( assuming for u ) is assigned for register ri  then 
6:       get the register with minimal cost crosstalk(ri,rj) 
7:       M.add(v,rj) 
8:     else if  both u, v are assigned for the same register ri  then 
9:     if one of this two node (assuming for u) can be changed to other register 
            Set R’ without violating the IG of current analysis  then 
10:        rj:= rk  where and satisfy 

  
11:        M(u) :=rk 
12:      else 
13:         assign the two nodes foe original registers. 
14:      end if 
15:    else if both u,v are not assigned for any register then 
16:      ri:= get the random register that node v can be used. 
17:      M.add(v, ri) 
18:      get the register with minimal cost crosstalk(ri, rj) 
19:      M.add(u,rj) 
20:    end if 
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21:   else 
22:   if only one node (assuming for u) is assigned for register ri then 
23:     if ri without violate the conflict of other assignments till now then 
24:      M.add(v,ri) 
25:     else 
26:      assign as line 5-7 
27:     end if 
28:   else if none of node is assigned then 
29:       if exist an register rk can be used for both node without violate the 
            conflict of the other assignments till now then 
30:         M.add(v,rk), M.add(u,rk) 
31:       else 
32:         assign as line 15-19 
33:      end if 
34:     end if 
35:    end if 
36:   end while 
37: return M 

2.6 Experimental setup for performance evaluation 
The experiment is built up in Fedora 12 combined with Windows 7 home basic version. 
The test cases are selected from the MIBench [Guthaus, Ringenberg, Ernst et al. (2001)]. 
The compiler tools are arm-linux-gcc 4.4.3, and combined with objdump 2.19.51 to get 
the disassemble codes. The sim-profile tool for arm is used as profile tool to get the 
access frequency of instructions. The whole experimental framework is shown in Fig. 4. 
Firstly, we use the arm-linux-gcc to compile the source code to binary codes in Fedora 12 
environment. Then, we disassemble and get profile information for the binary codes 
respectively. After getting the disassemble codes and profile information, we use them as 
input for the NARR processor to get the crosstalk aware optimized binary codes. Finally, 
we compare the source binary codes to the optimized binary codes to evaluate the 
performance of NARR, and analyze the improvement details in crosstalk reduction, 
especially for 3C and 4C ones. 
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Figure 4: Experiment framework 

3 Results and discussions 
3.1 Performance of NARR 
Fig. 5 presents the decreased percentage of 4C and 3C+4C crosstalk for NARR, compared 
with the results of GCC. From this benchmark, we can see that the 4C crosstalk has been 
significantly reduced. In the cases such as stringsearch_large, stringsearch_small, dijkstra, 
and crc, the reduction percentage of 4C crosstalk is higher than 95%, eliminating almost all 
4C crosstalk of the program. And the average decrease rate is about 81%. And for 3C+4C 
crosstalk, we can see that most of them are also significantly reduced except dijkstra since 
the dijkstra has many conflicts between the 3C and 4C crosstalk. We force a crosstalk avoid 
priority for 4C, so the dijkstra benchmark result is not so good in 3C+4C condition. 
However, we still get an excellent reduction rate under the major benchmark tests for 
3C+4C and the average reduction rate of all tested benchmarks is about 44%. 
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Figure 5: 4C and 3C+4C crosstalk reducing in crosstalk number 
For better understanding the crosstalk avoid in instruction level, we also analyze the 4C 
and 3C+4C crosstalk in dynamic execution with profile recorded in Fig. 6. From this 
result, we can see that the 4C crosstalk shows again a good reduction and the average 
decreased percentage is 80.87%. The highest reduction rate is 99.99% for the crc test 
under that only two 4C crosstalk appeared in the program after optimization (shown in 
Tab. 2). And for 3C+4C crosstalk, the average reduction percentage is also 37.01%, 
similar to the results shown in Fig. 5. Special cases are, however, again a smaller 
reduction rate recorded in 3C+4C crosstalk condition for stringsearch_large, patricia and 
dijjkstra tests. The main reason could be that in an instruction, there may be some 
crosstalk in the same class such as 3C. So if the instruction frequently executes, the 
crosstalk data at instruction level will be less than those at crosstalk number level. 
However, getting crosstalk statistics at instruction level is reasonable since the program is 
executed at instruction level and the possible attackers might also try to work in the 
instruction level to get the most detailed information of the system. 

Table 2: Crosstalk comparison of GCC and NARR 

Benchmark 
3C Crosstalk                           4C Crosstalk 

GCC NARR NARR/ 
GCC GCC NARR NARR/ 

GCC 
bitcnts 87750075 5625002 0.06410 33750073 2250001 0.0667 
crc 159667218 26611206 0.1667 79833611 2 0 
dijkstra 76644109 7562503 0.0987 63344776 86222 0.0014 
patricia 590383 38600 0.0654 466640 19041 0.0408 
qsort 1250019 400005 0.3199 1050022 100003 0.0952 
sha 69017038 11570830 0.1677 39583124 4264487 0.1077 
string search_small 16563 15185 0.9168 15509 57 0.0037 
string search _large 3881159 352483 0.9247 705765 1334 0.0019 

 



1368                                                                       CMC, vol.63, no.3, pp.1357-1371, 2020 

Decreased percentage compared to GCC in crosstalk execution instructions
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Figure 6: 4C and 3C+4C crosstalk reducing in execution instructions 
Tab. 3 shows the evaluation results of adapting NARR to reduce the 4C and 3C+4C 
crosstalk in the aspect of the whole executed instructions. We can see that after NARR, 
the crosstalk percentage is significantly reduced for almost every benchmark tested, in 
both 4C and 3C+4C cases, in comparison with GCC. The average percentage of 4C 
crosstalk is reduced to a level of 0.89%, compared with the initially compiled result of 
9.89% with GCC (with a relative reduction rate of 91% based on the GCC value). 
Furthermore, under specific tests such as crc, dijkstra, etc, we get nearly 0 crosstalk in 4C 
situation after NARR. And the 3C+4C crosstalk is also reduced from 40.77% for GCC to 
25.85% after NARR, in average. So the NARR method is good for reducing the crosstalk, 
especially for the 4C case. 

Table 3: 4C and 3C+4C crosstalk reducing for the whole execution instructions 

Benchmark 
4C execution in structions                          3C+4C execution in structions  
GCC NARR      GCC NARR 

bitcnts 0.78% 0.31% 13.01% 5.02% 
crc 7.69% 0.00% 53.85% 23.08% 
dijkstra 3.08% 0.04% 34.33% 25.86% 
patricia 1.51% 0.74% 24.61% 19.00% 
qsort 11.27% 2.82% 46.48% 32.39% 
sha 8.20% 3.02% 57.10% 31.07% 
string search_small 23.10% 0.09% 48.29% 23.68% 
string search_large 23.29% 0.09% 48.48% 46.73% 
average 9.87% 0.89% 40.77% 25.85% 

Tab. 4 shows all types of crosstalk decreased percentage compared to GCC by NARR. 
We can see that the overall crosstalk is also decreased largely. For the bitcnts and qsort, 
the reduction rate is up to more than 44%. The average reduction rate is also achieved to 
24.24%. So our NARR method is not can get good performance for crosstalk. 
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Table 4: All types crosstalk reducing in execution instructions 
Benchmark                           GCC                            NARR                         Decreased rate 
bitcnts 2781573971 1553071408 44.17% 
Crc 2261952341 1809561893 20.00% 
dijkstra 1606207102 1384640962 13.79% 
patricia 12692958 11624053 8.42% 
qsort 270214 150181 44.42% 
sha 1168409001 935588937 19.93% 
search_small_pro 451658 325107 28.02% 
search_large_pro 10470186 8885138 15.14% 
average 980253428.9 712980959.9 24.24% 

4 Conclusions 
Crosstalk is a challenge not only for acquiring power-efficiency and performance, but 
also for satisfying the security and green requirements of an IC design since the 
nanoscale manufacturing has become the mainstream now. The new method we proposed 
here in crosstalk aware register reallocation is to reduce the influence of crosstalk for the 
couple instruction buses. The method is a software-only technique without any needs to 
modify the traditional hardware. Our NARR method can result in a reduction of 80.87% 
for 4C crosstalk in average and up to 99.99% at most. The percentage of 4C and 4C+3C 
crosstalk at instruction level is also reduced from the control GCC average value, by 9% 
and 15% in crosstalk rate difference, respectively. It confirms so that our NARR 
algorithm is effective in reducing the crosstalk especially for the 4C class. Of course, we 
can combine in the future with the methods proposed in Kuo et al. [Kuo, Chiang and 
Hwang (2007)] such as instruction scheduling, NOP padding to reduce further the 
crosstalk interference. 
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