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Abstract: Speaker separation in complex acoustic environment is one of challenging 
tasks in speech separation. In practice, speakers are very often unmoving or moving 
slowly in normal communication. In this case, the spatial features among the consecutive 
speech frames become highly correlated such that it is helpful for speaker separation by 
providing additional spatial information. To fully exploit this information, we design a 
separation system on Recurrent Neural Network (RNN) with long short-term memory 
(LSTM) which effectively learns the temporal dynamics of spatial features. In detail, a 
LSTM-based speaker separation algorithm is proposed to extract the spatial features in 
each time-frequency (TF) unit and form the corresponding feature vector. Then, we treat 
speaker separation as a supervised learning problem, where a modified ideal ratio mask 
(IRM) is defined as the training function during LSTM learning. Simulations show that 
the proposed system achieves attractive separation performance in noisy and reverberant 
environments. Specifically, during the untrained acoustic test with limited priors, e.g., 
unmatched signal to noise ratio (SNR) and reverberation, the proposed LSTM based 
algorithm can still outperforms the existing DNN based method in the measures of PESQ 
and STOI. It indicates our method is more robust in untrained conditions. 
 
Keywords: Binaural speech separation, long and short time memory networks, feature 
vectors, ideal ratio mask. 

1 Introduction 
Speech separation focuses on separating target speech from interference, i.e., background 
noise, reverberation and interfering speech. As a front-to-end of speech signal processing 
system, it is widely used in various scenarios, e.g., smart homes, hearing aids, and speech 
interaction system. 
In terms of the number of used microphones, speech separation methods can be divided 
into two categories such as monaural and array-based ones. In monaural methods, they 
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employ a variety of features, e.g., pitch [Han and Wang (2012)], Gammatone Frequency 
Cepstral Coefficient (GFCC) [Shao and Wang (2008)], and Delta Spectral Cepstral 
Coefficient (DSCC) [Kumar, Kim and Stern (2011)] to recognize target speech. However, 
the array-based methods can use more information from spatial configuration of sound 
source and acoustic environment to achieve better separation performance.  
To our knowledge, the array-based speech separation is founded on the array signal. Here, 
three well-developed array signal processing methods, i.e., beamforming [Jarrett, Habets and 
Naylor (2017); Benesty, Chen and Huang (2008); DiBiase, Silverman and Brandstein 
(2001)], Independent Component Analysis (ICA) [Sawada, Araki, Mukai et al. (2006)], and 
Compressed Sensing (CS) [Su, Tao, Tao et al. (2017)], are briefly introduced. Beamforming 
aims to boost the signal arriving from a particular direction and attenuate interference from 
other directions. In general, noise attenuation depends on the size and configuration of the 
array. As mentioned in Wang et al. [Wang and Chen (2018)], Wang point out that the room 
reverberation reduces the utility of beamforming. Also, when the target signal and inference 
signal are too close to each other, beamforming can’t be performed due to its resolution 
limitation. As for ICA, it separates the target signal by the search of statistically 
independent and non-Gaussian components in multichannel signals. However, the existing 
ICA-based separation performance is unsatisfied in the reverberant environment, while its 
source permutation problem after separation is still unsolved. The CS based method 
provides another way to tackle the separation problem. It employs the sparsity of the speech 
signal in the time-frequency domain. The separation is achieved by the sparse 
representation of source signal from sampled signals. CS uses the dictionary to reconstruct 
the speech source. For example, the training and testing signal are both derived from the 
same speakers or the same speech content. 
Nowadays, speech separation is frequently treated as a supervised learning problem. In the 
Computational Auditory Scene Analysis (CASA), the learning goal [Wang (2008); Wang, 
Brown and Darwin (2008)] is to compute Ideal Binary Mask (IBM) for each TF unit. 
Reports show [Sinex (2013)] that the IBM based speech separation elevates speech 
intelligibility in noisy environment. In our idea, the framework of supervised speech 
separation method can summarized into three important components, that is, acoustic 
features extraction, machine learning approach and training targets. Different algorithms 
focus on above components. Rickard proposed the degenerate unmixing estimation 
technique (DUET) algorithm [Rickard (2007)] to classify TF units by interaural time 
difference (ITD) and interaural level difference (ILD) for target signal separation. Roman et 
al. [Roman, Wang and Brown (2004)] utilized two binaural features to estimate IBM based 
on maximum a posteriori probability (MAP). Alinaghi et al. [Alinaghi, Wang and Jackson 
(2011)] combines binaural clues with blind source separation algorithms for speech 
separation in reverberant environment. The interaural phase difference (IPD) and ILD are 
modeled by a Gaussian mixture model (GMM), which is used to evaluate the classification 
of each TF unit. Abdipour et al. [Abdipour, Akbari, Rahmani et al. (2015)] proposed a 
speech separation algorithm based on spatial cues and model adaptation. They follow a 
maximum likelihood linear regression (MLLR) approach for tracking source relocations. 
Recently, the deep neural network (DNN) based method has made significant progress in 
speech separation. Wang et al. [Wang and Wang (2013)] proposed the DNN-SVM system 
to deal with speech separation under reverberant and noisy conditions. DNN is trained to 
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extract more discriminant features, and then SVM is for sub-band IBM estimation. DNN-
SVM system significantly improved speech intelligibility. Wang firstly used DNN to 
binaural speech separation [Jiang and Wang (2014)]. In each TF unit, the spatial feature 
ITD and ILD, and the monaural feature GFCC are extracted as input features to train the 
DNN. This study shows that a trained DNN generalizes well to the untrained spatial 
configurations of sound sources, that is, the specific placement of sound sources and 
sensors in an acoustic environment. Also, when the target and the interference source are 
co-located or close to each other, the monaural features improve separation performance. 
The spectral monaural feature [Zhang and Wang (2017)] is extended to complementary 
monaural feature set including amplitude modulation spectrum (AMS), relative spectral 
transform and perceptual linear prediction (RASTA-PLP) and mel-frequency cepstral 
coefficients (MFCC). Also DNN training aims to estimate the ideal ratio mask (IRM). Xiao 
et al. [Xiao, Zhao, Nguyen et al. (2016)] used DNN to predict static parameters, differential 
parameters and cross-correlation features, which improves the speech separation 
performance for reverberant and noisy speech. High-level features [Yu, Wang and Han 
(2016)] are extracted from low-level features, such as mixing vector (MV), ILD and IPD by 
unsupervised learning, and then supervised learning are to find the nonlinear functions 
between high-level features and the orientations of dominant source. Based on trained 
networks, the probability that each TF unit belongs to different sources (target and 
interferers) can be estimated based on the localization cues which is further used to 
generate the soft mask for source separation. Two-stage DNN structure is proposed in Zhao 
et al. [Zhao, Wang and Wang (2017)]. The masking from the first DNN is used for noise 
reduction, and the second DNN is spectral mapping for dereverberation. The results show 
that the performance of the two-stage DNN is greatly improved compared to the single-
stage DNN. Bi-directional long short term memory (BLSTM) [Wang, Zhang and Wang 
(2018, 2018)] is also utilized to determine whether or not the TF unit is dominated by target 
speech. Then TF units containing clean phase is for DOA estimation. Also, the 
classification of TF unit [Wang and Wang (2018)] is determined by deep clustering and 
permutation, integrates spectral and inter-channel phase patterns for multichannel speech 
separation. 
We note that, in Wang et al. [Wang and Chen (2018); Chen and Wang (2017); Ding, Li, 
Han et al. (2019)], LSTM shows its powerful ability to capture long-term speech contexts 
for speaker and noise-independent speech enhancement. Inspired by these researches, our 
study is conducted to use LSTM for binaural speaker separation, where LSTM 
framework is designed combining with spatial features and modified IRM. Hereafter, we 
treat the speech separation problem as a speaker separation problem, since we pursue the 
speech of target speaker by using the spatial information of speaker. In our scheme, since 
spatial features of consecutive frames are related for un-moving or slow-moving speakers, 
binaural spatial features are trained by BLSTM. In detail, Cross-Correlation Functions 
(CCF) with ITD and ILD are calculated at TF unit level as spatial features. Then, 
BLSTM classifier is trained at each frequency channel for the frequency-varied binaural 
features. Moreover, assuming the sum of each speaker magnitude is consistent with the 
original mixture, we force the BLSTM outputs are the proportions of the target speech for 
their corresponding mixtures, where the training labels are provided by the modified IRM. 
The remainder of the paper is organized as follows. Section 2 presents an overview of our 
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BLSTM-based binaural speech separation system and extraction of spatial features. 
Section 3 describes the structure and training of BLSTM networks. The simulation results 
and analysis are provided in Section 4. The conclusion is drawn in Section 5. 

2 Structure system overview and feature extraction 
The proposed speaker separation system is illustrated in Fig. 1. The binaural signals are 
first decomposed into TF units independently by 33-channel Gammatone filters. CCF, 
IID and ILD are extracted in each TF units, and regarded as spatial features. The BLSTM 
is trained to estimation IRM by these spatial features. Target speech is reconstructed from 
IRM and the mixture. 

 
Figure 1: Schematic diagram of the BLSTM based binaural separation system 

The physical model for binaural speech signals in reverberant and noisy environments 
can be formulated as: 
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where xL(t) and xR(t) are defined as binaural mixture signals, s1(t) and s2(t) represent two 
speech sources, hL and hR are the Binaural Room Impulse Response (BRIR) for left and 
right ears respectively for each speech source; Moreover, symbols nL(t) and nR(t) are 
additive noise for each ear, which are irrelevant to each other. 
Both left-ear and right-ear signal, xL(t) and xR(t), are decomposed into cochleagrams. The 
central frequencies of Gammatone filters ranges from 50 Hz to 8000 Hz on the equivalent 
rectangular bandwidth (ERB). The output of each channel is divided into 32-ms frame 
length with 16-ms frame shift. The binaural signals are then converted into TF units. In 
each unit, CCF, IID and ITD between the left-ear and right-ear signals are exacted.  
The normalized CCF of a TF unit pair is defined as: 
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where xL(i,k,m) and xR(i,k,m) are the binaural signals of TF unit at i-th channel and k-th 
frame, m is the sample number in a TF unit; N is the frame length; d denotes the delay 
between binaural signals and of the range from [-1 1] ms. For the 16 kHz sampling rate, 
the value of L is set to 16 with the dimension of CCF of size 33. 
The ITD of each TF unit is the delay corresponding to the maximum value of CCF. It is 
formulated as: 
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( , ) arg max ( , , ),
d

ITD i k CCF i k d L d L= − ≤ ≤               (3) 

And the ILD is defined as the energy ratio of the left and right ears in each TF unit pair: 
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The spatial feature vector extracted in each TF unit pair is as follows: 
( , ) [ ( , , ), ( , , +1),..., ( , , ), ( , ), ( , )]F i k CCF i k L CCF i k L CCF i k L ITD i k ILD i k= − −           (3) 

As the main spatial feature, the CCF for two sources with different azimuths is described 
in Fig. 2. With Head related impulse response (HRIR) and TIMIT data, those two source 
are located at -30° and 60° respectively. The upper half of the figure is a curve of CCF at 
each TF unit, while the lower half is a CCF curve of the all channels.  

 
Figure 2: CCF of speech source with different azimuth in clean and noisy environment 

Fig. 2 shows the CCFs in various acoustic environment. CCFs for speech source with 
azimuth 60° in an anechoic room and reverberant room are shown in Figs. 2(a) and 2(b) 
respectively. Figs. 2(c) and 2(d) show the CCF for -30° source in different acoustic 
environments. In both circumstances, the CCFs all have a similar peak in different TF units, 
which corresponds to the source location. In the high frequency channel, CCF has several 



 
 
 
1378                                                                       CMC, vol.63, no.3, pp.1373-1386, 2020 

peaks due to the phase wrapping. From Figs. 2(b) and 2(d), owing to the noise and 
reverberation, the peak of CCF is not obvious with the azimuth. Specifically, CCFs of each 
TF unit in reverberant room does not have obvious discriminability. 
For unmoving or slow-moving speaker, since the spatial feature of consecutive frames 
are highly correlated, the LSTM can be used to model temporal dynamics of spatial 
features. Time-step is the important parameter of LSTM, which is related to the inter-
frame correlation of the spatial features. Fig. 3 shows the inter-frame correlation 
coefficient of spatial features in different acoustic environments.  

 
Figure 3: The inter-frame correlation coefficient of spatial features 

In Fig. 3, the abscissa indicates the frame interval of the spatial feature, and the ordinate 
is the inter-frame correlation coefficient of the spatial feature. The selected environment 
includes a clean environment, a noisy environment (SNR=15 dB), a noisy and 
reverberant environment (SNR are set to 15 dB, 5 dB, reverberation times are 0.2 s and 
0.6 s). As a result, spatial features show significant inter-frame correlation, whether in a 
clean environment or in a reverberant and noisy environment. Noise and reverberation 
reduce the inter-frame correlation. When the frame interval exceeds 6, the correlation 
coefficient of the spatial features will be less than 0.1. At this time, inter-frame 
correlation is too small to be ignored. Thus the time step in the LSTM is set to 11, That is, 
IRM is estimated by using the spatial features of consecutive 11 frames (5 before and 5 
after the current TF unit).  

3 BLSTM based speaker separation 
3.1 Training targets 
The IRM is defined as Wang et al. [Wang, Narayanan and Wang (2014)]： 
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where S(i,k)2 and N(i,k)2 denote speech energy and noise energy within a TF unit, 
respectively. The tunable parameter β is commonly set to 0.5. 
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In this paper, we separate the different speakers through spatial information, the IRM is 
defined as: 
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where S1(i,k) and S2(i,k) represent the two speaker’s signals, and N(i,k) is the additive noise. 
In Eq. (7), numerator represents the energy of the target speech, while the denominator is 
the total energy of mixture. 
In a given TF unit, two sources and noise are regarded as irrelevant, IRM for different 
speaker and noise are rewritten as: 
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The LSTM outputs the IRM which indicates the magnitude ratio of the sound source to 
the mixture, and Eq. (8) guarantees that the IRM sum of all LSTM output neurons for 
each channel is 1. 

3.2 Speech separation and reconstruction 
As for speakers with different direction, LSTM outputs the IRM corresponding to the 
each speaker in given azimuth. In binaural speaker separation, sound sources are only 
located in the front half of the horizontal plane. With the MIT HRIR, the azimuth is 
uniformly sampled with the steps of 10°, the front plane has 19 directions, corresponding 
to the 19 output neurons of the LSTM network. Also, for the ambient noise, LSTM is 
designed with an additional noise term corresponding to the IRM of the noise in the 
mixture. Therefore, the number of LSTM output neurons is 20. Thus, the training target 
of LSTM for each channel is the IRM vector, including Eq. (8), that is: 

1 2[0,..., ,...,0,..., ,..., ]vector noiseIRM IRM IRM IRM=               (9) 

where dimension of IRMvector is 20×1, IRM1, IRM2 and IRMnoise are the IRM for two 
speaker sources and noise. The positions of IRM1 and IRM2 in the vector are consistent 
with the azimuth of the speech source.  
According to the IRM of LSTM output neuron, the target speech in each TF unit is 
reconstructed by: 
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where IRM1(i,k)and IRM2(i,k) are the estimated IRM from LSTM for two speakers. 
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3.3 The architecture of BLSTM 
The LSTM network consists of an input layer, an LSTM network layer and an output 
layer. The LSTM network layer is composed of a bidirectional long and short time 
memory unit (BiLSTM). Each memory unit is bidirectionally connected with the front 
and latter memory unit. The dimension of the input layer is equal to the dimension of 
spatial feature. The time-step in this paper is set to 11 (5 before and 5 after the current TF 
unit). The BLSTM network of the proposed system has two layers, including the hidden 
layer of 256 neurons and the output layer of 20 neurons. The structure of the LSTM is 
shown in Fig. 4. 

 

Figure 4: The structure of BLSTM 

Initialize the weight matrix in each LSTM network memory unit, the IRM vector in Eq. 
(9) is employed as the training target. The cost function here is the mean square error 
(MSE) between IRM vector and output of LSTM, which is calculated as follows: 

2'

2

1
2 vector vectorJ E IRM IRM = −  

            (7) 

where E [·] denotes the expectation operation, ‖∙‖2 represents L2 norm; IRM v̛ector is the 
output of LSTM, IRMvector is the desired output of LSRM. 
In this paper, the total number of training epochs is 20, the learning rate is 0.003. Adam 
optimizer is used to optimize the learning rate. 

4 Simulation and result analysis 
4.1 Simulation setup 
For both training and test, the mono source signals taken from the CHAINS Speech 
Corpus [Cummins, Grimaldi, Leonard et al. (2006)], is convoluted with the MIT HRIR to 
generate binaural signals. The CHAINS speech corpus contains 33 sentences spoken by 
36 speakers. 9 sentences are selected from the CSLU Speak Identification corpus and 24 
sentences are from the TIMIT corpus. Binaural signals of two source with different 
azimuth are mixed to generate the mixture speech. One of the source is male speech and 
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the other is a female speech. The speakers and speech content for training differs from 
that for test.  
Also, the Gaussian white noise is added to the binaural mixture speech as the ambient 
noise. The noise is uncorrelated with the binaural signals. In addition, binaural noise is 
uncorrelated with each other. The SNR of the mixtures signals for training and test is set 
to 0, 5, 10, 15 and 20 dB. For SNR generalization, the SNR for test also includes -3, 3, 6, 
9 and 12 dB.  
Binaural room impulse response (BRIR) is obtained by ROOMSIM software [Campbell, 
Palomaki and Brown (2005)], which simulate room acoustics. The reverberation time 
(RT60) of BRIR is 0.2 s and 0.6 s. The reverberation signals are only used for test, which 
verifies the generalization of the proposed algorithm to reverberation.  
The two speech sources are located on the front half of the horizontal plane with different 
azimuth. There are 171 combinations of source spatial configuration, all of which are used 
for training and test. The placement of speech sources and receiver are depicted in Fig. 5.  

 
Figure 5: The spatial configuration of sources and receiver 

Perceptual evaluation of speech quality (PESQ) and short-time objective intelligibility 
(STOI) are used to evaluate the performance of speaker separation. STOI is intelligibility 
metric, the value range is typically between 0 and 1. PESQ is correlated with the speech 
quality, the value is in a range of -0.5 to 4.5. 
We compare the performance of the proposed method, LSTM based separation with IRM, 
with several other related methods for binaural speech separation. The three algorithms 
involved in the comparison are: the speech separation algorithm based on DUET, DNN 
based method with IBM, and DNN based method with traditional IRM. 

4.2 Evaluation and analysis 
Firstly, we evaluate the performance of the proposed algorithm in the matched noisy 
environment, that is, the test mixtures and the training mixtures have the same SNR. 
PESQ for different algorithm are shown in Tab. 1.  

 
 
 
 



 
 
 
1382                                                                       CMC, vol.63, no.3, pp.1373-1386, 2020 

Table 1: PESQ of different methods in noisy environment 

SNR (dB) DUET IBM-DNN IRM-DNN IRM-LSTM 
0 1.403 1.467 1.946 1.874 
5 1.57 1.656 2.121 2.140 
10 1.754 1.834 2.258 2.355 
15 1.923 1.982 2.386 2.528 
20 2.102 2.119 2.510 2.654 

clean 2.628 2.355 2.765 2.795 

According to Tab. 1, the proposed method outperforms the other comparison methods in 
noisy environment. The second best system is IRM-DNN. The IRM-LSTM and IRM-
DNN is much better than IBM-DNN, indicates that soft label is more suitable for the 
training target for speaker separation. The proposed method takes the correlation of 
spatial features of consecutive TF units, which gets the further performance gains. 
As the two best algorithms for speech separation, only IRM-LSTM and IRM-DNN are 
compared in the following. The STOI is shown in Tab. 2. 

Table 2: STOI of IRM-DNN and IRM-LSTM in noisy environment 

SNR (dB) IRM-DNN IRM-LSTM 
0 0.574 0.603 
5 0.673 0.684 

10 0.720 0.735 
15 0.741 0.765 
20 0.752 0.782 

clean 0.762 0.796 

From Tab. 2, the proposed algorithm also obtains the STOI gains in all SNR conditions. 
The above results are the performance comparison under the condition that the test 
environment is matched with training environment. Below we give the PESQ results in 
an unmatched SNR environment, which SNR of test environment is set to -3, 3, 6, 9 and 
12 dB. The result is shown in Tab. 3. 

Table 3: PESQ comparison in the unmatched SNR 

SNR (dB) IRM-DNN IRM-LSTM 
-3 1.939 1.867 
3 2.143 2.161 
6 2.221 2.322 
9 2.293 2.452 

12 2.371 2.552 

From Tab. 3, we can see that in unmatched SNR environments, the proposed system 
achieves the best results. Although the test SNRs aren’t included in the domain of 
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training situation, IRM-LSTM still has reliable separation performance, indicating that 
the proposed algorithm is generalized to unmatched SNR environment. 
In addition to ambient noise, reverberation is also a common interference signal. The 
reverberant signals are not used during the training. But in the test, we used BRIR to 
generate the reverberated mixtures to verify algorithm generalization to reverberation. 
RT60s take the values of 0.2 s and 0.6 s. The results of STOI and PESQ are shown in Tab. 
4, 5, 6 and 7, respectively. 

Table 4: PESQ comparison under reverberant environment (RT60 is 0.2 s) 

SNR (dB) IRM-DNN IRM-LSTM 
0 1.717 1.710 
5 1.971 2.004 

10 2.139 2.151 
15 2.262 2.359 
20 2.345 2.380 

Table 5: STOI comparison under reverberant environment (RT60 is 0.2 s) 

SNR (dB) IRM-DNN IRM-LSTM 
0 0.545 0.601 
5 0.646 0.669 

10 0.711 0.717 
15 0.745 0.747 
20 0.763 0.760 

Table 6: PESQ comparison under reverberant environment (RT60 is 0.6 s) 

SNR (dB) IRM-DNN IRM-LSTM 
0 1.664 1.645 
5 1.913 2.024 

10 2.069 2.120 
15 2.180 2.253 
20 2.252 2.298 

Table 7: STOI comparison under reverberant environment (RT60 is 0.6 s)  

SNR (dB) IRM-DNN IRM-LSTM 
0 0.526 0.582 
5 0.621 0.650 

10 0.686 0.692 
15 0.721 0.719 
20 0.739 0.732 

Based on the results in Tabs. 4-7, we found that both methods achieved reliable speech 
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quality and intelligibility under reverberant conditions. Compared to Tabs. 1 and 2 with 
no reverberation, PESQ and STOI are slightly reduced, but the performance is still stable. 
At the same time, the performance of IRM-LSTM is better than that of IRM-DNN, which 
means that IRM-LSTM has better generalization performance to reverberation. 

5 Conclusion 
In this work, we present a LSTM-based binaural speech separation framework. By 
considering the temporal correlation of spatial features, we estimate the IRM for each 
sound source in TF unit more accurately by LSTM model. The LSTM-based speech 
separation has shown its ability to improve speech quality and intelligibility. Also, the 
proposed algorithm shows consistent results in unmatched reverberant and noisy 
conditions. The generalization ability is due to the use of LSTM model. 

Acknowledgment: This work is supported by the National Nature Science Foundation of 
China (NSFC) under Grant Nos. 61571106, 61501169, 41706103 and the Fundamental 
Research Funds for the Central Universities under Grant No. 2242013K30010. 
 
Conflicts of Interest: The authors declare that they have no conflicts of interest to report 
regarding the present study. 

References 
Abdipour, R.; Akbari, A.; Rahmani, M.; Nasersharif, B. (2015): Binaural source 
separation based on spatial cues and maximum likelihood model adaptation. Digital 
Signal Processing, vol. 36, pp. 174-183. 
Alinaghi, A.; Wang, W.; Jackson, P. J. (2011): Integrating binaural cues and blind 
source separation method for separating reverberant speech mixtures. Proceedings of 
IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 209-212. 
Benesty, J.; Chen, J.; Huang, Y. (2008): Microphone Array Signal Processing. Springer 
Science & Business Media. 
Campbell, D.; Palomaki, K.; Brown, G. (2005): A matlab simulation of “shoebox” 
room acoustics for use in research and teaching. Computing and Information Systems, vol. 
9, no. 4, pp. 48. 
Chen, J.; Wang, D. (2017): Long short-term memory for speaker generalization in 
supervised speech separation. Journal of the Acoustical Society of America, vol. 141, no. 
6, pp. 4705-4714. 
Cummins, F.; Grimaldi, M.; Leonard, T.; Simko, J. (2006): The chains corpus: 
characterizing individual speakers. Proceedings of SPECOM, vol. 6, pp. 431-435. 
DiBiase, J. H.; Silverman, H. F.; Brandstein, M. S. (2001): Microphone arrays: signal 
processing techniques and applications. Chapter Robust Localization in Reverberant 
Rooms, pp. 157-180.  
Ding, L.; Li, L.; Han, J.; Fan, Y.; Hu, D. (2019): Detecting domain generation algorithms 
with Bi-LSTM. Computers, Materials & Continua, vol. 61, no. 3, pp. 1285-1303. 



 
 
 
Binaural Speech Separation Algorithm Based on Long and Short Time                  1385 

Han, K.; Wang, D. (2012): A classification based approach to speech segregation. 
Journal of the Acoustical Society of America, vol. 132, no. 5, pp. 3475-3483. 
Jarrett, D. P.; Habets, E. A.; Naylor, P. A. (2017): Theory and Applications of 
Spherical Microphone Array Processing. Springer, USA. 
Jiang, Y.; Wang, D.; Liu, R.; Feng, Z. (2014): Binaural classification for reverberant 
speech segregation using deep neural networks. IEEE/ACM Transactions on Audio, 
Speech, and Language Processing, vol. 22, no. 12, pp. 2112-2121. 
Kumar, K.; Kim, C.; Stern, R. M. (2011): Delta-spectral cepstral coefficients for robust 
speech recognition. Proceedings of IEEE International Conference on Acoustics, Speech 
and Signal Processing, pp. 4784-4787. 
Rickard, S. (2007): The DUET blind source separation algorithm. Blind Speech 
Separation, pp. 217-241.  
Roman, N.; Wang, D.; Brown, G. J. (2004): A classification-based cocktail-party 
processor. Advances in Neural Information Processing Systems, pp. 1425-1432. 
Sawada, H.; Araki, S., Mukai, R.; Makino, S. (2006): Blind extraction of dominant 
target sources using ICA and time-frequency masking. IEEE Transactions on Audio, 
Speech, and Language Processing, vol. 14, no. 6, pp. 2165-2173. 
Shao, Y.; Wang, D. (2008): Robust speaker identification using auditory features and 
computational auditory scene analysis. Proceedings of IEEE International Conference on 
Acoustics, Speech and Signal Processing, pp. 1589-1592. 
Sinex, D. G. (2013): Recognition of speech in noise after application of time-frequency 
masks: dependence on frequency and threshold parameters. Journal of the Acoustical 
Society of America, vol. 133, no. 4, pp. 2390-2396. 
Su, J.; Tao, H.; Tao, M.; Wang, D.; Xie, J. (2017): Narrow-band interference 
suppression via RPCA-based signal separation in time-frequency domain. IEEE Journal 
of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 11, pp. 
5016-5025. 
Wang, D. (2008): Time-frequency masking for speech separation and its potential for 
hearing aid design. Trends in Amplification, vol. 12, no. 4, pp. 332-353. 
Wang, D.; Brown, G. J.; Darwin, C. (2008): Computational auditory scene analysis: 
principles, algorithms and applications. Acoustical Society of America Journal, vol. 124, 
no. 1, pp. 13. 
Wang, D.; Chen, J. (2018): Supervised speech separation based on deep learning: an 
overview. IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, 
no. 10, pp. 1702-1726. 
Wang, Y.; Narayanan, A.; Wang, D. (2014): On training targets for supervised speech 
separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 
22, no. 12, pp. 1849-1858. 
Wang, Y.; Wang, D. (2013): Towards scaling up classification-based speech 
separation. IEEE Transactions on Audio, Speech, and Language Processing, vol. 21, 
no. 7, pp. 1381-1390. 



 
 
 
1386                                                                       CMC, vol.63, no.3, pp.1373-1386, 2020 

Wang, Z. Q.; Wang, D. (2018): Combining spectral and spatial features for deep 
learning based blind speaker separation. IEEE/ACM Transactions on Audio, Speech, and 
Language Processing, vol. 27, no. 2, pp. 457-468. 
Wang, Z. Q.; Zhang, X.; Wang, D. (2018): Robust speaker localization guided by deep 
learning-based time-frequency masking. IEEE/ACM Transactions on Audio, Speech, and 
Language Processing, vol. 27, no. 1, pp. 178-188. 
Wang, Z. Q.; Zhang, X.; Wang, D. (2018): Robust TDOA estimation based on time-
frequency masking and deep neural networks. Proceedings of INTERSPEECH, pp. 322-326. 
Xiao, X.; Zhao, S.; Nguyen, D. H. H.; Zhong, X.; Jones, D. L. et al. (2016): Speech 
dereverberation for enhancement and recognition using dynamic features constrained 
deep neural networks and feature adaptation. EURASIP Journal on Advances in Signal 
Processing, vol. 2016, no. 4, pp. 1-18. 
Yu, Y.; Wang, W.; Han, P. (2016): Localization based stereo speech source separation 
using probabilistic time-frequency masking and deep neural networks. EURASIP Journal 
on Audio, Speech, and Music Processing, vol. 2016, no. 7, pp. 1-18. 
Zhang, X.; Wang, D. (2017): Deep learning based binaural speech separation in 
reverberant environments. IEEE/ACM Transactions on Audio, Speech, and Language 
Processing, vol. 25, no. 5, pp. 1075-1084. 
Zhao, Y.; Wang, Z. Q.; Wang, D. (2017): A two-stage algorithm for noisy and 
reverberant speech enhancement. Proceedings of IEEE International Conference on 
Acoustics, Speech and Signal Processing, pp. 5580-5584. 


	Binaural Speech Separation Algorithm Based on Long and Short Time Memory Networks
	Lin Zhou0F , *, Siyuan Lu1, Qiuyue Zhong1, Ying Chen1, 2, Yibin Tang3 and Yan Zhou3

	References

