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Abstract: Currently, the top-rank-k has been widely applied to mine frequent patterns 
with a rank not exceeding k. In the existing algorithms, although a level-wise-search 
could fully mine the target patterns, it usually leads to the delay of high rank patterns 
generation, resulting in the slow growth of the support threshold and the mining 
efficiency. Aiming at this problem, a greedy-strategy-based top-rank-k frequent patterns 
hybrid mining algorithm (GTK) is proposed in this paper. In this algorithm, top-rank-k 
patterns are stored in a static doubly linked list called RSL, and the patterns are divided 
into short patterns and long patterns. The short patterns generated by a rank-first-search 
always joins the two patterns of the highest rank in RSL that have not yet been joined. On 
the basis of the short patterns satisfying specific conditions, the long patterns are 
extracted through level-wise-search. To reduce redundancy, GTK improves the 
generation method of subsume index and designs the new pruning strategies of 
candidates. This algorithm also takes the use of reasonable pruning strategies to reduce 
the amount of computation to improve the computational speed. Real datasets and 
synthetic datasets are adopted in experiments to evaluate the proposed algorithm. The 
experimental results show the obvious advantages in both time efficiency and space 
efficiency of GTK. 
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1 Introduction 
The power of data mining facilitates every aspect of our lives, and some applications 
[Ruiz and Alisha (2019); Guo, Liu, Ren et al. (2019)] are very intuitive examples. The 
frequent patterns mining, one of the most popular areas of data mining research, was 
proposed by Agrawal et al. [Agrawal, Imieliński and Swami (1993)]. Its main task is to 
search for itemsets, sequences or structures with a support that is not less than the user-
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specified minimum support threshold in the dataset, among which frequent itemsets are 
the most basic frequent patterns. Apriori [Agrawal and Srikant (1994)] is the first mining 
algorithm of frequent patterns and was followed by two other classic algorithms 
[Ogihara, Zaki, Parthasarathy et al. (1997); Han, Pei, Yin et al. (2004)]. Those three are 
representative algorithms for horizontal, vertical and trie layouts. In addition, several 
algorithms [Zaki and Gouda (2003); Tsay and Chiang (2005); Vo, Coenen, Le et al. 
(2013); Vo, Le, Coenen et al. (2016)] also effectively implemented this mining task. With 
more advanced researches, frequent pattern mining has spawned a variety of extended 
algorithms, such as:  
(1) algorithms for closed frequent patterns mining [Zaki and Hsiao (2002); Wang, Han 
and Pei (2003); Fang, Wu, Li et al. (2015)];  
(2) algorithms for maximal frequent patterns mining [Burdick, Calimlim, Flannick et al. 
(2005); Zeng, Pei, Wang et al. (2009); Yun and Lee (2016)];  
(3) algorithms for high utility frequent patterns mining [Erwin, Gopalan and Achuthan 
(2007); Hu and Mojsilovic (2007); Yun and Ryang (2015)];  
(4) algorithms for erasable frequent patterns mining [Hong, Lin, Lin et al. (2017); Le and 
Vo (2014); Nguyen, Le, Vo et al. (2015)].  
Early mining algorithms of frequent patterns usually pre-set the support threshold, whose 
accuracy requires professional knowledge or experience and is too hard for ordinary 
users. If the threshold is set too high, the users’ desired patterns cannot be fully detected. 
And conversely, many useless candidates are generated, which considerably reduces the 
mining efficiency and even causes the crash. To tackle this problem, Han et al. [Han, 
Wang, Lu et al. (2002)] proposed a top-k closed frequent pattern mining task, and 
designed TFP (top-k frequent closed patterns) algorithm [Wang, Han, Lu et al. (2005)]. 
Although no min_sup is not used in this algorithm, its core concept min_l is as difficult to 
predict as the traditional min_sup. In addition, due to the same support which may belong 
to different patterns, the final mining results may cause the missing of important patterns 
for users. Aiming at the two major defects of TFP, Deng et al. [Deng and Fang (2007)] 
introduced the concept of top-rank-k frequent patterns. In the circumstances, there’s no 
need for min_sup and min_l to be predetermined. How to mine top-rank-k frequent 
patterns with high efficiency has received extensive attention in the industry and 
academia. In recent years, numerous improved algorithms [Fang and Deng (2008); Deng 
(2014); Huynh, Le, Vo et al. (2015); Dam, Li, Fournier et al. (2016); Wang, Ren, N Davis 
et al. (2017); Jia, Xiang and Liu (2018)] have been produced.  
FAE (Vertical Mining of Top-rank-k Frequent Patterns, FAE) algorithm [Deng and Fang 
(2007)] adopts the horizontal data layout, uses heuristic rules and effective pruning 
strategies to reduce the mining space, and retains useful patterns for the expansion of 
long patterns. VTK (Vertical Mining of top-rank-k Frequent Patterns, VTK) algorithm 
[Fang and Deng (2008)] follows the level-wise-search method of FAE. In order to 
overcome the problem that many scans for dataset in FAE face, VTK adopts vertical data 
layout so that pattern information can be represented by Tid-list and the support of each 
pattern is obtained through calculating the length of its Tid-list. VTK achieves better 
results than FAE. However, when facing dense databases, VTK may experience 
performance degradation. To this end, Deng proposed the NTK (Fast mining top-rank-k 
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frequent patterns by using Node-lists, NTK) algorithm Deng (2014)] that compresses 
dataset into a PPC-tree like FP-Tree and conducts a layer-wise mining of top-rank-k 
frequent patterns by extracting 1-patterns’ Node-list [Deng and Wang (2010)]. In spite of 
the improvement compared with FAE and VTK, NTK has not produced a strategy to 
narrow the search range. iNTK (top-rank-k frequent patterns mining algorithm based on 
subsume index and N-list, iNTK) [Huynh, Le, Vo et al. (2015)] is an NTK-based 
optimized algorithm whose core structure adopts N-list [Deng, Wang and Jiang (2012)]. 
N-list, an efficient structure, composed of prefix nodes, the length of which is always 
shorter than that of Node-list composed of suffix nodes, takes less memory than the 
Node-list. Moreover, iNTK reduces the scope of pattern mining and speeds up the mining 
process by introducing subsume index [Song, Yang and Xu (2008)]. iNTK was shown to 
outperform NTK and its advantages increase as the k value increases. Although iNTK has 
been optimized for lifting efficiency, it still leaves some following issues left for BTK to 
solve. In response to the above problems, BTK (top-rank-k frequent patterns mining 
algorithm based on TB-tree, BTK) [ Dam, Li, Fournier et al. (2016)] gives some effective 
solutions: (1) It proposes a TB-tree and B-lists in which each node records its start-build 
and finish-build code to resolve the time-consuming construction of PPC-tree. (2) To 
avoid useless operations in iNTK, until the final candidates are found, patterns containing 
subsume indexes are combined. In the meantime, BTK also designs an EP (early pruning 
by threshold) strategy and an RSC (raising threshold by the support of candidates) 
strategy about B-list. An extensive experimental study has shown that BTK is superior to 
iNTK with a significant difference in the round [Dam, Li, Fournier et al. (2016)].  
In summary, although a variety of algorithms have been proposed to achieve fast mining 
of top-rank-k frequent patterns, it is not yet efficient enough. Thus, without a high-
performance method of top-rank-k frequent patterns mining, it is difficult to save runtime 
and memory usage. Consequently, this paper proposes an algorithm called GTK. 
Conclusively, GTK and BTK were compared through numerous experiments, and the 
experimental results reflect obvious advantages in both time efficiency and space 
efficiency of GTK. 
The main contributions of this paper are as follows:  
(1) Aiming at the problem that B-list takes up a lot of space and a long time for 
intersection function, an FPI (frequent pattern information) class is designed to represent 
pattern information by using vertical data structure. The FPI of a pattern includes three 
parts: pattern’s items (Its), the subsume indexes of items (Si), and the bitset of pattern’s 
Tids (Bs). The length of bitset is the support of the pattern. The Tids information 
represented by bitset is greatly compressed to save storage space. In the pattern mining, 
bitset performs bitwise AND operation for simplifying the intersection function of B-lists. 
(2)  To reduce the high maintenance cost of the top-rank-k table structure, a static 
doubly linked list structure named RSL (Static Doubly-Linked Lists of top-rank-k) is 
designed to store the top-rank-k frequent patterns. All nodes are listed in the RSL with a 
descending order of Support. As a linear table described by array, RSL only needs to 
modify cursor field instead of moving large numbers of elements when inserting and 
deleting nodes, which effectively reduces consumption and saves time cost. 
(3) With regard to the defect of time consuming in level-wise-search, a hybrid mining 
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algorithm is designed. According to the length threshold, the pattern is divided into short 
patterns and long patterns. For mining short patterns, rank-first-search is proposed based 
on the greedy strategy. Taking all short patterns with a length equals the length threshold 
as the input, long patterns are generated through level-wise-search. The algorithm is so 
efficient that it promotes fast generation of high rank patterns and reduces massive 
invalid joins. At the same time, related strategies are also designed to prune candidates. 
(4) For the shortcoming of inefficient use of computing resources in the generation 
process of subsume index, an optimization method is proposed: the process of finding 
subsume indexes is embedded in the rank-first-search, and the qualified subsume indexes 
will be searched when mining the 2-patterns, therefore, it avoids 1-patterns being scanned 
repeatedly so as to make full use of computing resources. This method is efficient despite 
facing the sparse or dense datasets. 
The rest of this paper is organized as follows. The basic concepts are given in Section 2, 
highlights the problems associated with the current mainstream algorithms, and also 
conducts an analysis; Section 3 describes the construction and initialization of RSL; Section 
4 details the design and implementation of the GTK algorithm, including the Ex_Short 
method, the Ex_Long method, the related pruning strategies and a simple example. Section 
5 presents the experimental design, results and analysis; Section 6 draws a conclusion of 
the full text and forecasts the development tendency of future research. 

2 Basic definitions and problem analysis 
2.1 Problem of mining top-rank-k frequent patterns 
Related definitions of frequent patterns can be found in Agrawal et al. [Agrawal and 
Srikant (1994)]. The relevant basic concepts and problem of the mining top-rank-k 
frequent patterns in the literature [7] are described below.  
The Rank of a Pattern. Given a transaction database D and a pattern A (A⊆ I), RA, the 
rank of A, is defined below, where |Y| is the number of elements in Y. 
RA=∣{X�Sup∣X⊆I and X�Sup≥A�Sup}∣                                                             (1) 

Top-rank-k Frequent Patterns. Given a transaction database D and a threshold k, a 
pattern A (A ⊆ I) is referred as a top-rank-k frequent pattern if and only if RA is not 
greater that k. That is, RA ≤ k.  
Top-rank-k Frequent Patterns Mining. Given a transaction database D and a threshold k, 
the top-k frequent patterns mining is the task of finding the complete set of frequent 
patterns whose ranks are not greater than k, that is, the set of top-rank-k frequent pattern 
is equal to Stop-k, the minimum support which is equal to the support threshold denoted as 
St in this paper: 
Stop-k=∣{ X∣X ⊆ I and Rx ≤ k }∣                                                                                   (2) 
Example 1. Tab. 2 shows the support and rank of each pattern of D1 in Tab. 1. [c] has the 
largest support count, so Rc=1, and similarly, Rd=5. Assume that the rank threshold k=2, 
the top-rank-k frequent pattern set of the top two is {[c], [a], [e], [b], [b, c]}, then St 
equals 6.  
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Table 1: Transaction database D1 

Tids List of items Tids List of items Tids List of items 
1 c, a, b, d 4 e, b, c, a 7 a, e, c 
2 a, b, c 5 c, e, b 8 a 
3 b, c, e, d 6 c, e, a, b 9 e 

 
Table 2: Rank and Support of patterns 

Rank Sup  Patterns 
1 7 [c] 
2 6 [a], [e], [b], [b, c] 
3 5 [a, c], [e, c] 
4 4 [b, a], [b, a, c], [b, e], [b, e, c] 
5 3 [a, e], [a, e, c] 
6 2 [d], [d, b], [d, b, c], [d, c], [b, a, e], [b, a, e, c] 
7 1 [d, a], [d, a, c], [d, e], [d, e, c], [d, b, a], [d, b,a,c], [d, b,e], 

[d,b,e,c] 

2.2 The subsume indexes of frequent 1-patterns 
The subsume index is proposed by Song et al. [Song, Yang and Xu (2008)] to reduce the 
search scope in the pattern mining process, which is defined as: 
Subsume(X)={Y∈I∣X≺Y∧g(X)⊆g(Y)∧g(X)={T∈D∣∀i∈X, i∈T}}                        (3) 
The subsume index of pattern (the representative item [Song, Yang and Xu (2008)]) is an 
itemset, which means that if Y∈ Subsume(X), according to some order “ ≺ ”(e.g., 
lexicographic order), then the Tids of X are the subset of Tids of Y. Obviously, the 
support of the union of X with any nonvoid subset of Subsume(X) is equal to Sup(X), 
conversely, if the support of the union of Y one of 1-patterns with X equals Sup(X), so Y
∈Subsume(X). 
Example 2. In Tab. 2, g([d])=Tids{1, 3}, g([b])=Tids{1, 2, 3, 4, 5, 6}, then it is easy to 
find that |g([d, b])|=[d].Sup=2. From the above, [b]∈Subsume([d]). 

2.3 Problem analysis 
This paper argues that: St is the determinant for the top-rank-k frequent patterns. St of the 
mainstream algorithm raises dynamically with the mining process until it is finally 
determined, crucially, the speed of this process affects the performance of the algorithm 
directly. So, the key to improve the mining efficiency of top-rank-k frequent patterns is to 
accelerate the rise of St.  
Proceeding from this view, this paper proposes an algorithm called GTK which focuses 
on the crucial point of accelerating the rise of St to find the final St as early as possible. 
The study proves that when the k is constant and within a reasonable range, the speed of 
mining high rank patterns is positively correlated with the speed of raising St. Therefore, 
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to improve mining efficiency, algorithms should be made to speed up the generation of 
high rank patterns. Fast generation of high rank patterns is a challenging work that almost 
all tr-aditional algorithms avoid. To implement the mining of top-rank-k frequent patterns, 
traditional algorithms generally adopt the level-wise-search which obtains the (t+1) 
patterns by joining t-patterns. This method is not efficient enough. 
When k equals to 5,  a simple example is shown in Fig. 1, in which the horizontal number 
is pattern’s rank and the gray area refers to the top-rank-k frequent patterns. As shown, 
the level-wise-search performs 8 joins in total. By 7 joins, the final St is determined as the 
support of the pattern [ABC]. {[BD], [AD], [CD]} are not top-rank-k frequent patterns, 
so these three joins are useless. Not only that, in fact, most of patterns in each level are 
not top-rank-k frequent patterns, so an equal number of joins are useless. Useless joins 
should be avoided as much as possible since they are time-consuming and space-
consuming. While observing {[BD], [AD], [CD]}, it is not difficult to realize that these 
three patterns are generated by [D] and other patterns. [D] has a rank of 6, which makes it 
infrequent. However, due to the limitation of level-wise-search, [D] hasn't been filtered 
out in time for the slowly rising St. 
 

Step St Input dataset D, let k=5 1 2 3 4 5 6 7 8 

1 0 Ectract frequent 1-patterns A B  C  D   

2 D.Sup Join 1-patterns to get 2-patterns   AB AC 
BC  BD AD CD 

3 ABC.Sup Join 2-patterns to get 3-patterns     ABC   BCD 

4 ABC.Sup While t-patterns is empty, end the mining.         

Figure 1: The process of level-wise-search in top-rank-k 

Step St Input dataset D, let k=5 1 2 3 4 5 6 7 8 

1 0 Ectract frequent 1-patterns A B  C  D   

2 D.Sup Join rank 2 with rank 1   AB      

3 ABC.Sup Join rank 4 with rank 1, rank 2, rank 3    AC 
BC ABC    

4 ABC.Sup While rank.Sup < St(D.Sup<ABC.Sup), end  
the mining.          

Figure 2: The process of rank-first-search in top-rank-k 

In order to break through the constraint of level-wise-search, based on the greedy strategy, 
this paper proposes the rank-first-search method just introduced. Fig. 2 shows the process 
of rank-first-search with the same dataset and k. [AB] with a rank of 3 is generated first, 
and thereafter, the final St is determined by only 3 joins. As a result, high rank patterns such 
as {[AB], [AC], [BC]} are generated fast, moreover, benefiting from fast rising St, [D] has 
been removed from the frequent patterns and can't join with any other pattern. 
Consequently, there is a reduction of 3 useless joins, which may reach thousands or even 
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tens of thousands on the experimental dataset. In comparison, the computational cost of 
rank-first-search is less than 1/2 of that of level-wise-search in the example.  
Thus, the argument presented above are verified. 

3 RSL: Construction and initialization 
3.1 FPI: definitions and properties 
3.1.1 Basic definitions and properties 
Definition 1 (FPI of a 1-pattern). Given a transaction dataset D and a pattern X, the class 
consisting of (X.Its, X.Bs, X.Si) is called FPI of X and is denoted as FX. Its means items, 
Bs is the bit set of Tids of X and its size equals the support of X (X.Sup), Si is the set of 
X’s subsume indexes (described in the next chapter). 
Property 1. For any FX and FY, if |X.Bs & Y.Bs|=X.Sup, then Y∈Subsume(X). 
Proof. If |X.Bs & Y.Bs|=X.Sup, i.e., |X.Bs∩Y.Bs|=|X.Bs|, it is equivalent to X.Tids⊆Y.Tids, 
i.e., g(X)⊆g(Y), it will be found from the definition of subsume index that Y∈Subsume(X). 
Q.E.D. 
Definition 2 (FPI of a t-pattern). Assume that pattern X, Y, both with length not greater 
than t(t≥2), FX=(X.Its, X.Bs, X.Si), FY=(Y.Its, Y.Bs, Y.Si), and the join operation of X and 
Y to generate A is called Join, FA=Join (FX, FY)=(A.Its, A.Bs, A.Si), it satisfies:  
• A.Its=X.Its∪Y.Its 
• A.Bs=X.Bs & Y.Bs 
• A.Si=X.Si∪Y.Si 
Example 3. The FPIs of  1-patterns are shown in Tab. 3, F[a]=([a], <1,1,0,1,0,1,1,1,0>, ∅), 
F[b]=([b], <1,1,1,1,1,1,0,0,0>, {c}). According to definition 2, it can be found that 
F[ab]=Join(F[a], F[b])=([ab], <1,1,0,1,0,1,0,0,0>, {c}). 

Table 3: The FPIs of 1-patterns 

Sup Its Bs Si 
7 c <1,1,1,1,1,1,1,0,0> ∅ 
6 e <0,0,1,1,1,1,1,0,1> ∅ 
6 a <1,1,0,1,0,1,1,1,0> ∅ 
6 b <1,1,1,1,1,1,0,0,0> {c} 
2 d <1,0,1,0,0,0,0,0,0> {c, b} 

Inference 1. Let Max(A, B) be the highest possible rank of AB generated by Join(A, B), if 
X, Y, Z are the three patterns of dataset D, and RankX ≤RankY ≤RankZ, then Max(X,Y) ≤ 
Max(Y, Z). 
Proof. As RankX≤RankY≤RankZ, i.e., X.Sup≥Y.Sup≥Z.Sup. From the Definition 1 we 
have that X.Sup=|X.Bs|, Y.Sup=|Y.Bs| and Z.Sup=|Z.Bs|. According to definition 2, 
XY.Bs=X.Bs & Y.Bs, so XY.Bs⊆X.Bs, XY.Bs⊆Y.Bs. It is easy to have that |XY.Bs|≤|X.Bs| 
and |XY.Bs|≤|Y.Bs|. Because |X.Bs|=X.Sup≥Y.Sup=|Y.Bs|, so |XY.Bs|≤|Y.Bs|=Y.Sup, i.e., 
Max(X,Y)=RankY. Similarly, Max(Y, Z)=RankZ. Since RankY≤RankZ, so Max(X, 
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Y)≤Max(Y, Z). Q.E.D. 
Example 4. In combination with Tab. 2, Rank[c]<Rank[a]≤Rank[b], F[ab]=([ab], 
<1,1,0,1,0,1,0,0,0>, {c}), [ab].Sup=4, Rank[ab]=4. Similarly, F[ac]=Join(F[a], F[c])=([ac], 
<1,1,0,1,0,1,1,0,0>, ∅), [ac].Sup=5, Rank[ac]=3, we have that Max([a], [c])≤Max([a], [b]). 
Conclusion can be drawn from the Inference 1: Compared with the Join of any pattern 
and a low rank pattern, the Join of that pattern and a high rank pattern has a better chance 
of generating a high rank pattern. This conclusion provides a more powerful theoretical 
support for the analysis in Section 2. It is also the most direct basis for adopting rank-
first-search that always joins the two patterns with highest rank to promote the early 
generation of high rank patterns. 

3.1.2 The generation method of subsume indexes 
Different from other patterns where the join operation must be performed, those patterns, 
including a representative item that has the same support as a representative item, can be 
generated directly by connecting the representative item with all the subsets of subsume 
index. To find the subsume indexes, the method of BTK is to check the definition of 
subsume index in Section 2.2 from the opposite direction when traversing 1-pattern list. 
However, when there are few subsume indexes of the dataset, this method has little 
contribution to the mining progress. Meanwhile, it will repeat the traversal of the 1-pattern 
list when calling the Candidate_gen method, the cost for repeat is unnecessary and with 
side effects on mining. So, this method does not make full use of computing resources and 
it is too time-consuming. In this paper, an optimization method of subsume index 
generation method called Gen_Subsume is given and mainly reflected in two aspects: 
(1) Embed the generation process of subsume index into the process of candidate 
generation instead of before the process of candidate generation to be more time-saving. 
In this paper, when mining 2-patterns in the process of candidate generation, a 2-pattern 
X will be generated by joining two 1-patterns. According to Property 1, if the Bs size of 
FX is equal to the support of one of these two patterns, then another pattern is recorded as 
subsume index. Therefore, there is no need to scan 1-patterns list repeatedly. The 
advantage of Gen_Subsume is that while scanning 1-patterns list, not only the subsume 
indexes are found, but also all frequent 2-patterns are obtained. 
(2) Use the Bs of FPI for bitwise and operation instead of the B-info-code of B-list for 
comparison for high efficiency. Gen_Subsume makes use of bitsets to reduce the amount 
of pattern information storage space needed and take advantage of bit-level parallelism in 
hardware to increase performance.  
After Gen_Subsume, the union of 1-patterns and 2-patterns including subsume indexes 
will be obtained and used to prepare for RSL initialization. Details of Gen_Subsume are 
presented in Fig. 3. Initially, Si of each FPI is initialized as the empty set, the St is set to 
zero. C1(1-patterns) is obtained and arranged in descending order of support. If the length 
of C1 is longer than k, St is updated, then it produces a frequent 1-patterns set L1 and a set 
of Sup Lsup. Then the pattern in a range from the second one to the last one of L1, joins 
with each pattern in front of it one by one, all 2-patterns generated by this pattern are 
stored in Ltmp. Once the subsume indexes of the pattern is found, the Si of each pattern in 
Ltmp should be updated. During this process, St has been rising. 
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Algorithm Gen_Subsume (D, k) 
Input: D, k 
Output: LU 
1 Let C2=∅,Lsup=∅; 20      p.Si←(p.Si+L1[j].Its)|∀p∈Ltmp∧Ltmp!=∅ 

2 Get C1 consisting of FPIs of all 1-patterns, 
and sort C1 in descending of Sup; 21     end if 

3 if(|C1|≥k) then 22     if(q.Sup∉Lsup) then 
4  St←C1[k-1].Sup; 23      Lsup←Lsup+q.Sup; 
5 end if 24     end if 
6 L1←{p | p∈C1∧p.Sup≥St }; 25     if (|Lsup|>k) then 
7 Lsup←{p.Sup | p∈L1}; 26      Lsup←Lsup-St; 
8 for (i<-1 until |L1|) do 27      St←Lsup.min; 
9  if (L1[i].Sup≥St) then 28     end if 
10 Ltmp←∅ 29    end if 
11   for (j<-0 until i) do 30   end for 
12    q.Bs←L1[i].Bs&L1[j].Bs; 31  end if 
13    q.Sup←|q.Bs|; 32 C2←C2+Ltmp; 
14    if(q.Sup≥St) then 33 end for 
15     q. Its←L1[i]. Its∪L1[j]. Its; 34 LU←{q|q∈(C2∪L1)∧q.Sup≥St}  

16     if(L1[i].Sup !=q.Sup) then 35 Group FPIs in LU by Sup and arrange them in 
descending order according to Sup; 

17      Ltmp←Ltmp+q; 36 return LU 
18     else  37 end Gen_Subsume 
19      L1[i].Si←L1[i].Si+L1[j]. Its;   

Figure 3: Gen_subsume algorithm 

Example 5. Taking the dataset D1, k=5 as an example. As shown in Tab. 3, firstly, F[e] joins 
with F[c], [ec].Sup=5, because it is greater than the initial St and not equal to [e].Sup, [ec] is 
added to Ltmp. Since Lsup does not contain 5, 5 is added to Lsup. For the smaller number of 
elements in Lsup compared with k, St is unchanged. After the Join of [e], Ltmp is added to C2. 
Repeat the process above according to the order from [e] to [d] while the support of the 
pattern is greater than St. When F[b] joins with F[c], the support of [bc] equals that of [b], by 
Property 1, it can be found that [c]∈Subsume ([b]). LU is shown in Tab. 4. 

3.2 Structure of RSL 
All kinds of algorithms based on PPC-tree or TB-tree structure applied a table structure 
called Tabk for storing top-rank-k frequent patterns. Tabk has a fixed number of entries, 
usually k, and each entry contains all patterns with the same rank. During the mining proce- 
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Table 4: The FPIs of LU 

Rank Sup Its Bs Si 
1 7 c <1,1,1,1,1,1,1,0,0> ∅ 
2 6 e <0,0,1,1,1,1,1,0,1> ∅ 
2 6 a <1,1,0,1,0,1,1,1,0> ∅ 
2 6 b <1,1,1,1,1,1,0,0,0> c 
3 5 ec <0,0,1,1,1,1,1,0,0> ∅ 
3 5 ac <1,1,0,1,0,1,1,0,0> ∅ 
4 4 be <0,0,1,1,1,1,0,0,0> c 
4 4 ba <1,1,0,1,0,1,0,0,0> c 
5 3 ae <0,0,0,1,0,1,1,0,0> ∅ 

ss, Tabk involves abundant curd operations. How to reduce the operation complexity of 
Tabk is a problem worth considering. In this regard, a static doubly-linked list structure 
named RSL (Static Doubly-Linked Lists of top-rank-k) is used in this paper. 
Definition 3 (Rnode). Rnode, the node of RSL, is composed of two parts, the cursor 
domain and the data domain. The cursor domain contains a link back to the previous node 
(prev) and a link to the next node (next). The data domain including a support (Sup) and 
an FS, an FPI set of the patterns with support equal to Sup. The structure of Rnode is 
shown as Fig. 4. 
Definition 4 (RSL). RSL, a static doubly-linked list structure described by an array with a 
fixed length of k+1, is made up of a head node and k Rnodes. The head node only points 
to the highest Rnode of rank without storing any information of patterns. All Rnodes of 
RSL are arranged in a descending order of rank.  
RSL boasts the advantages of both sequential storage structure and linked storage 
structure. During the insertion and deletion operations, it only needs to modify the cursor 
of Rnode without any element movement required. So, the consumption of insert and 
delete operations of Tabk is improved. 

Sup 
FS 

prev next 
FX FY FZ 

Figure 4: The structure of Rnode 

3.3 RSL initialization 
The construction of RSL is implemented by the Append function and the Sort function. The 
initialization process of RSL is shown in Fig. 5, where S is used to store the Sup of each 
Rnode and L is used to record the number of nonempty Rnodes of the RSL. When k=5, take 
the LU shown in Tab. 4 as an example, the RSL after initialization is shown in Tab. 5. 
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Algorithm Initialization (RSL, LU) 
Input: RSL, LU 
Output: LU 
1 Let head=0; rear=0;  15    S←S-St; r←rear; 
2 Let RSL [head]. prev=RSL[head].next=-1; 16    RSL[RSL[rear].prev].next=-1; 
3 Let S=∅; L=0; 17    rear←RSL[rear].prev; 
4 for (e<-LU) do 18    RSL[r]←Rnode; 
5  Append (e,head); 19    St←RSL[r].Sup ; S←S+Sup; 
6 end for 20   end if 
7 return RSL 21  end if 
8 end Initialization 22 end Append 
    

1 function Append (e,b) 1 function Sort (l,b) 
2  if(e.Sup∈S) then 2  q←b; p←RSL[b].next; 
3   for(Rnode<-RSL) do 3  while(p!=-1∧RSL[P].Sup>RSL[l].Sup)do 
4    if(Sup==Rnode.sup) then 4   q←p;p← RSL[p].next 
5     Rnode.FS←Rnode.FS+e.FS; 5  end while 
6    end if 6  RSL[l].next←p  
7    Break () 7  RSL[l].prev←q 
8   end for 8  RSL[q].next←l 
9  else 9  if (p==-1) then 
10   Rnode.Sup←e.Sup; Rnode.FS←e.FS; 10   rear=l 
11   if (L<k) then 11  else 
12    L←L+1; RSL[L]←Rnode; 12  RSL[P]. prev=l 
13    Sort(L,b); S←S+Sup; 13  end if 
14   else 14 end Sort 

Figure 5: Initialization algorithm 

Table 5: RSL after Initializing 

Subscript Sup  FS prev next 
0 (head) 

  
-1 1 

1 7 Fc 0 2 
2 6 Fe, Fa, Fb 1 3 
3 5 Fec, Fac 2 4 
4 4 Fbe, Fba 3 5 
5 3 Fae 4 6 
6 (rear) 2 Fd, Fbe, Fba 5 -1 

4 Design and implementation of GTK algorithm 
Theorem 1. Given a dataset D, a rank threshold k and the itemset I of D, the top-rank-k 
frequent patterns of D are made up of at least N different items, and it satisfies: 
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N=�⌈log2(k+1)� | N≤ |I|}                                                                                                    (4) 
Proof. When none of the top-rank-k frequent patterns belong to the same rank as the rest 
of the patterns, there will be only k top-rank-k frequent patterns, that is, only one pattern 
per rank. At this time, the number of top-rank-k frequent patterns is the smallest, thus the 
items constituting the top-rank-k frequent pattern set are the least. In the most ideal case, 
the top-rank-k frequent patterns with threshold k are composed of N items with the 
highest support, and the supports of those patterns are not the same. At this time, 
∑ CN

iN
i=1 >k, i.e., 2N-1>k. Thus N={⌈log2(k+1) ⌉ | N≤ |I|}. Q.E.D. 

It can be seen from the above that in the most ideal case, only the items N are required to 
obtain the top-rank-k frequent patterns, and the maximum length of the top-rank-k 
frequent patterns equals N. However, in normal times, more than N items are used to 
make up top-rank-k frequent patterns, so the maximum length of top-rank-k frequent 
pattern will not be greater than N. According to Theorem 1, this paper divides the patterns 
of different length into short patterns and long patterns, and defines that: 
Definition 4. Assume that there is a pattern of length l and an η, an integer length 
threshold of pattern. Let η= ⌊ log2(k+1) /2⌋ (η is at least 3), if l≤η, then p is called short 
pattern, otherwise p is a long pattern. 
In the previous problem analysis, this paper has explained the defect of level-wise-search 
by examples. In this regard, this chapter focuses on the fast generation of high rank patterns 
and proposes a mixed search method in terms of short patterns and long patterns of top-
rank-k frequent patterns. In what follows, Section 4.1 describes how the Ex_Short method 
is used to mine short top-rank-k frequent patterns by adopting rank-first-search; Details of 
the GTK algorithm including the long patterns mining method Ex_Long are introduced in 
Section 4.2; For a better understanding of GTK, an example is shown in the Section 4.3. 

4.1 Ex_Short method 
The Ex_Short method ignores the limit of pattern length and takes advantage of rank-
first-search to prompt the fast generation of high rank patterns. In order to accelerate the 
Ex_Short process, this paper also designed a PBJ strategy and CC strategy. 

4.1.1 PBJ strategy (pruning before joining) 
The main role of the PBJ strategy is to define the basic conditions of the FPI in the Join 
operation. Let the FPI of pattern X be FX, the FPI of pattern Y be FY, and Y.Sup>X.Sup. 
Firstly, since the 2-patterns has been obtained by looking for the subsume indexes of 1-
patterns, the 2-patterns is no longer mined in the Ex_Short process, so |FX.Its| and |FY.Its| 
cannot be equal to 1 at the same time. Secondly, the new pattern’s length cannot be 
greater than η, nor X and Y, the subsets of new patterns, |FX.Its| and |FY.Its| should be less 
than η. Finally, because of the subsume index, to avoid useless Join operations, X and Y 
should satisfy the following:  
• FY.Its is not a subset of FX.Its. 
• FY.Its and FX.Si have no intersection. 
• FX.Its and FY.Si have no intersection. 
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4.1.2 CC strategy (check candidates) 
In Tab. 3, all nonvoid subsets of the pattern [bae] can be exemplified as {[e], [a], [b], [ea], 
[be], [ba]}, and under the premise of meeting PBJ conditions, it is not difficult to have 
F[bae]=Join(F[ea], F[b])=Join(F[ba], F[e])=Join(F[be], F[a]). Thus, when performing Join, it is 
necessary to check in time whether the new pattern has already existed to avoid double 
counting. To this end, the candidate pattern set Ci is set up to store all patterns with equal 
lengths, where i>2 and i is the length of pattern. Therefore, the significance of the CC strategy 
is: When pattern X is found, it should be filtered out immediately if it can be found in C|x|. 

4.1.3 Ex_Short method. (extracting short patterns) 
The GTK algorithm produces the short top-rank-k frequent patterns through the Ex_Short 
method shown in Fig. 6. This procedure loops over each Rnode of which the support is 

Algorithm Ex_Short(RSL,η) 
Input: RSL, η 
Output: RSL 
1 p←RSL[RSL[head].next].next; 18   q=RSL[q].next 
2 while(RSL[p].Sup>St)do 19  end while 
3  q←RSL[head].next; 20  p=RSL[p].next 
4  while(q!=p)do 21 end while 
5   for(i<- RSL[p].FPIs;j<- RSL[q].FPIs)do 22 return RSL  

6 
   if(j.Its⊄i.Its∧(|i.Its|!=1 || |j.Its|!=1)∧
|i.Its|<η∧|j.Its|<η∧(i.Its∩j.Si==∅)∧
(j.Its∩i.Si==∅))then   //PBJ Strategy 

23 end Ex_Short 

7     Join (i,j, η,p)   

8    end if 1 function Join(FX,FY, η, b) 

9    if(q==RSL[p].prev∧
|RSL[p].FPIs|>1)then 2  FZ.Its←FY.Its ∪FX.Its 

10     f←RSL[p].FPIs 3  if(|FZ.Its|≤η ∧ FZ.Its ∉ C|FZ.Its|)then   //CC 
Strategy 

11     for(i<-1 until |f|;j<-0 until i)do 4   FZ.Bs←FY.Bs &FX.Bs 

12 

     If((|f[i].Its|!=1 || |f[j].Its|!=1)∧
|f[i].Its|<η∧|f[j].Its|<η∧
(f[i].Its∩f[j].Si== ∅)∧(f[j].Its∩f[i].Si==
∅)) then 

5 
  if(|FZ.Bs |≥St) then 
FZ.Si←FY. Si∪FX.Si 

13       Join(f[j], f[i], η, p) 6    Append ( (|FZ.Bs|, FZ), b ) 
14      end if 7    C|FZ.Its||←C|FZ.Its|+ FZ.Its 
15     end for 8   end if 
16    end if 9  end if 
17   end for 10 end Join 

Figure 6: Ex_Short algorithm 

greater than St, and checks them with each Rnode in front of them. When the two Rnodes 
do not coincide (line 4), join each FPI in FS of the two Rnodes one by one (line 5). If 
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PBJstrategy is met (line 6), Join function will be conducted (lines 7), and then the 
candidate will be checked by CC strategy, and if it has a greater support than St, it will be 
appended into RSL and the candidate pattern set (lines 1-10). When two Rnodes are 
continuous (lines 9), join each FPI in the FS of the latter Rnode as the above procedure 
(lines 10-16). So far, all short top-rank-k frequent patterns with length less than η are 
stored in the RSL in descending order. In the meantime, the St has been raised rapidly. 

Algorithm GTK(D, k) 
Input: D, k 
Output: Stop-k 

1 Let St=0; η=⌊ log2(k+1) /2⌋; RSL=∅; 9     end while 

2 Call the Gen_Subsume (D, k) function to 
get LU; 10     for (j<-0 until i)do 

3 RSL←Initialization (LU);  11      m←Li[j].Its; n←Li[i].Its 

4 RSL←Ex_Short(RSL,η); 12 
     if((m[0] until m[|m|-1] == n[0] until n[|n|-1])
∧ (m[|m|-1]∩Li[i].Subsume== ∅ ) ∧ (n.[|n|-
1]∩Li[j].Subsume== ∅)) then 

5 

Extract all frequent patterns with length 
equal to η from RSL to form Lη, sort each 
pattern’s Its in descending order of item’s 
support, sort Lη in descending order of 
pattern’s support; 

13       Fq.Bs←Li[j].Bs&Li[i].Bs; 

6 RSL←Ex_Long(RSL, Lη); 14       if(|Fq.Bs |≥St) then 
7 for (p<-RSL) do 15        if(m[|m|-1].Sup>n[|n|-1].Sup)then 
8  Put p into Stop-k 16         Fq.Its←m+n[|n|-1]; 
9  if (Fp.Si!=∅)then 17         Fq.Si←Li[j].Si & Li[i].Si; 

10   Combine p with all nonvoid subsets of 
Fp.Si and put them into Stop-k. 18        else   

11  end if 19         Fq.Its←n+m[|m|-1]; 
12 end for 20         Fq.Si ←Li[j].Si & Li[i].Si; 
13 return Stop-k 21        end if 
14 end GTK 22        Append ((|Fq.Bs|, Fq), a); 
  23        Li+1←Li+1+q; 

1 Procedure Ex_Long (RSL, Li) 24       end if 
2  while (|Li |>1) do 25      end if 
3   Let Li+1=∅; 26     end for 
4   for(i<-1 until | Li |)do 27    end if 
5    if(Li[i].Sup>St) then 28   end for 
6     a←1 29   Li←{p| p∈Li+1∧p.Sup≥St } 
7     while(RSL[a].Sup>Li[i].Sup) then 30  end while 
8      a ← RSL[a].next 31 end Ex_Long 

Figure 7: GTK algorithm 
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4.2 GTK algorithm 
Since the GTK algorithm ignores the pattern length and only focuses on the highest rank 
patterns, it has great advantages in mining short patterns in the early stage of the 
algorithm. However, as patterns gradually increase, the FPI that conforms to the PBJ 
strategy is relatively reduced. Therefore, it is more and more time-consuming to traverse 
the Rnode one by one to find the long patterns. In order to solve this problem, after the 
Ex_Short procedure, GTK algorithms use the level-wise-search for short patterns with a 
length η to mine the long frequent patterns.  
Because of the few long top-rank-k frequent patterns and the low cost of matching eligible 
short patterns, the hybrid mining adopted by GTK algorithms is more effective than using 
level- wise-search or rank-first-search alone. The GTK algorithm is shown in Fig. 7. 
The GTK algorithm first mines the short top-rank-k frequent patterns (lines 1-4), and then 
extracts patterns with length of η from the RSL to construct the set Lη. It arranges Lη in 
descending order of pattern’s support (line 5). After that, Ex_Long method is called to 
perform the long top-rank-k frequent pattern mining (line 6). At last, each pattern with 
subsume indexes is combined with its nonvoid subsets of subsume indexes to get the 
whole top-rank-k frequent patterns (lines 7-12). 
The Ex_Long is a level-wise-search method that uses a loop to explore long patterns of 
greater length until no candidate can be generated. While Li is not empty, create Li+1, a 
new set of patterns, to store the pattern with length of i+1 (lines 2-3), and then join the 
patterns in Li with each pattern in front. In the process, first get the subscript in RSL of 
the later (lines 7-9), after that generate the candidate, insert it into RSL and update the 
Li+1 (lines 10-26). Line 27 is the beginning of the next cycle.When the number of patterns 
in Li does not exceed 1, the mining process ends. 

4.3 Illustration 
In the top-rank-k frequent patterns mining of conventional datasets, as η is assumed to be 
not less than 3 in this paper, k is greater than or equal to 64. Due to the large value of k, 
the number of the examples is limited. Because of the same principle, this paper let η=2, 
k=5, and takes the initialized RSLe in Tab. 6 as an example, the RSLe after Ex_Short 
procedure is presented in Tab. 7, the final Stop-k is shown in Tab. 8. 

Table 6: RSLe 

Subscript Sup  FS prev next 
0 (head) 

  
-1 1 

1 7 c <1,1,1,1,1,1,1,0,0> ∅ 0 2 
2 6 e <0,0,1,1,1,1,1,0,1> ∅ 1 3 
  a <1,1,0,1,0,1,1,1,0> ∅   
  b <1,1,1,1,1,1,0,0,0> c   
3 (rear) 2 d <1,0,1,0,0,0,0,0,0> c, b 2 -1 
4     
5      
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Table 7: RSLe after Ex_Short 
Subscript Sup  FS prev next 
0 (head) 

  
  -1 1 

1 7 c <1,1,1,1,1,1,1,0,0> ∅ 0 2 
2 6 e <0,0,1,1,1,1,1,0,1> ∅ 1 4 
  a <1,1,0,1,0,1,1,1,0> ∅   
  b <1,1,1,1,1,1,0,0,0> c   
3 (rear) 4 be <0,0,1,1,1,1,0,0,0> c 4 5 
  ba <1,1,0,1,0,1,0,0,0> c   
4 5 ec <0,0,1,1,1,1,1,0,0> ∅ 2 3 
  ac <1,1,0,1,0,1,1,0,0> ∅   
5  3 ae <0,0,0,1,0,1,1,0,0> ∅ 5 -1 

Table 8: Stop-k 
Rank Sup  Patterns 
1  7 c 
2 6 e, a, b, bc 
3 5 ce, ca 
4 4 eb, ab, ceb, cab 
5 3 ea, cea 

5 Experimental results 
To accurately evaluate the performance of GTK, this paper adopts three methods, with 
the purpose of:  

• Determining the reliability of subsume indexes generation method proposed in this 
paper. 

• Verifying the validity of the rank-first-search based on greedy strategy. 
• Evaluating the comprehensiveness and efficiency of the GTK algorithm in terms of 

time and memory usage. 

Therefore, six datasets 4  with different characteristics, namely Chess, Connect, 
Mushroom, Pumsb, Retail, T10I4D100K, and two synthetic datasets Test990.99KD1 and 
Test2K50KD1 generated by LUCS-KDD5 data generator are selected. Tab. 9 shows the 
characteristics of these datasets, including the numbers of items(num_Items) and 
transactions(num_Trans). A laptop with the built-in Intel® CoreTM 3.0 GHz CPU and 12 G 
memory is equipped for running the tests. All programs are implemented in SCALA on 
the IntelliJ IDEA2018 software of win10 operating system. 

 
4 Downloaded from FIMI repository http://fimi.ua.ac.be/data/. 
5 Downloaded from https://cgi.csc.liv.ac.uk/~frans/KDD/Software.  

http://fimi.ua.ac.be/data/
https://cgi.csc.liv.ac.uk/%7Efrans/KDD/Software
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Table 9: Characteristics of the experimental datasets 
Dataset Num_Trans Num_Items 
chess 3,196 75 
mushroom 8,124 119 
connect 67,557 129 
T10I4D100K 10,000 870 
Test990.99KD1 99,822 990 
Test2K50KD1 50,000 2000 
pumsb 49,046 2113 
retail 88,162 16,470 

5.1 The time of subsume indexes generation 
Tab. 10 shows the time at which the BTK and GTK algorithms get the subsume indexes 
of 1-patterns. It can be clearly seen that BTK needs more time to generate subsume 
indexes, while GTK is more time-saving. There are three reasons for this: 
(1) BTK uses all 1-patterns’ B-lists to search subsume indexes, but there are not so many 
1-patterns that can become top-rank-k frequent patterns. Therefore, the large search range 
increases the calculation time, and the effect may be even worse in the case of sparse 
datasets with large-scale 1-patterns such as Retail and Test2K50KD1. This paper has a 
preliminary filtering of the 1-patterns, thus reducing the time consumption.  
(2) The generation of subsume indexes in BTK requires frequent calls to the checkSubsume 
function. This is a time-consuming process for B-lists that contain a large amount of B-
info-code. GTK uses bitwise AND operation to reduce computational complexity and 
facilitate the fast generation of subsume indexes.  
(3) In this paper, subsume indexes are generated through the acquisition of frequent 2-
patterns. In this process, as the threshold continues to increase, some 1-patterns may not 
be able to be joined, so the search range of subsume indexes will become smaller and 
smaller. In addition, by observing the specific values of the experiment, it can be found 
that the GTK gets subsume indexes about 10 times faster than the BTK no matter in the 
face of sparse or dense datasets. Especially when dealing with pumsb, Test990.99KD1 
and Test2K50KD1, the speed gap is even 100 times.  
Thus, the reliability of the subsume indexes generation method proposed in this paper can 
be confirmed. 

Table 10: Comparison of runtimes for the generation of subsume indexes of 1-patterns 

Dataset    BTK (sec) GTK (sec) Dataset BTK (sec) GTK (sec) 
Chess 1.0 0.1 Test990.99KD1 17.7 0.2 
Mushroom 1.2  0.1 Test2K50KD1 21.2 0.3 
Connect 4.2 0.2 Pumsb 13.3 0.1 
T10I4D100K 7.0 1.6 Retail 7.2 0.9 
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Table 11: Number of candidates 

Datasets Chess Connect 
k BTK GTK BTK GTK 
100 251 252 192 188 
200 755 736 452 447 
300 1619 1495 746 619 
400 3109 2966 1039 894 
500 5330 5074 1340 1188 
600 8833 8484 1656 1452 
700 14282 13913 2010 1717 
800 22894 22446 2385 1976 
900 36100 35545 2807 2302 
1000 57062 56380 3239 2661 

 

 
Figure 8: Comparison of the time to reach the threshold 

5.2 Efficiency of the hybrid-search 
The BTK algorithm is based on level-wise-search, while GTK is implemented by a way 
of hybrid-search. This method consists of two parts: the rank-first-search is firstly used to 
find short frequent patterns, and then the level-wise search is used to mine long frequent 
patterns. Because the high threshold can avoid numerous useless joins and reduce the 
amount of calculation, the purpose of using hybrid search is to speed up the support 
threshold rise so that final threshold could be quickly determined.  
Tab. 11 shows the number of candidate patterns generated by the two algorithms during 
the mining process. As shown in the table, the candidate pattern generated in GTK 
algorithms is always less than BTK algorithms, and the gap increases as k increases. The 
cardinality of the pattern to be generated is positively related to the value of k. As the 
rank-first-search always gives priority to the generation of high rank patterns, in unit time, 
the rank-first-search has a greater chance to get more high rank patterns. It is a very good 

0

2

4

6

8

10

1 400 800 1200 1600 2000 2280

ru
n 

tim
es

 (s
)

k

Chess
BTK

GTK

0

12

24

36

48

60

1 60 120 180 240 300 380

ru
n 

tim
es

 (s
)

k

T10I4D100K
BTK

GTK



 
 
 
GTK: A Hybrid-Search Algorithm of Top-Rank-k Frequent Patterns                     1463 

method to promote a fast rise in the threshold that the rapidly rising threshold can greatly 
reduce the amount of search computation. In contrast, since the level-wise search is 
limited by length requirement of the pattern, there is a delay in the generation of high 
rank patterns. Moreover, it is quite time-consuming to search a lot of patterns with level-
wise-search, especially the search of 2 and 3-patterns. Therefore, this is one aspect of the 
evidence that hybrid-search is more effective than level-wise-search.  
To highlight the advantages of hybrid-search, the dynamic rise of support threshold of 
these two search ways is recorded in Fig. 8, where the x-axis represents the threshold and 
the y-axis represents the time when the corresponding threshold is reached. It is not 
difficult to observe that compared with level-wise-search, the support threshold is 
improved faster by hybrid-search, and the larger the threshold is, the larger the gap is. In 
general, the hybrid-search proposed in this paper outgoes the level-wise-search. 

5.3 Mining performance 
This paper evaluates the time efficiency and space efficiency of the GTK algorithm by 
testing time and memory usage on all eight datasets for various values of k. 
  

 
Figure 9: Comparison of mining times for Chess and Connect dataset 

 

 
Figure 10: Comparison of mining times for Test2K50KD1 and Retail dataset 
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Figure 11: Comparison of mining times for Mushroom and T10I4D100K dataset 

 

 
Figure 12: Comparison of mining times for Test990.99KD1 and Pumsb dataset 

5.3.1 Mining time 
Figs. 9, 10, 11 and 12 compare the mining time of GTK and BTK on 8 datasets. It should 
be noted that the timing starting points of the two algorithms are different. BTK starts 
from calling Candidate_gen function, while GTK starts with getting the 1-pattern 
subsume indexes. The experimental results show that GTK is more time efficient than 
BTK when facing different datasets and k, and the mining time of GTK is less affected by 
the increase of k, while BTK is the opposite. 
There are many factors contributing to the efficiency of GTK, including the following: 
The main reason is no other than the fast rank-first-search, and its advantage is most 
obvious when k is less than 500. This is because when k does not exceed 500, there are 
not so many patterns to be mined, and most patterns are short patterns with a length less 
than 4 that can be mined quickly. What is more, using RSL to store frequent patterns 
saves a lot of time. It can be seen from the Fig. 11, when k is larger, more candidate 
patterns will be generated. Storing these patterns involves abundant operations, which 
will cause huge time consumption for BTK. However, RSL of GTK only need to modify 
the cursor when performing insert and sort operations. Thus, the time consumption is 
much smaller than GTK. Furthermore, GTK’s efficiency also benefits from subsume 
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indexes, PBJ and CC strategies, which avoid a lot of useless joins. To sum up, GTK is 
not as sensitive to sparseand dense datasets as BTK, and GTK is about 6 times faster than 
BTK. When facing retail, the time gap between the two algorithms is the largest that 
GTK’s time consumption is only 1/20 of that of BTK. 

 
Figure 13: Comparison of memory usage for Chess and Connect dataset 

 

 
Figure 14: Comparison of memory usage for Test2K50KD1 and Retail dataset 

 

 
Figure 15: Comparison of memory usage for Mushroom and T10I4D100K dataset 
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Figure 16: Comparison of memory usage for Test990.99KD1 and Pumsb dataset 

5.3.2 Peak memory usage 
Figs. 13, 14, 15 and 16 are comparisons of the memory consumption of BTK and GTK. 
Since the experimental programs are written in the JVM-based SCALA language, the 
memory usage here refers to the peak usage memory of the JVM during program 
running. JVM peak memory is dynamic and variable. In this paper, the average value of 
several experiments is taken to reflect the size of the actual memory occupied by the 
algorithm. As you can see from the figures, for the same dataset, GTK takes up less 
memory when the k of both is the same. There are three main reasons: (1) Compared with 
BTK, in which B-list is used to store the start-build and finish-build information of the 
patterns, GTK uses bitset to represent the pattern’s transaction sets for space saving. 
Especially in the face of large datasets, the B-lists with a large amount of B-info-code 
lead to a lot of pressure on memory. (2) As shown in Fig. 8, the threshold rises rapidly by 
rank-first-search, thus the number of candidate patterns has been greatly reduced. Rank-
first-search is also a very space efficient method. (3) The GTK algorithm only needs to 
maintain the array RSL and Ci used to store patterns of the same length during the mining 
process, so the space cost is low. The fixed length of RSL is k+1, and when it is full of k 
Rnodes, each new Rnode will only overwrite the tail Rnode Instead of reopening memory 
space. In addition, Ci only needs to store short frequent patterns other than 1-patterns and 
2-patterns, which usually could not cause huge memory consumption. It is worth noting 
that BTK occupies up to 2.5 G of memory in the face of Test990.99KD1 and 
Test2K50KD1 (Figs. 14 and 16). It is clear that BTK compresses large datasets onto a 
unique TB-Tree, which is very large and memory-consuming, Therefore, it is susceptible 
to memory performance. However, GTK adopts a vertical data layout, it will not be 
easily affected by such problems. 

6 Conclusion and future work 
A hybrid mining algorithm of top-rank-k frequent pattern called GTK is proposed in this 
paper. GTK uses a static doubly linked list and a mining method of hybrid-search based 
on greedy strategy to find frequent patterns. To speed up the process, an optimized 
subsume indexes generation method and several useful pruning strategies are also 
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designed. Experimental results show that the proposed algorithm has a better space-time 
efficiency. In addition, during the experiment, it was found that the mining efficiency can 
further be improved by appropriately reducing the value of η when faced with some 
sparse datasets or large datasets. Concurrently, the experimental data also reflect some 
aspects of GTK that can be improved. For example, when dealing with dense data sets, it 
may be more time and space saving to compute the difference of the Tids than to 
compute the intersection.  
In recent years, big data field is increasingly becoming more popular because of its 
powerful application function. Therefore, the parallel mining of top-rank-k frequent 
patterns will continue to be studied. 
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