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Abstract: Optical Coherence Tomography (OCT) is very important in medicine and 
provide useful diagnostic information. Measuring retinal layer thicknesses plays a vital 
role in pathophysiologic factors of many ocular conditions. Among the existing retinal 
layer segmentation approaches, learning or deep learning-based methods belong to the 
state-of-art. However, most of these techniques rely on manual-marked layers and the 
performances are limited due to the image quality. In order to overcome this limitation, 
we build a framework based on gray value curve matching, which uses depth learning to 
match the curve for semi-automatic segmentation of retinal layers from OCT. The depth 
convolution network learns the column correspondence in the OCT image unsupervised. 
The whole OCT image participates in the depth convolution neural network operation, 
compares the gray value of each column, and matches the gray value sequence of the 
transformation column and the next column. Using this algorithm, when a boundary point 
is manually specified, we can accurately segment the boundary between retinal layers. 
Our experimental results obtained from a 54-subjects database of both normal healthy 
eyes and affected eyes demonstrate the superior performances of our approach. 

Keywords: OCT retinal segmentation, deep learning, 1D convolution. 

1 Introduction 
Optical Coherence Tomography (OCT) is a non-invasive imaging technique that enables 
high-resolution cross-sectional imaging of ocular tissues such as the retina [Adhi and Duker 
(2013); Geitzenauer, Hitzenberger and Schmidt-Erfurth (2011); Huang, Swanson, Lin et al. 
(1991)] and has become a key imaging technique for diagnosing retinal diseases. It 
visualizes the internal structure of the retina and can qualitatively and quantitatively assess 
morphological changes in underlying disease [Waldstein, Wright, Warburton et al. (2016)]. 
Retinal OCT has been widely used to image the normal retina and its various layers, as well 
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as to detect ophthalmic diseases such as Age-Related Macular Degeneration (AMD) 
[Keane, Liakopoulos, Jivrajka et al. (2009); Malamos, Ahlers, Mylonas et al. (2011); 
MeindertNiemeijer, Lee, Abràmoff et al. (2012); Sui, Zheng, Wei et al. (2017)], glaucoma 
[Puliafito, Hee, Lin et al. (1995)] and diabetic retinopathy. In particular, retinal thickness or 
Central Macular Thickness (CMT) measured by OCT is closely related to pathological 
changes and treatment outcomes of various ocular diseases [Fleckenstein, Schmitz-
Valckenberg, Adrion et al. (2010); Wood, Binns, Margrain et al. (2011)]. Currently used in 
clinical practice, automated thickness quantification methods use a hierarchical 
segmentation algorithm to accurately identify internal and external retinal boundaries and 
then estimate the thickness of the retina as the space between the surfaces. 
In ophthalmic clinical practice, manually segmenting the OCT image to extract the retinal 
layer boundary position of the retinal layer and subsequent structural features still 
dominate, though there are still many challenges. The first is that it is time-consuming, 
subjective and error-prone, thus efficient and automatic segmentation techniques are 
needed. Manual depiction of layers in OCT images is time-consuming and therefore not 
practical for large numbers of B-scan images obtained in intensive scanning protocols 
that are often used in clinical settings, as well as for large-scale population studies. Many 
methods have been proposed to segment the retina and choroid layer. 
Many papers review methods for OCT image analysis, especially the layer segmentation 
method [Baghaie, Yu and D’Souza (2015); DeBuc (2011)], which includes various 
methods such as intensity variation analysis and adaptive threshold analysis [Ishikawa, 
Stein, Wollstein et al. (2005)], pixel-based Markov boundary model [Koozekanani, Boyer 
and Roberts (2001)], graph-based method [Chiu, Li, Nicholas et al. (2010)], multi-surface 
map cutting method [Garvin, Abramoff, Wu et al. (2009)], active contour segmentation 
model [Mishra, Wong, Bizheva et al. (2009)], pixel classification, edge detection, and 
machine learning method image registration [Che, Zheng, Sui et al. (2019)]. These are 
usually unique methods applied to images to extract the boundaries of interest. 
However, the currently existing methods have some shortcomings. First, there are many 
OCT retinal layers, which cannot be segmented by one process. It is often that various 
methods segment different layers. Secondly, they are based on the whole image 
segmentation. However, the image has more irrelevant information, and the interference to 
the segmentation process is significant, which leads to the low precision of the 
segmentation. Duan et al. [Duan, Zheng, Ding et al. (2018)] adopts the latest method of 
group matching, and matches the two columns of gray value curves in the OCT image by 
Dynamic Time Warping (DTW) method, which is corresponding to each point on the gray 
value curve, and then solved by joint optimization. The optimal value is the best matching, 
so the segmentation of any layer in the entire image can be calculated. However, there are 
some problems with this method. The process of joint optimization is to calculate all the 
results obtained in the first step, resulting in long operation time and a large calculation 
amount. Although these methods show significant advantages, they are not well 
summarized, and image changes may mean that the rule set also needs to be changed. 
Recent approaches have attempted to solve these problems by machine learning to segment 
OCT images. These latest researches include support vector machines, neural networks [Ben-
Cohen, Mark, Kovler et al. (2017); Chen, Wang, Oguz et al. (2017); Çiçek, Abdulkadir, 
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Lienkamp et al. (2016); Fang, Cunefare, Wang et al. (2017); Hamwood, Alonso-Caneiro, 
Read et al. (2018); Loo, Fang, Cunefare et al. (2018); Roy, Conjeti, Karri et al. (2017); 
Shah, Abramoff and Wu (2017); Srinivasan, Heflin, Izatt et al. (2014); Sui, Zheng, Wei et 
al. (2017); Venhuizen, van Ginneken, Liefers et al. (2017); Xu, Yan, Kim et al. (2017)], and 
random forests [Karri, Chakraborthi and Chatterjee (2016)]. Although earlier methods were 
based on more standard image analysis programs [Alonso-Caneiro, Read and Collins (2013); 
Chiu, Li, Nicholas et al. (2010)], many more new segmentation methods have used more 
sophisticated deep learning algorithms. For layer segmentation, many use machine earning 
methods to detect retinal layer boundaries. [Lang, Carass, Hauser et al. (2013)] Using the 
random forest, Canny and random forest and graphical search method, the boundary between 
the macular region and the retinal OCT image is segmented by nine boundaries. Each pixel in 
the OCT image extracts 27 features to form a feature vector [Vermeer, Van der Schoot, Lemij 
et al. (2011)] Features extracted include intensity, adjacent strength of various lengths, and 
gradients. The method of pixel classification is adopted, and multi-scale gradient and gray-
scale features are used as feature vectors, and clustering is performed by the SVM algorithm. 
The number of clusters classified is based on the number of layers. Due to errors in the 
segmentation process, a smooth set is finally solved using the level set. Venhuizen et al. 
[Venhuizen, van Ginneken, Liefers et al. (2017)] proposed a CNN-based retinal image 
segmentation method that is robust to abnormal retinal images. Roy et al. [Roy, Conjeti, Karri 
et al. (2017)] proposed a new deep learning network structure-ReLayNet, which is used for 
the hierarchical segmentation of OCT images in normal people and DME patients. ReLayNet 
draws on the U-net idea and divides it into two steps: down sampling and up sampling. The 
cross-entropy and dice overlap loss function is used in the training process to optimize. 
In order to overcome the limitations of the current OCT retinal layer segmentation, we 
build up a method based on grouping curve convolution to generate retinal segmentation. 
This method is unique in that it can accurately segment the retinal layer and does not 
require different methods for the segmentation of the retinal layer. Especially we give the 
OCT image to be segmented and extract the contour formed by the intensity of the OCT 
image for each A-scan, and we enhance the relationship between each pixel of any column 
in the gray value curve for 1D convolution, that is, directly connecting two gray values 
from two columns to overlap, input into the U-net network, perform 1D convolution and 
pooling in the form of a pyramid, and output the result as a pixel between two columns of 
gray values. Correlate the situation and be able to output the best match between pixels. 
The main contributions of this paper are as follows. 
(1) We can automatically extract the features of the A-scan column without any artificial 
involvement and completely separate the boundaries of the OCT retinal layer. 
(2) We extract the gray value curve by A-scan and divide it by the 1D convolution 
method of the gray value curve, which strengthens the connection between any two-pixel 
points of the gray value curve. This strategy avoids the most popular at present-the 
disadvantages of the method of examining the retinal layer boundary features. 
(3) We propose an alternative method for segmentation from the OCT retinal layer, 
which involves curve convolution to find the offset. This method can segment any 
layered structure in the OCT image without any special technical redesign or 
experimental retraining. 
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2 Methods 
2.1 Group-wise curve alignment 
The OCT image is a combination of cross-sectional tomography (B-scan) in which an 
axial depth scan (A-scan) constitutes a lateral combination containing information about 
the spatial size and position of the structure within the object of interest. The principle of 
our OCT retinal segmentation model is based on A-scan. 
The OCT retinal fundus image is shown in Fig. 1. The gray scale values of the 
corresponding tissues (the same column A-scan) in the retinal fundus image are basically 
the same. In addition, the law of gray scale variation between the same two layers at 
different locations is similar. When the gray level of the image changes from dark to light, 
the slope of the corresponding gray value curve will change greatly. 

 
Figure 1: OCT retinal fundus image 

The change in the gray value of each column of A-scan of the same OCT fundus retina image is 
consistent with the corresponding tissue structure from top to bottom, and the trend of all gray 
value curve changes from top to bottom is similar. It can be seen from Fig. 2. that the change of 
the gray value curve of the same tissue structure in the OCT fundus image has similar shape 
features so that the feature points can be obtained by the two-two convolution of the gray value 
curve, and two gray value curves are obtained. Matching in medical applications, we select a 
layered point in the undivided OCT image and pass the matching through the loop to obtain the 
matching of the same organizational structure, including the organizational structure between 
the layers. We are able to segment all the tissue structures of the OCT retina directly. 

 
Figure 2：Left: the 30th column of the gradation value of Fig. 1, the ordinate represents 
the gradation value, and the abscissa represents the 𝒊𝒊 − 𝒕𝒕𝒕𝒕 pixel. Right: the 50th column 
of the gradation value of Fig. 1, the ordinate represents the gradation value, and the 
abscissa represents the 𝒊𝒊 − 𝒕𝒕𝒕𝒕 pixel 
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2.2 Overview 
In view of the shortcomings of the traditional methods, we propose a new method. The 
original segmentation method is to extract the features of the two curves separately, and the 
two curves are independent of each other. We intend to use the 1D convolution method to 
express the characteristics of the two curves and strengthen the relationship between any 
two pixels. It is possible to directly establish a convolution structure on the interaction 
space between the two columns of gray value curves. That is, the two columns of gray 
value curves meet before their own advanced representation matures, while still retaining 
the space for the individual development of each column of gray value curve abstraction. 
We extract the gray value contours of two adjacent columns in the OCT image, which are 
denoted as L1 and L2. The two gray value curves are used as the input of the convolution 
neural network. By registering L1 to L2, the offset between L1 and L2 is obtained, and 
the corresponding output is the correspondence of the pixel points of the two columns of 
gray value curves. By looping the two pairs and matching, the correspondence between 
the columns listed in the entire OCT image and the segmentation result is obtained. In 
this paper, we use unsupervised depth CNN. The proposed framework is shown in Fig. 3. 
The convolutional neural network, the template structure and the space transformer are 
composed of frames, which are similarities for calculating the contours of two columns of 
gray values. The following sections describe these aspects and the architecture involved. 

 
Figure 3: We propose a group matching the segmentation model. In the OCT image to be 
segmented, the contours of the L1 and L2 gray-level calculation areas are extracted, and 
the two gray value curves are overlapped and input into the convolutional neural network 
and the offsets of the two columns of curves are calculated, and two changes are obtained 
by spatial variation. The correspondence between the column pixel values is iterated 
sequentially, and the offset of the entire image is output to obtain the segmentation result 
of the entire image, and the boundary point is selected to complete the segmentation 

2.3 1D convolution model 
CNN is traditionally used for image processing. The image is 2D in nature, so the 
convolution filter used is also 2D (usually 3×3, 5×5, 7×7 pixels or similar pixels). 
However, there are other situations besides images that can be processed with different 
sizes. 1D CNN is commonly used in natural language processing. 
For 1D convolution, a window of size 3 contains only three feature vectors. In image 
processing, we arrange the pixels into a 2D mesh, where we arrange the gray value 
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curves into a 1D sequence. The convolution itself works like its 2D copy, but only 1D 
filters (such as 3, 5, 7) can be used. For 2D convolution, the 3×3 convolution kernel 
contains 9 eigenvectors. For 1D convolution, a window of size 3 contains three feature 
vectors. The 2D convolution is a convolution in the X and Y directions, while the 1D 
convolution is convolution in only one direction in y. 
Our method is to convolve the gray value curve of a column in the image, so the 1D 
convolution is used. We design a sliding window with a size of 3×1 convolution and 
convolution from the first pixel to the last pixel in one direction. 

2.4 Convolution model 
As shown in Fig. 4, our convolution structure model is similar to u-net [Che, Zheng, 
Cong et al. (2019); Ronneberger, Fischer and Brox (2015)]. The coding path on the left 
and the decoding path on the right form the structure of the network. The encoding path 
includes two down samplings, and the decoding path includes two-up samplings. 
The encoding path follows the typical architecture of the convolution network, with the 
gray values of the two columns of A-scan being used as inputs to the encoder. The 
continuous layer of the encoder processes a rough representation of the input, similar to 
the image pyramid used in registration. 

 
Figure 4: A convolutional network architecture based on a gray value curve is proposed. 
The input is the contour of the gray value curve. The numbers above indicate the number 
of channels, and the numbers below indicate the length of the vector. The network will 
connect the feature map extracted during the coding phase to the new feature map during 
the decoding phase. The last layer uses a 1×1 fully connected layer 

A repetitive application of a 3×1 convolution kernel constitutes an encoder, each 
convolution operation followed by a rectangular linear unit (ReLU) [Nair and Hinton 
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(2010)] and a 2×1 average pool. The step size is 2 for down sampling. The rectified linear 
activation (ReLU) unit speeds up training by further standardizing these values. Each of 
the two convolutional layers has an average pool layer that retains most of the 
information. In each down sampling step, the number of channels is doubled. 
Each step in the extended path involves up sampling the feature map and then performing 
a 2×1 convolution to halve the number of feature channels, skipping the features that the 
connection will learn during the coding phase. Directly propagate to the layer that 
generates the registration to generate the registration directly, and at the last level, 64 
eigenvectors are mapped to the desired class using a 1×1 convolution. The output is an 
offset matrix of two columns of A-scan. 

2.5 Spatial transformation 
We learn the optimal value by minimizing the difference between L′(x) and  Τ. In order 
to use the standard gradient method, we constructed a differentialoperation based on the 
space transformer network [Jaderberg, Simonyan and Zisserman (2015)] to calculate 
L′(x) . We use a spatial transformation function to transform L1 and ϕ(x) into  L′(x) , so 
that the model can calculate the similarity between the two columns of gray values. The 
spatial transformation operation formula of single linear interpolation is: 
L′(x) = τ(ϕ(x), L1) = ∑ L(y)∏ (1 − |xd + ϕ(xd)− yd|)d∈iy∈N�x+ϕ(x)�                          (1) 

where L′(x) is calculated from  L1  by ϕ(x)  warping, x is the pixel position, and N�x +
ϕ(x)� is the 2-pixel neighborhood around position  x + ϕ(x). Since the image values are 
defined only at integer positions, we perform a linear interpolation on two adjacent pixels. 
In order to make the loss back propagation during the optimization process, we calculate 
the gradient of the spatial transformation of position x by taking the partial derivative of 
Eq. (1). 

2.6 Loss function 
We train the network by finding the minimum of the loss function. The registration loss 
between L1 and L2 formulated in Eq. (2) is evaluated. MSE is a function of the average 
error of a batch of data. It is characterized by smooth continuous, steerable and easy to 
use gradient descent algorithm, which is a commonly used loss function. The mean 
square error is the average of the square of the distance between the predicted 
value yi′ and the true value of the sample 𝑦𝑦𝑖𝑖. The formula is as follows: 

MSE = 1
N

 ∑ �yi − yi
′�

2
n
i=1                                                                                                 (2) 

where yi is the true value of the  i − th data in a batch, and  yi′ is the predictedvalue given 
by the neural network, and m is the number of samples. The squared error has a 
characteristic. Since the MSE squares the error e ( y − yi′ = e), when e is greater than 1, 
the error is increased; when e is less than 1, the error is reduced. If there is an outlier in 
our data, the value of e will be very high and will be much larger than |e|. MSE will give 
more punishment for the case with larger errors and smaller punishments for the case 
with the smaller error. From a training point of view, the model will be more inclined to 
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punish larger points and give them greater weight. As the error of the MSE curve 
decreases, the gradient also decreases, which facilitates the convergence of the function. 
Even if the learning factor is fixed, the function can obtain the minimum value faster. 

3 Experiments 
3.1 Image data 
In our study, our experiments were performed using eyes from 54 subjects, each of which 
contained a center-centered size measuring 908×408 pixels. All OCT scans obtained with 
Spectral is HRA+OCT equipment (Heidelberg Engineering GmbH, Germany). Two 
professional doctors manually mark the surface of the retina in each image. 

3.2 Experimental environment and assessment 
We used the average of the position of the dividing line manually marked by the two 
experts as the reference standard for the evaluation. Experimentally segmented layers 
include all layers of the normal retina, as well as the presentation of layered pathological 
structures on unhealthy retinal images. According to the method in Tian et al. [Tian, 
Varga, Tatrai et al. (2016)], we measure the accuracy of the segmentation by calculating 
the pixel difference between the estimated value and the reference standard (the shortest 
distance between the point on the boundary generated by the algorithm and the manually 
specified boundary). 
For a segmented surface, the estimated value vest and the corresponding ground-truth 
value  vref  are vectors, and the signed error is defined as: 
es=vref−vest                                                                                                                        (3) 
The unsigned error is the absolute value of es  . 
For comparison, we also used the graph-based multi-surface segmentation method 
[Dufour, Ceklic, Abdillahi et al. (2012)] the deep learning method [Pekala, Joshi, Liu et 
al. (2019)] to evaluate. 

4 Results 
Experiments have shown that our framework is able to segment the retinal layer accurately 
as shown in Fig. 5. The data set used a slice centered on the fovea, which is capable of 
segmenting a segment that is more consistent with the ground value. So our framework is 
also feasible for the fovea. In order to highlight the effect of the method, we use the 
difference between the predicted value and the ground truth calculated using the mean error 
and the mean absolute error, as well as the standard deviation of the two errors. 
Obs.1 and Obs. 2 refer to the results marked by two doctors respectively; Avg. Obs refers 
to the average of the results of the two doctors; BC refers to the segmentation results 
based on the graph theory method; DL refers to the segmentation results based on the 
deep learning method; Algo. Indicates the segmentation result of our method. All values 
in our table are in pixels. 
Tab. 1 shows the average error of the positioning error between our method and ground 
truth. We can see that the deviation we calculated is less than the deviation calculated 
between doctors. For example, the average error on the entire OCT retinal image 
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manually labeled by two doctors is 2.06 pixels, and between our algorithm and ground 
truth. The error is 1.89 pixels. In general, our method can be improved by 0.17 pixels 
than the result of manual segmentation. However, we need to be aware that when making 
rigorous comparisons, we should be cautious these data sets have an impact on image 
resolution, noise and so on.  

 
(a) 

 
(b) 
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(c) 

Figure 5: Example slices from the OCT volumes of healthy eyes. (a) Original OCT 
image; (b) manual segmentation results; (c) proposed method 

Table 1: Mean unsigned errors computed on the normaltest set 
surface Obs1 vs. Obs2 BC vs. Avg.Obs. DL vs. Avg.Obs Algo. vs. Avg.Obs 
ILM 1.82±0.45 1.37±0.98 1.13±0.27 1.12±0.36 
NFL 3.45±0.79 2.81±2.76 2.65±1.76 2.55±0.98 
IPL 3.17±0.69 3.10±2.55 2.98±2.66 1.90±1.02 
INL 3.16±0.63 3.55±3.66 3.09±0.13 2.73±0.76 
ONL 1.65±0.78 3.96±2.60 1.37±0.76 1.48±0.81 
ELM 2.95±0.54 2.68±1.47 2.17±0.98 2.05±0.88 
OS/ IS 2.65±0.92 2.43±1.45 2.43±1.45 1.40±0.85 
RPE 2.66±0.49 2.31±0.49 2.00±0.56 1.92±0.81 
CHR 2.00±0.75 1.98±0.68 1.64±0.62 1.87±0.76 
CSJ 2.57±0.68 — 2.12±1.61 1.94±2.47 
average 2.60±0.67 2.41±1.66 2.10±1.09 1.89±0.97 

5 Discussion 
5.1 Comparison with previous studies 
This paper introduces an OCT retinal layer segmentation tool, which can describe any 
retinal layer boundary segmentation tool after the doctors mark the boundary points. The 
method used is based on the curve matching depth learning model, and the depth is 
utilized from each OCT image. A-scan sequence information Compared to the traditional 
OCT image segmentation method, we have established an end-to-end network model that 
automatically extracts the contour of the curve and calculates the offset between the 
curves. Compared with deep learning, we use A-scan in the OCT image to match and use 
the curve registration method to segment the OCT image. The segmentation results show 
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the accuracy and stability of the framework in the analysis of retinal layer structure, 
avoiding the shortcomings of the most popular retinal boundary segmentation methods. 

5.2 Future work 
In this field, we have the following progress. Next, we plan to make a separate 
convolution of the gray value curve. Firstly, the two columns of gray value curves are 
separately obtained by CNN to obtain their vector representations, so that two identical 
and fixed-length vectors are obtained. The vector represents the feature information 
abstracted by the gray value curve after convolution, and then these two vectors perform 
offset calculations to find a match between the two gray value curves. This method has 
the flexibility of a single column of gray value curve convolution. The two columns of 
gray value curves are completely independent in the modeling process, without any 
interaction behavior, which delays the interaction between the two columns of gray value 
curves until the abstract vector representation is finally generated. As input to the next 
model). In doing so, the gray value curve will lose a lot of important pixel details in the 
process of abstract modeling, and at the same time, the chance of interactive calculation 
between gray value curves is lost prematurely. The matching task for the two columns of 
gray value features is Critical. 
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