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Abstract: The two-stream convolutional neural network exhibits excellent performance 
in the video action recognition. The crux of the matter is to use the frames already 
clipped by the videos and the optical flow images pre-extracted by the frames, to train a 
model each, and to finally integrate the outputs of the two models. Nevertheless, the 
reliance on the pre-extraction of the optical flow impedes the efficiency of action 
recognition, and the temporal and the spatial streams are just simply fused at the ends, 
with one stream failing and the other stream succeeding. We propose a novel hidden two-
stream collaborative (HTSC) learning network that masks the steps of extracting the 
optical flow in the network and greatly speeds up the action recognition. Based on the 
two-stream method, the two-stream collaborative learning model captures the interaction 
of the temporal and spatial features to greatly enhance the accuracy of recognition. Our 
proposed method is highly capable of achieving the balance of efficiency and precision 
on large-scale video action recognition datasets. 
 
Keywords: Action recognition, collaborative learning, optical flow. 

1 Introduction 
Understanding the content in the video is an important part of computer vision, such as 
action recognition. Comparing to the images with only static information, the videos have 
more temporal information. Karpathy et al. [Karpathy, Toderici, Shetty et al. (2014)] 
adopted superimposing video multi-frame input to the network for action recognition 
learning, but this method is worse than manually extracting features. Simonyan et al. 
[Simonyan and Zisserman (2014)] proposed two-stream convolutional networks, which 
means that deep learning has taken a major step in action recognition. The two-stream 
convolutional network is divided into two parts, one processes RGB images, the other 
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processes optical flow images. Then the work jointly trains the model with the extracted 
features and finally classifies the actions with the trained model. 
Although the two-stream method achieves good performance, it relies on extracting the 
optical stream from the video in advance, and then learning the optical flow characteristics for 
action recognition which results in a reduction in the efficiency of the entire network. In order 
to solve this problem, a variety of methods have been proposed to capture motion information 
in the videos other than optical flow methods, such as recurrent neural network (RNN) [Du, 
Wang and Wang (2015)] and 3D CNN [Qiu, Yao and Mei (2017); Tran, Wang, Torresani et 
al. (2018)]. Some new feature representations of motion information are also proposed, such 
as motion vectors [Zhang, Wang, Wang et al. (2016); Wang, Long, Wang et al. (2017)], RGB 
image differences and warped optical flow fields [Wang, Xiong, Wang et al. (2016)]. 
However, the traditional optical flow methods for human action recognition are more 
effective than these feature representations. Recently, Zhu et al. [Zhu, Lan, Newsam et al. 
(2018)] use the CNN method to learn optical flow, implicitly generating motion information 
for action recognition, effectively avoiding expensive calculations and massive storage and 
increasing the speed of the entire task. This method solved the problem more directly. 
However, since only weighted fusion is performed, the interaction between spatial features 
and temporal features cannot be captured, which results in the situation that there is one flow 
success and the other flow failure and affects the overall action recognition efficiency. 
Therefore, the spatial and temporal integration strategy is particularly important, and 
many existing methods [Karpathy, Toderici, Shetty et al. (2014); Ji, Xu, Yang et al. 
(2012); Tran, Bourdev, Fergus et al. (2015)] build appropriate integration strategies by 
exploiting the advantages of convolution. Compared with the original methods using 
Fisher Vector [Perronnin, Sánchez and Mensink (2010)], HOF [Laptev, Marszałek, 
Schmid et al. (2008)], and dense trajectory features [Wang and Schmid (2013); Wang, 
Qiao and Tang (2015)], these methods which directly use CNN for video action 
recognition have no crushing advantage. Although CNN has achieved outstanding 
performance in image analysis tasks, CNNs cannot make full use of the spatial-temporal 
features in video understanding tasks. in order to make full use of spatial-temporal 
features, in addition to using standard CNN streams to capture appearance information, 
some recent methods [Simonyan and Zisserman (2014); Wang, Xiong, Wang et al. 
(2016)] have attempted to input video optical flow images into another CNN to extract 
features that contain video motion information. However, we have found that in these 
models, usually with one stream failing, while the other stream is still correctly 
misclassified. Therefore, the weighted average fusion strategy of the original two-stream 
method cannot fully utilize the apparent information and motion information of the video. 
On the contrary, we believe that the apparent information and motion information in the 
video should be mutually reinforcing. Recently, two-stream Collaborative Learning with 
spatial-temporal attention for video classification (TCLSTA) [Peng, Zhao and Zhang 
(2018)] paid spatial-temporal attention to video static and motion features so as to 
distinguish the different contributions of different regions in static frames to the final 
recognition result and discriminative frames in the frame sequence. Then TCLSTA uses 
the discriminative static and motion features extracted from the spatial-temporal attention 
model to mutually enhance representation learning and optimizes the combined weight of 
frames and the optical flow of video classification. But TCLSTA relies on extracting the 
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optical flow from the video in advance, and then learning the optical flow features for 
action recognition, which greatly reduces the efficiency of the entire system. 
In order to solve these two limitations and pursue the balance between speed and 
precision, our work proposes a hidden two-stream collaborative learning method for 
action recognition without storing pre-computed optical flow, which not only improves 
the efficiency of the whole network, but also captures spatial features and the interaction 
of temporal features and improves the accuracy of action recognition. 
Overall, the paper has two contributions as follows: 
1. We propose a novel framework, HTSC for action recognition (Section 3) without pre-
computing optical flow, effectively avoiding expensive computational and massive 
storage, which improves the efficiency of the entire network. 
2. Our work can directly extract the motion information features from the frame sequence, 
and guide the spatial features and temporal features to each other, improving the accuracy 
of recognition. 

 
Figure 1: The steps of the proposed HTSC 

2 Related work  
Understanding what’s in the video is an important part of computer vision. For example, 
video action recognition. In recent years, video human action recognition has made great 
achievements. At first, traditional hand-crafted extraction of frames, such as improved 
dense trajectory (IDT) [Wang and Schmid (2013)], is the method with the best effect, the 
best stability and the highest reliability before deep learning applied to this field, but the 
speed of this algorithm is slow. Convolutional neural network (CNN) [Karpathy, Toderici, 
Shetty et al. (2014); Zhu, Lan, Newsam et al. (2018)] is usually several orders of magnitude 
faster than IDT.  
Deep CNN is gaining its popularity in recent years [Tang, Yang, Zhou et al. (2015);  
Wang, Gao, Yin et al. (2018); Xiang, Shen, Qin et al. (2019); Chen, Xia, Wang et al. 
(2019)], it has achieved the most advanced performance in image classification [Laptev, 
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Marszałek, Schmid et al. (2008); Wang and Schmid (2013)]. Many works have designed 
deeper CNNs in order to apply CNN more effectively to action recognition tasks [Zhang, 
Wang, Wang et al. (2016); Ng, Hausknecht, Vijayanarasimhan et al. (2015); Qiu, Yao and 
Mei (2017); Wang, Qiao and Tang (2015); Peng, Zhao and Zhang (2018); Carreira and 
Zisserman (2017); Gui and Zeng (2019); Zhang, Jin, Sun et al. (2018)]. For example, 
several feature fusion strategies have been explored in the Sport1M dataset [Tran, Bourdev, 
Fergus et al. (2015)]. At the same time, the two-stream method proposes two CNNs for 
video action recognition, one of which is a static image stream and the other is an optical 
flow stream. Finally, the two streams are merged to capture static appearance information 
and motion information [Ng, Hausknecht, Vijayanarasimhan et al. (2015)] in video. 
Method [Tran, Bourdev, Fergus et al. (2015)] uses a 3D convolution kernel to extract 
features from a series of dense RGB frames. The temporal segment network (TSN) [Wang, 
Xiong, Wang et al. (2016)] first decomposes the video into static frames and optical flow 
images, then samples them and uses two CNNs to extract features, thereby extracting 
features containing video static information and video motion information. Method [Ng, 
Hausknecht, Vijayanarasimhan et al. (2015)] first use CNN to extract the features of static 
frames in order to better capture video motion information, and then use the long short-term 
memory (LSTM) model to explore the relationship between videos. Recently, I3D network 
[Carreira and Zisserman (2017)] used two streams CNN with expanded 3D convolution to 
achieve the most advanced performance on Kinetics data set on a dense RGB and optical 
flow sequence [Qiu, Yao and Mei (2017)]. 
A big disadvantage of the two-stream method is that it cannot model on a long-time video, 
and only extract temporal context for continuous video frames. In order to solve this 
problem, TSN network proposes to divide video into K segments, randomly select a snippet 
from each segment, and then apply two-stream method to these snippets, and finally 
integrate the features extracted from these snippets.  
However, the original two-stream method has two major disadvantages: first, the optical 
flow must be extracted from video in advance, and then the optical flow features are 
learned for action recognition, which greatly reduces the efficiency of the entire system. 
Secondly, the spatial CNN and temporal CNN in the two-stream method are independent 
of each other. Only a simple weighted average fusion strategy is performed to obtain the 
final prediction. It cannot learn the subtle spatial-temporal relations. In order to explore 
better fusion strategies, Laptev et al. [Laptev, Marszałek, Schmid et al. (2008)] compared 
multiple CNN connection methods, but none of these methods can make good use of the 
static information and motion information of the video. Recently, TCLSTA designed a 
static-motion collaborative learning model, which enhanced the spatial and temporal 
features of each other, and optimized the combined weights of frames and optical flow. 
However, it relies on extracting optical flow from video in advance, and then learning 
optical flow features for action recognition, which greatly reduces the efficiency of the 
entire system. The hidden two-stream collaborative learning method proposed in this 
paper does not need to extract the optical flow in advance, which greatly improves the 
network efficiency, and at the same time can better capture the spatial-temporal 
interaction, achieving the balance of speed and precision. 
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3 Method 
This section describes our proposed hidden two-stream collaborative learning method in 
detail, which includes two models: hidden two-stream model and collaborative learning 
model. Our idea is shown in Fig. 2. 
In Section 3.1, hidden two-stream model was introduced. We first decompose the video 
into a sequence of frames, and then send them to the spatial stream CNN and hidden 
temporal CNN, respectively. The hidden temporal CNN obtains the motion features and 
spatial stream CNN obtains the spatial features. 
 In Sections 3.2 and 3.3, we introduced a collaborative learning model that performs a 
collaborative learning network to optimize the spatial and temporal features. Then 
adaptive weighted learning model learns the fusion weight of each video category 
adaptively and finally obtains the prediction result. 

3.1 Hidden two-stream model 
Given the frame sequence of the video, we hope to learn not only the static appearance 
features, but also the motion information from the frame sequence, which serves as the 
basis for judging the video action category. We can effectively realize the action 
recognition of the static image by two-stream network [Simonyan and Zisserman (2014)], 
so our spatial stream network adopts the same setting as the two-stream network, and is 
used to capture the static appearance information of the images. FlowNet [Dosovitskiy, 
Fischer, Ilg et al. (2015)] proves that optical flow can be estimated by CNN. We hope to 
use the CNN to learn the optical flow information of the frame sequence, which 
contributes to the human action recognition task.  

 
Figure 2: The proposed HTSC method consists of two parts: (1) hidden two-stream 
model learns from the frame sequence to spatial (static) features and temporal (motion) 
features. (2) collaborative learning model uses the complementarity of motion 
information and static information to optimize the motion features and static features, 
which improves the accuracy of action recognition 

3.1.1 Spatial stream 
Static appearance features (colors, lighting, textures, contour, etc.,) are a useful clue 
because some actions are closely related to specific objects and scenes. The input of our 
spatial stream Convnet is a static frame of video, which can effectively realize the action 
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recognition of static images. In fact, the action classification of static frames (spatial 
streams) is inherently quite competitive. Due to the outstanding performance of CNN in 
image recognition tasks, we pre-train our spatial stream network on the basis of recent 
advance large-scale image recognition method [Perronnin, Sánchez and Mensink (2010)]. 

3.1.2 Temporal stream 
Although some actions can be recognized using a single frame image, some actions are 
dependent on motion information. Therefore, the temporal stream of the original two-stream 
network takes the optical stream image as an input. The original two-stream network needs 
to obtain the optical flow images from the video in advance using methods such as TVL1. 
The information contained in the optical flow images is useful for the action recognition task 
[Simonyan and Zisserman (2014)]. The original method needs to extract the optical flow 
information in advance, but the extraction speed is slow. The storage of the optical flow 
images requires additional storage space. We consider optical flow prediction as an image 
reconstruction problem [Jason, Harley and Derpanis (2016); Zeng, Dai, Li et al. (2018)]. We 
use the hidden temporal stream to learn the optical flow information of the frame sequence 
that contributes to our task and generate an effective optical stream of adjacent frames. 
Taking adjacent frames f1  and f2  as inputs, if the predicted optical flow and f2  can 
reconstruct f1, the network learns the motion information. 
Our temporal flow is divided into two parts: optical flow estimation and feature 
extraction. Our network details can be seen in Section 4.2. 
We calculate losses on multiple scales in the network of optical flow. Three loss 
functions [Zhu, Lan, Newsam et al. (2018)] are adopted to generate optical flow of higher 
quality, which can be written as follows: 
Standard pixel reconstruction error function: 

𝐿𝐿𝑃𝑃 = 1
𝑚𝑚𝑚𝑚

∑  ∑  𝐹𝐹(𝑓𝑓1(𝑔𝑔,ℎ) − 𝑓𝑓2�𝑔𝑔 + 𝑉𝑉𝑔𝑔,ℎ
𝑥𝑥 ,ℎ + 𝑉𝑉𝑔𝑔,ℎ

𝑦𝑦 �)𝑚𝑚
ℎ

𝑚𝑚
𝑔𝑔                                                     (1) 

where LP denotes the standard pixel reconstruction error function, where 𝑉𝑉𝑔𝑔,ℎ
𝑥𝑥   and 𝑉𝑉𝑔𝑔,ℎ

𝑦𝑦  
are the estimated optical flow in the horizontal and vertical directions of the pixel (g, h), 
and m and n represent the height and width of frame 𝑓𝑓1 and 𝑓𝑓2. In order to reduce the 
effect of outliers, we adopt the equation F(x) = (x2 + ε2)α [Lai, Huang, Ahuja et al. 
(2017)] (a variant of L1 loss, first used as a loss function in LapSRN) 
𝐿𝐿𝑠𝑠𝑚𝑚 = 𝐹𝐹(𝛻𝛻𝑎𝑎𝑥𝑥) + 𝐹𝐹(𝛻𝛻𝑏𝑏𝑥𝑥) + 𝐹𝐹�𝛻𝛻𝑎𝑎

𝑦𝑦� + 𝐹𝐹�𝛻𝛻𝑏𝑏
𝑦𝑦�                                                                      (2) 

where Lsm is a smoothness loss function, which solves the aperture problem that leads to 
blurring when estimating motion in a non-textured region. 𝛻𝛻𝑎𝑎𝑥𝑥 and 𝛻𝛻𝑏𝑏𝑥𝑥 are gradients of the 
predicted optical flow field 𝑉𝑉𝑥𝑥  in each direction. Analogously, 𝛻𝛻𝑎𝑎

𝑦𝑦  and  𝛻𝛻𝑏𝑏
𝑦𝑦  are the 

gradients of the optical flow field 𝑉𝑉𝑦𝑦, F (x) is the same as in Eq. (1) 

SSMI�fB1 , fB2� = (2𝜇𝜇𝐵𝐵1𝜇𝜇𝐵𝐵2+𝑘𝑘1)(2𝜎𝜎𝐵𝐵1𝐵𝐵2+𝑘𝑘2)
(𝜇𝜇𝐵𝐵1

2 +𝜇𝜇𝐵𝐵2
2 +𝑘𝑘1)(𝜎𝜎𝐵𝐵1

2 +𝜎𝜎𝐵𝐵2
2 +𝑘𝑘2)

                                                                      (3) 

Structural similarity (SSIM) loss function [Wang, Bovik, Sheikh et al. (2004)], which 
helps us learn the structure of frames, where fB1 and fB2are local blocks of frames f1 and 
f2, respectively, and we set the size to 8 × 8. 𝜇𝜇𝐵𝐵1 and 𝜇𝜇𝐵𝐵2 are average values of the image 
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blocks fB1 and fB2, 𝜎𝜎𝐵𝐵1 and 𝜎𝜎𝐵𝐵2 are the variances of the two image blocks, 𝜎𝜎𝐵𝐵1𝐵𝐵2 is the 
covariance, and 𝑘𝑘1  and 𝑘𝑘2  are two constants used to stabilize the division. In the 
experiments, we set it to 0.0001 and 0.001, respectively. 

𝐿𝐿𝑠𝑠𝑠𝑠 = 1
𝐼𝐼
∑ (1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑓𝑓1𝑖𝑖1 ,𝑓𝑓1𝑖𝑖′ ))𝐼𝐼
𝑖𝑖                                                                                          (4) 

In order to compare the similarity between two frames 𝑓𝑓1  and f1′ , we design a loss 
function 𝐿𝐿𝑠𝑠𝑠𝑠, where I am the number of local blocks we can extract from the image, and i 
is the index of the local block. 
𝐿𝐿𝑠𝑠 = 𝜆𝜆1𝐿𝐿𝑝𝑝 + 𝜆𝜆2𝐿𝐿𝑠𝑠𝑚𝑚 + 𝜆𝜆3𝐿𝐿𝑠𝑠𝑠𝑠                                                                                             (5) 
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝛿𝛿𝑠𝑠5

𝑠𝑠=1 𝐿𝐿𝑠𝑠                                                                                                               (6) 
where 𝛿𝛿𝑠𝑠 is the parameter to regulate the losses of each scale [Zhang, Yin, Yang et al. 
(2017)]. The loss of each scale is the weighted sum of the previous three loss functions. 
The feature extraction part is also similar to the CNN structure of spatial stream. Before 
sending the estimated optical flow to the CNN that extracts features, we normalize it to a 
range between 0 and 255. This normalization is important for good temporal stream 
performance [Simonyan and Zisserman (2014)]. Finally, the temporal stream extracts 
features containing optical flow information. 

3.2 Collaborative learning model 
For the two-stream method and its derivative methods [Simonyan and Zisserman (2014); 
Zhu, Lan, Newsam et al. (2018); Peng, Zhao and Zhang (2018); Diba, Pazandeh and Van 
Gool (2016); Feichtenhofer, Pinz and Zisserman (2016)], we carefully observe their 
recognition process and find that the spatial stream and the temporal stream are trained 
independently and tested, but only the final fusion of the scores of the two streams is 
finally performed. The disadvantage of this method is that one stream identification will 
fail, the other stream identification will succeed, and the overall network identification 
will fail. On the contrary, we hope that temporal stream (motion information) and spatial 
stream (static information) not only merge at the end, but promote each other in the 
process. In order to capture the interaction of spatial (static) information and temporal 
(motion) information, we hope that static and motion features interact, so our 
collaborative learning model uses motion and static information with symmetrical 
structural motion and static information to make static and motion features guide and 
optimize each other. 

3.2.1 Algorithm formula 
At time t, frame features are utilized to optimize optical flow features. 
H = tan ℎ (𝑊𝑊𝑜𝑜𝐹𝐹𝑜𝑜 + (𝑊𝑊𝑉𝑉

𝑠𝑠𝑉𝑉𝑠𝑠)1𝑇𝑇)                                                                                       (7) 
where 𝑊𝑊𝑜𝑜  and 𝑊𝑊𝑉𝑉

𝑠𝑠  are weight parameters. 1 is a vector (all values are 1). 𝐹𝐹𝑜𝑜 =
[𝑓𝑓1𝑜𝑜,𝑓𝑓2𝑜𝑜, … , 𝑓𝑓𝑁𝑁𝑜𝑜]  represents the temporal feature (optical flow feature), 𝑉𝑉𝑠𝑠  is the video 
feature which is aggregated from the video frame feature at time t-1. 
𝑧𝑧𝑜𝑜 = 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑊𝑊ℎ

𝑜𝑜𝑇𝑇𝐻𝐻�                                                                                                     (8) 
𝑉𝑉𝑜𝑜 = ∑𝑐𝑐𝑖𝑖𝑜𝑜𝑓𝑓𝑖𝑖𝑜𝑜                                                                                                                      (9) 
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We calculate the optical flow optimization coefficient 𝑐𝑐𝑜𝑜 by Eq. (8), and we combine the 
optical flow features output by the previous model as the video feature 𝑉𝑉𝑜𝑜. 𝑊𝑊ℎ

𝑜𝑜 is also a 
weight parameter. 
Next, we use the optical flow feature to optimize the frame features. The frame features 
are expressed as 𝐹𝐹𝑠𝑠 = [𝑓𝑓1𝑠𝑠,𝑓𝑓2𝑠𝑠, … , 𝑓𝑓𝑁𝑁𝑠𝑠]. In general, the input of our module is: frames and 
optical flow features extracted from the previous model. The outputs are: optimized 
frame features 𝐹𝐹𝑓𝑓𝑠𝑠 and optical flow features 𝐹𝐹𝑓𝑓𝑜𝑜. 

3.2.2 Algorithm steps 
Step 1. Define the optimization coefficient of the spatial (frame) feature as 𝑐𝑐𝑠𝑠. 
Step 2. Initialize optimization coefficient. 
Step 3. Using the spatial (frame) feature 𝐹𝐹𝑠𝑠 to calculate the video feature ∑𝑐𝑐𝑖𝑖𝑠𝑠𝑓𝑓𝑖𝑖𝑠𝑠 by Eq. (9). 
Step 4. Using 𝑉𝑉𝑠𝑠 to calculate the optimization coefficient 𝑐𝑐𝑜𝑜 of the temporal (optical flow) 
feature by Eqs. (7) and (8) to obtain the optimized temporal (optical flow) feature. 
Step 5. Using the temporal (optical flow) feature 𝐹𝐹𝑜𝑜  to calculate the video feature 
∑𝑐𝑐𝑖𝑖𝑜𝑜𝑓𝑓𝑖𝑖𝑜𝑜 by Eq. (9). 
Step 6. Using 𝐹𝐹𝑜𝑜  to optimize the spatial (frame) features and obtain the optimization 
coefficient 𝑐𝑐𝑠𝑠 on the spatial (frame) features 
Step 7. Iteration, the convergence of the loss function stops. 
Step 8. Stop and return the optimized frame feature 𝐹𝐹𝑓𝑓𝑠𝑠 = 𝐹𝐹𝑠𝑠𝑇𝑇𝑐𝑐𝑠𝑠  and the optimized 
optical flow feature 𝐹𝐹𝑓𝑓𝑜𝑜 = 𝐹𝐹𝑜𝑜𝑇𝑇𝑐𝑐𝑜𝑜. 

3.3 Adaptive weighted learning 
Since we have obtained the predicted scores (static and motion) for each stream, we can 
simply fuse the scores of the two streams as categories of video action. However, spatial 
(static) and temporal (motion) information contributes differently to different action 
categories. There are no obvious movements in some classes, such as “blow dry hair” and 
“pommel horse”. Therefore, these classes should be primarily recognized from static 
frames. Certain classes include obvious motion, however, motion information is 
significant for classifying categories, such as “diving” and “sky diving”. Finally, fusion 
weights of spatial and temporal streams of distinct classes are adaptively learned. 
We express the network prediction score as 𝑆𝑆𝑏𝑏𝑎𝑎 = [𝑠𝑠𝑏𝑏,1

𝑎𝑎 𝑇𝑇 , 𝑠𝑠𝑏𝑏,2
𝑎𝑎 𝑇𝑇]𝑇𝑇 ∈ ℝ2×𝑚𝑚 , where 𝑠𝑠 

represents the 𝑠𝑠 category in the dataset, and 𝑏𝑏 represents the 𝑏𝑏 category in the dataset. M 
is the number of action categories corresponding to the dataset. 𝑠𝑠𝑏𝑏,1

𝑎𝑎  and 𝑠𝑠𝑏𝑏,2
𝑎𝑎  represent the 

scores of the first stream and the second stream. 
We represent the weight of the first stream of class 𝑠𝑠 in the corresponding dataset as 𝑤𝑤1𝑎𝑎 
and 𝑤𝑤2𝑎𝑎 as the second stream, 𝑊𝑊𝑎𝑎 = [𝑤𝑤1𝑎𝑎 ,𝑤𝑤2𝑎𝑎] is the two-stream fusion weight. The two-
stream fusion weights for each category are learned separately by each category, we 
obtain the fusion weight 𝑊𝑊𝑎𝑎 for each category by limiting ∑ 𝑤𝑤𝑎𝑎,𝑏𝑏

2
𝑏𝑏=1 = 1,𝑤𝑤𝑎𝑎,𝑏𝑏 > 0. 

arg max
𝑊𝑊𝑎𝑎

𝑅𝑅𝑎𝑎 − 𝑐𝑐𝑁𝑁𝑎𝑎                                                                                                           (10) 
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Eq. (10) represents our objective function, and c is set to 5 × 10−3, where 𝑅𝑅𝑎𝑎 is defined 
as follows, 
𝑅𝑅𝑎𝑎 = ∑ 𝑊𝑊𝑎𝑎

𝑚𝑚𝑎𝑎
𝑏𝑏=1 𝑆𝑆𝑏𝑏𝑎𝑎𝐴𝐴𝑎𝑎                                                                                                       (11) 

𝑁𝑁𝑎𝑎 = ∑  ∑ 𝑊𝑊𝑎𝑎𝑆𝑆𝑏𝑏𝑘𝑘𝐴𝐴𝑎𝑎
𝑚𝑚𝑘𝑘
𝑏𝑏=1

𝑚𝑚
{𝑘𝑘=1,𝑘𝑘≠𝑎𝑎}                                                                                      (12) 

where 𝑛𝑛𝑎𝑎  denotes the number of all the data of the category 𝑠𝑠  in the corresponding 
dataset, A𝑎𝑎 = [0, … ,0, 1, 0, … , 0]𝑇𝑇  ∈ ℝ𝑚𝑚×1 , only the 𝑠𝑠 -th element is 1 and the other 
elements are 0 in this vector. The way to maximize R𝑎𝑎 is to maximize the product of the 
column a vector of 𝑊𝑊𝑎𝑎  and 𝑆𝑆𝑏𝑏𝑎𝑎. It also means to minimize the product of 𝑊𝑊𝑎𝑎  and 𝑠𝑠-th 
column vector of 𝑆𝑆𝑏𝑏𝑘𝑘 (𝑘𝑘 is not equal to 𝑠𝑠). R𝑎𝑎 and N𝑎𝑎 consider the relationship between 
the positive and negative samples of 𝑊𝑊𝑎𝑎, respectively, and are parameters that balance the 
weights of the positive and negative samples. Then, we can transform our objective 
function into: 
𝑠𝑠𝑎𝑎𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠

𝑊𝑊𝑎𝑎
𝑊𝑊𝑎𝑎 (∑ 𝑆𝑆𝑏𝑏𝑎𝑎𝐴𝐴𝑎𝑎

𝑚𝑚𝑎𝑎
𝑏𝑏=1 − 𝑐𝑐 ∑ ∑ 𝑆𝑆𝑏𝑏𝑘𝑘

𝑚𝑚𝑘𝑘
𝑏𝑏=1

𝑚𝑚
{𝑘𝑘=1,𝑘𝑘≠𝑎𝑎} 𝐴𝐴𝑎𝑎  ,𝑠𝑠. 𝑠𝑠.∑ 𝑊𝑊𝑎𝑎,𝑏𝑏 = 1,2

𝑏𝑏=1 𝑊𝑊𝑎𝑎,𝑏𝑏 > 0) (13) 

Finally, our fusion weights are calculated by linear programming [Li, Liu, Wang et al. 
(2019); Reddy and Shah (2013)]. 
During the test, the SoftMax layer output of the two streams is expressed as Eq. (14). 
𝑆𝑆𝑖𝑖 = [𝑠𝑠𝑖𝑖,1𝑇𝑇 , 𝑠𝑠𝑖𝑖,2𝑇𝑇]𝑇𝑇 ∈ ℝ2×𝑚𝑚                                                                                             (14) 
arg max

𝑏𝑏
𝑊𝑊𝑏𝑏𝑆𝑆𝑡𝑡𝐴𝐴𝑎𝑎                                                                                                             (15) 

The final classification result is determined by the highest fusion score. 

4 Experiments 
4.1 Datasets 
We select 3 widely used action recognition datasets UCF101 [Soomro, Zamir and Shah 
(2012)], HMDB51 [Kuehne, Jhuang, Garrote et al. (2011)], and THUMOS14 [Idrees, 
Zamir, Jiang et al. (2017)] to validate our HTSC method. UCF101 is collected from real 
world, which are clipped from YouTube. UCF101 is a widely used action recognition 
dataset, including 101 different kinds of human action video. UCF101 consists of 13320 
videos and 101 action categories. HMDB51 contains 6849 samples of 51 categories 
extracted from various resources (online videos and films). THUMOS14 is a large video 
dataset applied to action recognition and detection that includes long unclipped videos. 
THUMOS14 has 101 action classes. We adopt 13,320 videos for training and 1010 
videos for verification, respectively. Then, we test the performance of our network on 
1,574 videos. 
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Brush hair Hand stand Ride horse

Dive Draw sword Dribble

Flic flac Golf Cartwhell

 
(1) UCF 101                              (2) HMDB51                    (3) THUMOS14 

Figure 3: We have selected 9 different categories of examples from each of the three 
datasets UCF101, HMDB51 and THUMOS14. The three datasets have 101, 51 and 101 
categories respectively 

4.2 Implementation details 
4.2.1 Hidden two-stream model 
With regard to two-stream method, our work is based on Vgg16 [Simonyan and 
Zisserman (2014)] model. The detailed network structure is shown in Fig. 2, and we 
utilize the spatial stream of the two-stream network to extract spatial feature. The 
convolution kernel in each convolution layer is represented as (W×H). The number K 
denotes the lineage of “Blocks” in Tab. 1. For spatial flow, the input size is 224×224×3 
and its output feature map size is 1×1×4096. During the training process, we adopt the 
pre-trained Vgg16 model on ImageNet. Besides, we change the number of fully 
connected layer (classification) as the class number of the corresponding datasets. 

Table 1: Architecture of the spatial stream network in the hidden two-stream model, and 
M is set to the number of corresponding dataset categories 

Layers Input size Blocks Output size 
conv1_x 224×224×3 

(224×224×20) 
3×3,64 stride1 224×224×64 

pool1 224×224×64 2×2 max pool stride2 112×112×64 
conv2_x 112×112×64 3×3 ,128 stride 1 112×112×128 
pool2 112×112×128 2×2 max pool stride 2 56×56×128 
conv3_x 56×56×128 3×3,256 stride 1 56×56×256 
pool3 56×56×256 2×2 max pool stride 2 28×28×256 
conv4_x 28×28×256 3×3,512 stride 1 28×28×512 
pool4 28×28×512 2×2 max pool stride 2 14×14×512 
conv5_x 14×14×512 3×3,512 stride 1 14×14×512 
pool5 14×14×512 2×2 max pool stride 2 7×7×512 
fc6 7×7×512 3×3,4096 stride 1 7×7×4096 
fc7 7×7×4096 3×3,4096 stride 1 1×1×4096 
fc8 1×1×4096 3×3, M stride 1 1×1×M 
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For hidden temporal stream, the detailed structure of network is shown in Tab. 2, the 
input is frame sequence, and optical flow is estimated by the CNN. The optical flow is 
directly fed to the feature extraction network after normalization. Because the optical 
flow images are not stored, it is much faster than the two-stage methods. The two-stage 
method requires writing and reading the optical flow images and takes almost three times 
longer than all the other steps. 

Table 2: Architecture of the hidden temporal stream network in the hidden two-stream model 
Layers Input  Blocks Output size 
conv1 224×224×33   3×3,64 str 1 224×224×64 
conv1_1 224×224×64 3×3,64 str 1 224×224×64 
conv2 224×224×64 3×3,128 str2 112×112×128 
conv2_1 112×112×128 3×3,128 str1 112×112×128 
conv3 112×112×128 3×3,256 str2 56×56×256 
conv3_1 56×56×256 3×3,256 str1 56×56×256 
conv4 56×56×256 3×3,512 str2 28×28×512 
conv4_1 28×28×512 3×3,512 str1 28×28×512 
conv5 28×28×512 3×3,512 str2 14×14 ×512 
conv5_1 14×14×512 3×3,512 str1 14×14 ×512 
conv6 14×14×512 3×3,1024 str2 7×7×1024 
conv6_1 7×7×1024 3×3,1024 str1 7×7×1024 
flow6(loss6) 7×7×1024  3×3,20 str1 7×7×20 
deconv5 7×7×1024 4×4,512 str2 14×14 ×512 
xconv5 14×14×1044 

deconv5+flow6+conv5_1 
3×3,512 str1 14×14 ×512 

flow5(loss5) 14×14×512 3×3,20 str1 14×14 ×20 
deconv4 14×14×512 4×4,256 str2 28×28×256 
xconv4 28×28×788 

deconv4+flow5+conv4_1 
3×3,256 str1 28×28×256 

flow4(loss4) 28×28×256 3×3,20 str1 28×28×20 
deconv3 28×28×256 4×4,128 str2 56×56×128 
xconv3 56×56×404 

deconv3+flow4+conv3_1 
3×3,128 str1 56×56×128 

flow3(loss3) 56×56×128 3×3,20 str1 56×56×20 
deconv2 56×56×128 4×4,64 str2 112×112×64 
xconv2 112×112×212 

deconv2+flow3+conv2_1 
3×3,64 str1 112×112×64 

flow2(loss2) 112×112×64 3×3,20 str1 112×112×20 

4.2.2 Collaborative learning model 
The detailed network structure of our collaborative learning module is shown in Fig. 3. 
The module consists of two parts: the first part is the collaborative learning layer, and the 
hidden two-stream model output features are used as its input. Static and motion features 
are optimized by collaborative learning layer. Like the hidden two-stream model, we 
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design N hidden units in the two softmax layers, where N is the number of categories in 
the relative datasets. The second part is adaptive weighted learning model. The details are 
in Section 3. We select the cross-validation model and set the parameter c of Eq. (13) to 
5 × 10−3 . And in order to optimize our collaborative learning network, we adopt the 
cross-entropy loss as our loss function. Finally, we predict the action category of the 
video by Eq. (15). 

4.2.3 Comparison with the-state-of-art methods 
Our HTSC method is tested on 2 trimmed video datasets and 1 untrimmed video dataset. 
Our experimental results are compared with latest competitive methods, and the results 
are shown in Tab. 3. For HMDB51 dataset, the early works [Diba, Pazandeh and Van 
Gool (2016); Kantorov and Laptev (2014); Gui and Zeng (2019)] selected the hand-
crafted features as video feature representations, whose performance is limited and far 
worse than our proposed method. Some methods [Tran, Bourdev, Fergus et al. (2015); 
Diba, Pazandeh and Van Gool (2016)] utilize the features of 3D convolution as video 
representation, whose speed is fast. However, they need high computational cost and 
obtain lower accuracy than two-stream methods and their derivation methods. Other 
methods, for example, Karpathy et al. [Karpathy, Toderici, Shetty et al. (2014)] adopted 
two kinds of CNN to simulate static and motion information to obtain higher accuracy 
than conventional action recognition methods [Cai, Wang, Peng et al. (2014); Kantorov 
and Laptev (2014); Gui and Zeng (2019)]. But the improvements are limited because of 
the simple fusion strategy. Therefore, some researchers [Wang, Xiong, Wang et al. 
(2016); Feichtenhofer, Pinz and Zisserman (2016)] employ more complicated feature 
fusion strategies to combine static and motion information and obtain higher accuracy 
than [Karpathy, Toderici, Shetty et al. (2014)] method. But all these methods [Simonyan 
and Zisserman (2014); Wang, Xiong, Wang et al. (2016); Feichtenhofer, Pinz and 
Zisserman (2016)] need to extract optical flow in advance, which affects the efficiency of 
the whole network. Moreover, the spatial and temporal features of video extraction are 
not independent of each other. On the contrary, they have high complementarity. Our 
method achieved good results among the most advanced methods, with an increase of 1.3% 
over the highest results of the comparative method. This result occurs because our 
method allows the two types of information (static and motion information) of the video 
to learn and optimize each other. The accuracy of the method TCLSTA is slightly higher 
than our method because it not only utilizes the complementarity of spatial and temporal 
features, but also pays attention to spatial and temporal features before collaborative 
learning. However, the spatial-temporal attention model requires three-stage training and 
a deeper residual network in TCLSTA, which increases the cost of training. Compared 
with TCLSTA, our hidden two-stream method train the model end-to-end and implicitly 
extracts optical flow information, which saves storage space required by pre-extracted 
optical flow images. Therefore, our efficiency is higher than TCLSTA (Efficiency 
Evaluation section). 
The comparison on UCF101 dataset is also shown in Tab. 3. The result trends for 
HMDB51 dataset and THUMOS14 dataset are similar to UCF101 dataset. 
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Table 3: Experimental results are compared with the latest technology on three datasets. 
The evaluation metric of the HMDB51 and UCF101 datasets is the accuracy, and 
THUMOS14 dataset is MAP 

Methods UCF101 HMDB51 THUMOS14 
MVSV [Cai, Wang, Peng et al. (2014)] 0.835 0.559 -- 

MV+FV [Kantorov and Laptev (2014)] 0.785 0.467 -- 

EMV [Zhang, Wang, Wang et al. (2016)] 0.802 -- 0.416 

C3D (1 Net) [Tran, Bourdev, Fergus et 
al. (2015)] 

0.823 0.497* 0.546 

3DNet [Diba, Pazandeh and Van Gool 
(2016)] 

0.902 -- -- 

Two-stream [Simonyan and Zisserman 
(2014)] 

0.880 0.594 0.661 

Two-Stream+Fusion [Feichtenhofer, 
Pinz and Zisserman (2016)] 

0.92.5 0.654 -- 

TSN（RGB Diff）[Wang, Xiong, Wang 
et al. (2016)] 

0.910 0.645* 0.719* 

TCLSTA [Peng, Zhao and Zhang (2018)] 0.940 0.687 0.847 

HTS [Zhu, Lan, Newsam et al. (2018)] 0.903 0.605 0.667 

Ours 0.927 0.667 0.797 

4.2.4 Ablation experiments 
To prove the effectiveness of each component of the proposed method HTSC, we design the 
following ablation experiments, Tab. 4 shows the results of our ablation experiments.  
Our method includes two streams: spatial stream and hidden temporal stream. Firstly, we use 
spatial stream and hidden temporal stream to predict the categories of videos, respectively. 
Then, we fuse spatial stream and hidden temporal stream. We find that the accuracy of two-
stream fusion method is 6.2% higher than single-stream fusion method in UCF101 dataset, 
indicating that spatial stream and hidden temporal stream are complementary. In addition, we 
add collaborative learning network (CLN) on the basis of hidden two-stream network, we 
find that “hidden two-stream+CLN” achieves better classification accuracy than the results of 
hidden two-stream network without collaborative learning model. It is shown that the CLN 
can promote mutual learning of static and motion features and make use of their correlation to 
further improve the accuracy of action recognition. Finally, we add the adaptive weighted 
learning (AWL) model on the basis of “hidden two-stream+CLN”. Compared with the 
network without adaptive weighted learning model, the accuracy is further improved, which 
proves the effectiveness of adaptive weighted learning. The accuracy of late fusion is lower 
than adaptive weighted learning model, the reason is that the late fusion cannot distinguish the 
importance of different categories of static and motion information. While the adaptive 
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weight learning can distinguish the different significance of static and motion information of 
different semantic classes, which improves the accuracy of our entire network. 

Table 4: Comparison of experimental results of each part of the model 
Method UCF101 HMDB51 THUMOS14 

Spatial stream 0.809 0.514 0.721 
Hidden temporal steam 0.841 0.545 0.673 

HTS 0.903 0.605 0.746 
HTS+CLN 0.919 0.645 0.783 

HTS+CLN+AWL 0.927 0.667 0.797 

4.2.5 Efficiency assessment 
To evaluate the performance of the HTSC method, we calculate the test speed on 
HMDB51 dataset. The test process of the hand-crafted feature methods [Cai, Wang, Peng 
et al. (2014); Kantorov and Laptev (2014); Gui and Zeng (2019)] include local feature 
extraction, feature coding and classification. But the process of local feature extraction 
takes up lots of the computational cost, resulting in low efficiency. So, we do not compare 
our method with them. The results are compared with some existing deep learning methods 
in Tab. 5. The efficiency and accuracy of our method is better than Simonyan et al. 
[Simonyan and Zisserman (2014); Feichtenhofer, Pinz and Zisserman (2016)]. In addition, 
compared with the two-stream methods and their derivation methods, we do not need to 
extract optical flow images in advance. Our method is faster than TCLSTA, because our 
hidden two-stream model train the model end-to-end and implicitly extracts optical flow 
information, saving storage space required for pre-extracted optical flow images In general, 
although the efficiency is slightly lower than Zhu et al. [Zhu, Lan, Newsam et al. (2018)], 
our proposed method obviously achieve higher accuracy than other methods, and we show 
the results in Tab. 5. 

Table 5: Efficiency assessment of the network in HMDB51 dataset 
Method Frames per second(fps) 
Two-Stream+Fusion [Feichtenhofer, Pinz and Zisserman (2016)] 33.2 
Two-stream [Simonyan and Zisserman (2014)] 99.7 
TCLSTA [Peng, Zhao and Zhang (2018)] 89.5 
HTS [Zhu, Lan, Newsam et al. (2018)] 120.4 
Ours 115.1 

5 Conclusions 
This paper proposes a hidden two-stream collaborative learning network for human 
action recognition, which consists of a hidden two-stream model and a collaborative 
model. Conventional action recognition methods need to extract the optical flow of the 
video in advance to capture the motion information. Differently, the hidden two-stream 
model adopts CNN to capture the relationships between video frames, which improves 
the efficiency of the whole network and saves the storage space. The collaborative model 
adopts the hidden two-stream model to extract the spatial static frame features and the 
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temporal flow motion features, which enhance the mutual representation to improve the 
accuracy of action recognition. Experiments of three widely used video classified datasets 
show the effectiveness of our method. 
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