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Abstract: Here, the effects of substituting portions of fossil-based phenol in phe-
nol formaldehyde resin by renewable lignin from two different sources are inves-
tigated using a factorial screening experimental design. Among the resins
consumed by the wood-based industry, phenolics are one of the most important
types used for impregnation, coating or gluing purposes. They are prepared by
condensing phenol with formaldehyde (PF). One major use of PF is as matrix
polymer for decorative laminates in exterior cladding and wet-room applications.
Important requirements for such PFs are favorable flow properties (low viscosity),
rapid curing behavior (high reactivity) and sufficient self-adhesion capacity (high
residual curing potential). Partially substituting phenol in PF with bio-based phe-
nolic co-reagents like lignin modifies the physicochemical properties of the resulting
resin. In this study, phenol-formaldehyde formulations were synthesized where
either 30% or 50% (in weight) of the phenol monomer were substituted by either
sodium lignosulfonate or Kraft lignin. The effect of modifying the lignin material
by phenolation before incorporation into the resin synthesis was also investigated.
The resins so obtained were characterized by Fourier Transform Infra-Red (FTIR)
spectroscopy, Size Exclusion Chromatography (SEC), Differential Scanning
Calorimetry (DSC), rheology, and measurements of contact angle and surface
tension using the Wilhelmy plate method and drop shape analysis.

Keywords: Lignin; lignin-phenol-formaldehyde resin (PF); surface energy;
viscosity; thermal characterization; design of experiments

1 Introduction

Phenolic (PF) resins used in the laminates industry are mainly water borne, liquid resols of low
molecular weight with good penetration properties [1]. Resols are prepared under alkaline conditions with
sodium hydroxide as a catalyst [2]. Since phenol is derived from fossil resources, alternative approaches
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where renewable materials are exploited to substitute at least portions of the phenol monomer are desirable
from an environmental point of view. Numerous studies aiming at replacing toxic and petroleum-based
phenol by natural components were recently summarized [3]. Among these bio-based materials, lignins as
the second-most abundant natural polymers, have an exceptionally high potential to replace petroleum-
based phenol in PF resins [3–5]. Since lignin is a side product from various biorefinery and industrial
processes such as the pulp and paper industry it is, in principle, available in large quantities and presents
an economical substitute for phenol.

Lignins are high-molecular weight compounds consisting mainly of three basic monomers, sinapyl (S),
guaiacyl (G) and para-hydroxy phenyl (H) alcohol (Fig. 1) that are cross-linked via different interconnections
[3,6]. The relative proportions of the constituents and their configuration depend very much on the vegetable
species the lignins are extracted from [7,8]. The chemical linkages in lignin are mainly ether bonds [9,10].
The main drawbacks of using lignin for phenolic resins are their lower reactivity due to their complex
chemical structure and their smaller number of reactive sites compared to unsubstituted phenol as the
starting material [11].

Methods to improve the reactivity of lignin include phenolation, alkylation and hydroxymethylation
pretreatments [12] before incorporating lignin into a resin formulation. The phenolation treatment of
lignins is carried out under acidic conditions and is supposed to lead to a partial depolymerization
(“phenolysis”) of the high-molecular weight compounds via ether bond cleavage [11]. Thereby, a higher
percentage of aromatic rings with a larger number of sites reactive towards formaldehyde becomes
available [11,13].

Various studies on the preparation of phenolic resins with phenol-substitution by different sorts of lignin
at different levels of replacements have been published where the resulting resins were assessed mainly for
their gluing performance [14–17]. Only very few studies, however, deal with lignin-phenol hybrid resins that
are especially suitable for paper impregnation as required for laminates manufacture [3,18–21]. With
impregnation resins, homogenous impregnation of the porous network such as Kraft paper or glass fiber
mats is very important. Inhomogenous impregnation could eventually lead to a number of defects in the
final laminated board after hot pressing such as blisters, warping, delamination, etc. [22,23]. Therefore,
with impregnation resins, besides rapid curing behavior (high reactivity) and sufficient self-adhesion

Figure 1: Chemical structures of the three main monomers in lignins (sinapyl S, guaiacyl alcohol G, and
p-hydroxyphenyl, H monomers; the asterisks indicate nucleophilic reactive sites) and a typical structural
representation of a softwood lignin
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capacity (high residual curing potential), the flow behavior (viscosity) and the wetting properties (polarity)
become especially important. The substitution of phenol by lignin can be expected to cause significant
changes in these properties [24,25].

In the present study, several phenolic resins were prepared based on the basic synthetic protocol for a
typical phenolic impregnation resin. They were modified with either one of two lignins of different
provenience. The following three factors were studied at two levels: (1) lignin type (sodium lignosulfonate
or Kraft lignin), (2) lignin pre-treatment prior to PF synthesis (with or without phenolation modification),
and (3) phenol substitution level (either 30% or 50%). A 2-level-3-factor full factorial experimental design
was applied to screen for the effects of these factors. The resulting lignin-phenol hybrid impregnation resins
were characterized in terms of viscosity, surface energy and wetting behavior, molecular structure (FTIR
spectroscopy), molecular weight distribution (GPC), and chemical reactivity (DSC).

2 Materials and Methods

2.1 Chemicals
Phenol (99% purity), formaldehyde (aqueous solution with a formaldehyde content of 37%) and sulfuric

acid (96% aqueous solution) were supplied from Roth Chemicals (Karlsruhe, Germany). Sodium hydroxide
was purchased from Sigma Aldrich (Saint-Louis, Missouri, United States). Sodium lignosulfonate DP 400
(L) was purchased from Westvaco Corp. (Charleston, South Carolina, United States), alkali lignin (Kraft,
K) from Sigma Aldrich (Steinheim, Germany) and Indulin AT (Kraft, I) from Westvaco.

2.2 Resin Preparation
Resins were prepared according to a full two-level three-factorial experimental screening design using

the factors (a) Lignin type (categorical factor, either Kraft lignin or lignosulfonate), (b) degree of substitution
(numerical factor, either 30% or 50% substitution of phenol reaction mass), and (c) phenolation treatment
(categorical factor, with or without phenolation). As a reference, a standard phenolic impregnation resin
(P) was synthesized using a P:F molar ratio of 1:1.8. The degree of lignin substitution was calculated
based on the mass of phenol required for this P:F ratio. The experimental settings for all prepared resins
are given in Tab. 1.

Table 1: Experimental settings used to prepare the various lignin-phenolic hybrid model resins synthesized
with different types of lignin materials, treatments, and substitution levels

Resin Substitution level (w/w Phenol) Lignin material Treatment before synthesis

PF 0% – –

L30PF 30% Lignosulfonate –

LP30PF 30% Lignosulfonate Phenolation

L50PF 50% Lignosulfonate –

LP50PF 50% Lignosulfonate Phenolation

K30PF 30% Kraft lignin –

KP30PF 30% Kraft lignin Phenolation

K50PF 50% Kraft lignin –

KP50PF 50% Kraft lignin Phenolation

I30PF 30% Kraft lignin –

IP30PF 30% Kraft lignin Phenolation

I50PF 50% Kraft lignin –

IP50PF 50% Kraft lignin Phenolation
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The resins were prepared in a three-necked round bottom flask fitted with a temperature sensor, stirrer and
reflux condenser. For all resins, the pH was adjusted to 8 by dropwise adding aqueous sodium hydroxide solution
(45%). The flask was placed in an oil bath, heated under stirring to 90°C and kept under reflux for 120 min.

All lignin-phenol hybrid model resins were synthesized under the same reaction conditions (same pH,
time and temperature) as the reference phenolic resin, except for that the phenol was partially (either 30% or
50% in weight) substituted by one of the two types of lignin (either Kraft lignin or lignosulfonate). The
lignins were dissolved together with phenol and formaldehyde before heating. With half of the resins, a
phenolation modification step was carried out prior to the actual resin synthesis for each lignin type and
substitution level.

The phenolation treatment consisted of dissolving the lignin powder (37.5% w/w) with phenol
(32% w/w) and water (30.5% w/w) by heating at 75°C for 1 h. Then, aqueous sulfuric acid solution (72%
in H2SO4) was added (with a ratio H2SO4:phenol of 1:20 w/w) and the mixture was heated under reflux
at 100°C for 3 hours. Afterwards, the mixture was cooled to room temperature and stored at 4°C until
further use. For resin synthesis, the required amount of phenol to arrive at the desired substitution level
was added and the mixture was stirred for one hour at 75°C. Then, the formaldehyde solution was added,
and the pH was adjusted to 8 by adding sodium hydroxide solution. To remove liberated water, vacuum
distillation was carried out after the synthesis.

2.3 Resin Characterization
2.3.1 Fourier Transform Infrared (FTIR) Spectroscopy

Fourier Transform Infrared Spectroscopy was performed with a Bruker TENSOR 27 apparel (Bruker
Optics GmbH, Ettlingen, Germany) fitted with a DuraScope SensIR detector. The spectra were recorded
as an average of 32 scans with a double-sided forward-backward acquisition mode, in the spectral range
between 4000 and 600 cm−1 with a resolution of 2 cm−1. All spectra were recorded from liquid resins.

2.3.2 Size Exclusion Chromatography (SEC)
All resin samples were dissolved in 5% w/w in dimethyl formamide (DMF). The measurements were

carried out with a SEC column Jordi DVB-Glucose 10 000 Å, 5 μm, 300 � 7.8 mm, fitted with a pre-
column Jordi GBR Mixed Bed 30 � 7.8 mm, on an HPLC Agilent 1100+ device. DMF was used as the
eluent at a flow rate of 1.0 mL/min. Polystyrene standards having the following molar masses were used
for calibration: 162, 685, 1470, 4700, 9130, 19600, 34800 and 100000 Da. The samples, each 25 µL at
20°C, were injected in the column, which was heated at 40°C. UV detection was done at 280 nm and a
temperature of 35°C.

2.3.3 Surface Tension
Surface tension was measured with a DCAT11EC device from DataPhysics Instruments GmbH

(Filderstadt, Germany) after dilution with methanol to a solid content of 45%. The measurement
temperature was always 25 ± 1°C. The samples were thoroughly mixed before each measurement. At
least four measurements per sample were carried out and the average values were calculated. The
Wilhelmy Balance method [26] was used to calculate the surface tension with a plate PT11 made of
platinum-iridium according to DIN 53914 standard.

2.3.4 Contact Angle Measurements
Contact angle measurements were carried out with the sessile drop method using an OCA 35 device

from DataPhysics Instruments GmbH (Filderstadt, Germany). All measurements were carried out by
depositing resin drops of defined volume on a flat glass microscopy slide (Carl Roth GmbH Co KG,
Karlsruhe, Germany). The glass slides were cleaned with isopropanol prior to the measurements. Sessile
drops of resins were produced using a syringe with a rate of 1 μl/s, approximately one millimeter above
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the glass surface on which they were deposited. For determination of the contact angles, video documents
were produced at 10 frames/second. The baseline of the glass surface was set manually. Contact angles
were measured after the drops had stabilized from the droplet base-line. Contact angles were calculated as
an average of the right and left angles. Measurements on each sample were repeated five times.

Using standard liquids (water, formamide and dichloromethane) with known surface properties at 20°C
[27,28], the surface energy of the glass surface (cS) and its polar (cPS ) and dispersive (cDS ) components were
determined with a series of liquid probes based on the Owens-Wendt-Rable-Kaeble (OWRK) model [28,29]:

cS ¼ cPS þ cDS (1)

cL ¼ cPL þ cDL (2)

1þ cos h
2

cLffiffiffiffiffi
cDL

p ¼
ffiffiffiffiffi
cPS

q ffiffiffiffiffi
cPL
cDL

s
þ

ffiffiffiffiffi
cDS

q
(3)

where cL, c
P
L , and cDL represent the surface tension of the liquid and its corresponding polar and dispersive

components, respectively, and θ is the contact angle. By plotting (1 + cos θ)/2 * cL/(c
D
L )1/2 versus (cPL /c

D
L )

1/2, the total surface energy of the glass was calculated to be 66.33 mN/m with a polar component of
48.72 mN/m and a dispersive component of 17.61 mN/m. The values of cPL and cDL for each lignin-phenol
hybrid resin were obtained by extrapolation.

2.3.5 Viscosity
The solid content of the resins was adjusted to 45% by dilution with methanol. Dynamic viscosities of

the samples were measured with a Physica MCR101 rheometer from Anton Paar, fitted with a conic spindle
CP-50-1/01 of 50 mm diameter. The measurements were carried out by rotating the spindle from 1 to 100 s−1

using some milliliters of resin sample in a metallic cup at a controlled temperature of 25°C. The Herschel-
Bulkley I correlation method was used to determine the changes in viscosity with the shear rate; it was
applied in the form y ¼ aþ b � xP.
2.3.6 Differential Scanning Calorimetry (DSC)

All thermograms were recorded using a differential scanning calorimeter 822e DSC (Mettler Toledo,
Greifensee, Switzerland). 4 mg samples of the liquid PF and lignin-modified PF resins were subjected to
a temperature gradient ranging from 25 to 250°C with a heating rate of 10 °C/min. To suppress
evaporation of volatiles during condensation, the samples were sealed in high-pressure gold-coated
stainless-steel crucibles of 30 µl total volume. The enthalpy changes were recorded and analyzed for the
peak maximum temperature Tpeak, the onset and endset temperatures To and Te, and the normalized
enthalpy integral ΔH, using the STAR 8.10 software package (Mettler Toledo, Greifensee, Switzerland).
All measurements were repeated twice.

3 Results and Discussion

3.1 Structural Characterization by FTIR Spectroscopy
All prepared phenol-lignin hybrid resins were of light brown color (from honey-like to ochre-colored

appearance), had a solid content after synthesis between 47 and 69% (see Tab. 2) and displayed a wide
range of viscosities from ca. 14 to 300 mPa.s. (see Tab. 5). The nomenclature used in this manuscript for
the prepared lignin-substituted PF resins was chosen as to reflect the lignin content and the type of
treatment the lignin had experienced before preparing the actual PF pre-polymer. The first letter indicates
the type of lignin and the second letter (if present) denotes whether the lignin was phenolated (or not, if
no second letter is present). The number denotes the degree of substitution. Since all material data were
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obtained from the phenol-lignin condensation products yielding liquid phenol-lignin resin pre-polymers, all
assignments finish with “PF”. For instance, the assignment KP30PF reflects that the Kraft lignin was used,
that the Kraft lignin was Phenolated before reacting it to the hybrid resin, and that a substitution degree of
30% was employed.

The FTIR spectra of all prepared resins are summarized in Fig. 2. In principle, they show all the same
spectral features typical for phenolic resins but with different relative intensities. The absorbance bands that
are characteristic for phenolic resins are the aromatic bands occurring at 3024 cm−1 (aromatic ring vibration

Table 2: Solid content, absolute and relative infrared peak area integrals and the estimated lignin content as
calculated from the infrared spectra from the spectral range characteristic for aromatic skeletal group
vibrations

Resin Solid content
after synthesis [%]

Peak area integrals from 1538–1164 cm−1 Calculated relative
lignin fraction [%]

Absolute Normalized* [%]

PF 52.1 53.3 100.0 0.0

L30PF 65.9 35.2 65.9 34.1

LP30PF 49.3 36.7 68.8 31.2

L50PF 66.9 29.4 55.2 44.8

LP50PF 47.3 27.6 51.7 48.3

K30PF 67.9 36.6 68.6 31.4

KP30PF 51.3 37.8 70.8 29.2

K50PF 68.9 26.2 49.1 50.9

KP50PF 49.0 26.2 49.1 50.9
Note: * Peak areas were normalized using the respective peak area integrals of unmodified PF resin as a reference

Figure 2: FTIR spectra of phenol-formaldehyde resins containing varying amounts of Kraft lignin or
lignosulfonate
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m(=C-H)), 1510 cm−1 (m (C=C)), 1151 and 1112 cm−1 (dip(C-H)); the phenolic bands at 1376 cm−1 (m(C=C)),
1224 cm−1 (m(C-O)), the aromatic C-H and/or C-O-C stretching at 1024 cm−1 and the methylene bridges at
1478 cm−1 (d(CH2)) [30,31]. The bands at 1615 and 1600 cm−1 are ascribed to the aromatic carbon double
bond stretching vibration. The shoulder observed at 1700-1635 cm−1 corresponds to carbonyl functionalities.
As this vibration becomes more pronounced when the degree of phenol substitution increases, it may be
related to the introduction of the lignin compounds. The absorbance signals at wavenumbers 690, 756,
and 823 cm−1 correspond to the number of adjacent hydrogens on the phenolic aromatic ring: five, four
and two H-atoms respectively.

A more detailed view of the FTIR spectra in the fingerprint region between 1700–920 cm−1 offers the
possibility to estimate the degree of lignin substitution from the measured absorbance patterns. As an
illustration, Fig. 3 shows the FTIR spectra for the Kraft lignin substituted-PF resins in the fingerprint
region (1700–920 cm−1) without normalization (a) and the total area-normalized FTIR spectra in the same
spectral region (b). A semi-quantitative calculation of the lignin content in the prepared hybrid phenolic
resins from infrared spectroscopic data was carried out via two approaches: (i) using the effect of
“spectral dilution” of the absorbance intensities for the peaks typical of phenolic moieties carrying a
substituent (data presented in Tab. 2) and (ii) evaluating the intensities of specific molecular segments of
substituent (lignin-bands), these data are presented in Tab. 3.

The PF-based resin adhesives show the same IR-absorption profiles in the range of aromatic ring
stretching (Caromatic=Caromatic, Caromatic-H), phenolic and aliphatic hydroxyl groups (Caromatic-OH,
CaromaticO-H, CaromaticCH2-OH primary, >CH-OH secondary) vibrations as well as vibrations that are
characteristic for methylene (–CH2-) bridges (Figs. 3a and 3b). The single peak area integrals or the sum
of some peak area integrals of relevant absorbance signals in the region of the aromatic skeletal
vibrations was used to quantitatively estimate the “dilution effect” on the peak intensities brought about
by partial phenol substitution with lignin (Fig. 3c, Tab. 2). The data given in Tab. 2 show that the amount
of lignin calculated from the area integral in the range of frequencies from 1538–1164 cm−1 directly
correlates with the added amount of Kraft lignin.

For instance, the amount of 50.9% lignin calculated for the K50PF and KP50PF resins corresponds very
well to the actual substitution level of 50%. Deviations from the expected values calculated for the
lignosulfonate-substituted phenol-lignin hybrid resins can be explained by the presence of sulfonic acid
groups, which contribute additional absorbance bands in the same spectral range (1260–1150 cm−1) not
present in the neat PF and Kraft lignin substituted resins [32].

It should be noted that Kraft lignin undergoes a more aggressive treatment during processing from the
wood pulp raw material source than does lignosulfonate. Therefore, the degree of degradation
(depolymerization) should be higher with the Kraft lignin. The additional phenolation of lignin should
further reduce structural differences between pure PF and lignin-containing resins due to enhanced
covalent bond formation with formaldehyde and a smaller amount of residual methoxyl groups. Figs. 3a
and 3b show a significant decrease in intensity in the spectral region where lignin fragments typically
absorb IR radiation: G-ring vibrations as well as vibrations of methoxyl groups at 1026 cm−1 [33].

The spectroscopically determined lignin fractions as calculated from several distinct spectral regions are
compared in Tab. 3. Here, skeletal vibrations of phenolic compounds in the spectral range between 1538 and
1325 cm−1 and the vibrations of methoxyl groups in the spectral range from 1325 to 950 cm−1 were evaluated
separately. It should be noted that the use of the aryl region in the broader boundaries allows very good
correction of the baseline for the poorly resolved peaks. This improves the correspondence between the
values calculated from the spectral profiles and the amount of phenolic compounds actually introduced.
In contrast, the absorbance signal obtained from the lignin-specific methoxyl groups is only suitable to
estimate the degree of substitution for the non-phenolized lignins. On the other hand, the partial
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Figure 3: Fingerprint region of the FTIR spectra of phenol-formaldehyde resins containing varying amounts
of lignin. (a) Effect of phenolation on Kraft lignin containing PF resins (original IR spectra), (b) Effect of
phenolation and degree of phenol substitution by Kraft lignin (normalized spectra in the spectral range
from 1350 to 1100 cm−1, peak assignment of IR vibrations according to [33]), (c) Calculation of lignin
content in the spectral range from 1538 to 1164 cm−1 from profile 3b
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demethylation taking place during the phenolation treatment can be quantitatively monitored and controlled
using the signals in this spectral region. It should be noted that lignosulfonates can show slightly increased
signal intensity in this region due to additional spectral contributions of vibrations of sulfonic acid groups.
This is especially relevant at high degrees of phenol substitution by lignosulfonate.

3.2 Influence of Lignin Substitution and Lignin Phenolation Modification on the Molecular Weight

Distribution of Lignin-Phenol Hybrid Resins
All produced phenolic resins and lignin-phenolic hybrid resins were examined for their molecular

weight distribution by size exclusion chromatography (SEC). Low-molecular softwood kraft lignin
Indulin AT was selected as a reference lignin because it is the most widely studied lignin type in
literature. In [34], the dependence of the number of phenolic groups per molecule on the number of
molecular weight fractions was studied in detail. The results obtained from the log-normal-curve fit of the
HPSEC analysis showed that low molecular weight fractions with mass weights of 500 and 800 g/mol
contain the numbers of phenolic groups per molecule (Ph-OH) 1.3 and 1.5, respectively, which is little
different from pure phenol (1.14). As the MW fraction increases to 2000 g/mol, Ph-OH increases to 2.3.
Considering that for Indulin AT Mn is 1457 g/mol with a polydispersion index of 6, the largest
contribution to the mass distribution will be made by fractions with masses 500 (f1), 794 (f2), 1260 (f3)
and 2000 (f4). The contribution of other high molecular weight fractions from 3000 will not exceed 0.1
[34] Our chromatographic measurements are in good agreement with the literature data for the
unmodified Indulin AT (Fig. 4, sample I).

As can be further seen from Fig. 4, phenolation significantly improved the quality in terms of
monodispersity and increased fraction of low-molecular weight compounds for all tested types of lignins
(samples IP, LP, KP): each type of lignin shows a large low molecular weight fraction well below 500 Da.

The effect of introducing 30% and 50% raw and phenolated Indulin AT as a phenolic substitute into a
phenolic resin is shown in Fig. 5a (samples I30PF and IP30PF) and Fig. 5b (samples I50PF and IP50PF). The
mass distributions for the unsubstituted PF and the I30PF and IP30PF systems are very similar (Fig. 5a),
except for that the relative proportion of the highest molecular weight fraction is much smaller in the case
of the hybrid resins. This highest molecular weight fraction is only formed to the highest proportion in

Table 3: Lignin fraction in the synthesized PF-lignin hybrid resins as calculated from absorbance integrals
from FTIR spectra using different characteristic spectral regions

Resin Lignin fraction, [%] calculated from peak area integrals

1090–945 cm−1

methoxyl groups
1135–950 cm−1

methoxyl groups
1533–1320 cm−1

aromatic skeletal region
1538–1164 cm−1

aromatic skeletal region

PF 0 0 0 0

L30PF 25.5 30.5 31.5 34.1

LP30PF 10.2 13.0 30.6 31.2

L50PF 45.2 27.5 41.7 44.8

LP50PF 9.5 18.4 46.6 48.3

K30PF 34.0 28.2 24.0 31.4

KP30PF 18.4 19.7 21.8 29.2

K50PF 50.8 43.1 38.0 50.9

KP50PF 22.6 30.2 39.2 50.9
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Figure 4: Molecular weight distribution of untreated Indulin AT (I), phenolated Indulin AT (IP), phenolated
Kraft lignin (KP), and phenolated lignosulfonate (LP)

Figure 5: (a) Effect of phenolation on molecular weight distributions of low molecular weight Kraft lignin
(Indulin AT, I), of pure phenolic resin (PF) as well as of hybrid resins with Indulin (I30PF) and with
phenolated Indulin (IP30PF) with a phenol substitution of 30%; (b) Effect of phenolation on the
molecular weight distributions of low molecular weight Kraft lignin (Indulin AT, I), and of hybrid resins
with Indulin (I50PF) and with phenolated Indulin (IP50PF) with a phenol substitution of 50%
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the homopolymerization reaction of P with F. The corresponding high molecular weight fraction of the
hybrid resin containing the phenolated Indulin AT is even smaller as that of the one containing the un-
pretreated Indulin. Thus, if 30% of the phenol is substituted by either phenolated or unphenolated Indulin
the molecular weight distributions of the resulting hybrid resins are only very much alike in the lower
molecular weight region. The first three characteristic molecular weight fractions are formed in the ratio
obtained also with the unsubstituted PF. The absence of the fourth higher molecular weight fraction
indicates that the resulting resins are less suited for impregnation purposes as suggested by the favorable
properties of the used reference PF resin. The absence of this fourth, high molecular weight fraction is
particularly evident in the hybrid resin with phenol substitution of 50% (Fig. 5b, sample IP50PF).

It should be noted that at 50% phenol replacement by the unphenolated Indulin (sample I50PF, Fig. 5b)
the residual amount of a high molecular weight lignin fraction also increased significantly as indicated by the
broadening of the molecular weight distribution curve in the higher molecular weight region (2000–6000
Da). This indicates that, due to the limited solubility of the high molecular weight fraction, this fraction
of the lignin had only been slightly chemically altered in the course of the phenolization reaction at pH 8.

Hence, one reason for the observed differences in molecular weight distributions of the various resins
prepared in this study may be the differences in solubilities of the participating reaction partners. Norgren
et al. [35] provide recommendations for avoiding coagulation in unmodified Kraft lignin in alkaline
aqueous solutions at the different temperatures 21, 70 and 125°C. The pH values in such media (pHbulk)
should be at least 10 to maintain the highest degree of dissociation of the phenolic groups in the Indulin
macromolecule. This pHbulk is recommended based on the estimated pHsurf value, which represents the
actual proton concentration at the fragment surface and is calculated using pKa and the degree of
dissociation of the phenolic groups. On the other hand, the low molecular weight fractions can be fully
soluble at pH 7.5–9, whereas the high molecular weight fractions require a more alkaline medium and/or
aqueous organic medium [36]. In the case of our synthesis conditions, the presence of organic monomers
of phenol and formaldehyde as well as possible additional depolymerization in a hot alkaline medium
[37] slightly improve the solubility of the lignin component of the hybrid matrix. This allows reducing
the initial pHbulk value to pH 8 in order to obtain oligomeric resins with good reactivity in condensation.

An additional stage of acidic phenolation of lignin before polymerization with phenol formaldehyde can
significantly reduce the amount of high-molecular lignin fractions and improve the solubility and reactivity
of lignin fragments (compare samples with and without phenolation). It should be noted that for this type of
Indulin, the phenolation treatment according to the proposed scheme is not optimal because of the still high
polydispersity of the resins: IP30PF and IP50PF contain significant amounts of several low-molecular weight
fractions, and a significant residual amount of unmodified high-molecular lignin. The wide dispersion of the
molecular weight (MW 300–6000), as well as the absence of fraction 4 as the main fraction, have led us to
refrain from using this type of lignin in any further impregnation-related experiments.

It is interesting to note that the MW profile of the more polar lignosulfonate in the L30PF formulation has
the same tendency as the I30PF (Fig. 6). Apparently, this is due to the fact that in moderately hot (75–90°C)
slightly alkaline media in the absence of an additional oxidant, lignosulfonate will be only partially
depolymerized [38] and its 30% substitution of synthetic phenol in the resin will also not be particularly
active. A weak activation potential with a minimum number of active centers of raw lignosulfonates was
also observed after phenol solution treatment in the absence of oxidizing agents and catalysts in [39].

Another equally valid reason for the decrease in the quality of the hybrid resins in terms of molecular
mass distribution may be the change in reaction rate due to local variations of acidity at the surface of the
lignin polyelectrolyte segments. It should be noted that the pHsurf may decrease by at least 0.5 pH units
when the temperature increases from only 20°C to 70°C (under the assumption that the dissociation of
the phenolic groups remains practically constant) [35]. Hence, in the case of our systems, it is fair to
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expect that already a small acidification of the medium due to local variations in surface pH of the lignin
fragments under the applied conditions of hot alkaline synthesis of the hybrid resins will prevent
obtaining the same molecular weight distribution as is obtained with the unmodified PF reaction mixture
(see Fig. 6, samples I30PF, IP30PF, L30PF).

Therefore, a better explanation for the molecular weight increasing effect of phenolation is to consider
small shifts in pH resulting from the addition of 30% by weight or more of phenolated lignin to the reaction
mixture. The fact that the pH value has a very large influence on the molecular weight distribution is also
shown by the molecular weight profiles of some related, purely phenolic resins which were prepared for
comparison (Fig. 7). From the molar mass distributions of these unmodified phenolic resins, it can be

Figure 6: Effect of phenolation on the molecular weight distributions of different lignin type phenolic
hybrid resins using (a) Kraft lignin Indulin without und with phenolation pretreatment (I30PF, IP30PF)
and (b) lignosulfonate lignin without und with phenolation pretreatment (L30PF, LP30PF) with a phenol
substitution of 30%. The sample of pure PF resin does not contain any lignin and is shown as a reference
produced under the same preparation conditions

Figure 7: Molecular weight distributions of pure phenolic resins without lignin modification, but with
different reaction time and initial pH values. PF8.0–2h: reaction time 2 hours at initial pH = 8.0; (b)
PF8.5–2h: reaction time 2 hours at initial pH = 8.5; (c) PF8.0-3h: reaction time 3 hours at initial pH =
8.0; (a) PFpH > 8.5: commercially available PF resin. The reaction temperature was 90°C for all our PF
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seen very clearly that even a small difference in the initial pH can lead to relatively large differences in the
molar mass distribution after condensation (Fig. 7).

Already a shift of the initial pH value at the beginning of the synthesis by half a pH unit into the alkaline
state from pH 8.0 to pH 8.5 resulted in the formation of a significantly higher proportion of oligomer fractions
with a larger average molecular weight. Fig. 7 illustrates this for a series of four unmodified phenolic resins
that were boiled for different lengths of time at two slightly different initial pH values. A longer boiling at
lower pH had about the same effect as a shorter boiling at a correspondingly higher pH. Phenolic resin
preparation is therefore very pH-sensitive with regard to the achieved molecular weight distributions.
Accordingly, it is also to be expected that production-related fluctuations in pH during prepolymer
synthesis will have a fairly significant effect on the molar mass distributions obtained and influence the
processing and product properties.

Accordingly, even comparatively small changes in pH in the order of a few tenths of a pH unit should be
significantly noticeable in molecular weight differences or higher degrees of condensation in the case of
lignin-phenol hybrid resins. A possible cause for such pH shifts may be the release of reactive groups in
the phenolation step. The generation of free alkaline groups in the lignin backbone should lead to an
acceleration of the subsequent condensation reaction by a local increase of the pH value. We suspect that
the hydrolysis of lignin fragments causes local pH shifts in the tenths of a pH range and that these
already have a catalytic effect on the condensation reaction.

The fact that alkaline groups can be released in the course of phenolation was recently shown by Jiang
et al. [40]. In their study, these authors also discuss several possible mechanisms that could determine the
chemical processes taking place during the phenolation of lignin. Despite the fact, that collective pKa-
values of industrial lignins are 10.9 for a sulfate lignin, 10.5–11.0 for a Kraft lignin and 11.5 for the Kraft
lignin Indulin-AT, the pKa-values for different lignin-related phenolic groups have been found to vary in
a range as wide as 6.2 to 11.3 [41]. The variations in the phenolic acidity of different oxidized substances
can be extremely important in the pH catalyzed curing. Ragnar et al. 2000 give pKa values for phenolic
fragments that can be released during lignin degradation via phenolation and that are predominantly basic
in nature [41]. In addition to a large number of basic groups, acidic groups can also occur, so that it is
probably not always possible to speak of an alkalizing phenolation effect.

Fig. 8 shows the molecular weight distribution of Kraft lignin modified phenolic resins, where the Kraft
lignin used was pretreated in different ways or added in different percentages. For comparison, the molecular
weight distribution of two unmodified phenolic resins condensed at two slightly different initial pH values
(pH = 8.0 and pH = 8.5) is also shown, as well as the molecular weight profile for the pure lignin starting
material subjected to a phenolation step. Unfortunately, the corresponding non-phenolated lignin could
not be measured under comparable analytical conditions due to its poor solubility in the elution medium.
The molar mass profile of the phenolic lignin starting material shows very clearly the effect of
pretreatment by phenolation on the molecular weight distribution: heating with phenol yields a low-
molecular and above all very homogeneous (monodisperse) Kraft lignin. Phenolic resins with different
lignin contents (30 and 50 weight % phenol substitution) were produced with such phenolic Kraft lignin
(KP30PF and KP50PF in Fig. 8). In comparison to the phenolic Kraft lignin, it can be seen very clearly
that the content of low-molecular weight compounds in the condensed lignin-phenol hybrid pre-polymer
has significantly decreased. At the same time, the relative proportion of high-molecular condensation
product has increased very strongly: compared to the analogous phenolic resin PF8.0 not modified with
lignin, the fraction with the highest molecular weight is now much larger in the hybrid resins. Also, the
molecular weight distribution became comparatively narrower. Moreover, the hybrid resins with
phenolated Kraft lignin (KP30PF and KP50PF) differ from those with non-phenolated Kraft lignin
(K30PF and K50PF) in their molecular weight. Again, with the hybrid resins K30PF and K50PF
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modified with non-pretreated lignin an average increase in the fraction of high molecular weight compounds
can be observed compared to the corresponding pure phenolic resin PF8.0. However, the fractions with low
and medium molecular weight are still comparatively larger than in the corresponding hybrid resins KP30PF
and KP50PF produced with phenolated Kraft lignin. Thus, by the phenolation pretreatment of the starting
Kraft lignin an even further increase of the fraction of high molecular weight components has been
achieved. A similar behavior was observed in the case of the replacement of 50% phenol by
lignosulfonate. Here, too, the substitution with a lignosulfonate pretreated with phenolation led to a
completely analogous quantity-dependent increase in the proportion of higher molecular weight
compounds. A larger quantity of phenolated lignosulfonate resulted in a larger proportion of higher
molecular weight fragments.

Thus, by condensing Kraft lignin into our impregnating resins, the average molecular weight of the
resulting lignin phenolic hybrid resin was always increased, regardless of the pre-treatment of the Kraft
lignin. The average molecular weight increase of PF resins due to the addition of pre-condensed lignin-
oligomers could still be explained simply by the fact that a certain amount of higher molecular weight
starting materials was added to the PF right at the start of the synthesis. However, since the Kraft lignin
after phenolation is actually of quite low molecular weight (Fig. 4), the overall increase in average
molecular weight of the hybrid resins obtained with the phenolated lignin cannot solely be explained on
such a basis. Fig. 4 shows that, for example, already a shift of the initial pH by half a pH unit in pure
phenolic resin from pH 8.0 (PFpH8.0, Fig. 8) to pH 8.5 (PFpH8.5, Fig. 8) leads to a shift in the
molecular weight distribution, which results in a mass profile very similar to those of the Kraft lignin-
substituted ones (compare Fig. 7 PFpH8.5 with the lignin-containing hybrid resins).

Fig. 9 schematically summarizes the presumed effect of phenolation on the morphology of the liquid
pre-polymers in PF-lignin hybrid resin preparation. Upon phenolation, the number of reactive sites in
lignin increases due to depolymerization which is accompanied by liberation of basic groups that cause
local alkaline pH shifts. The differences between the hybrid resins with Kraft lignin, lignosulfonate and
indulin make it clear that phenolation of lignin may yield rather complex oligomer mixtures, which can

Figure 8: Molecular weight distributions of Kraft lignin-phenolic hybrid resins (K30PF, K50PF), of
phenolated Kraft lignin-phenolic hybrid resins (KP30PF, KP50PF) and of various comparison phenolic
resins without added lignin (PF). The preparation of the unsubstituted phenolic resin was carried out at
90°C for 2 hours with an initial pH of pH 8.0 (PF pH8.0) or pH 8.5 (PF pH8.5). The preparation of the
Kraft lignin-phenol hybrid resin was also carried out at 90°C and 2 hours reaction time, but always with
an initial pHbulk of 8.0 and different lignin substitutions 30 and 50%
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have quite different effects on the further course of phenolic resin condensation depending on the specific
reaction conditions and the provenance of the starting lignin. With Kraft lignin and lignosulfonate,
phenolation seems to lead to an activation of the lignin and thus to an increase of its reactivity towards
further condensation. Therefore, further experiments for the production of impregnating resins were only
conducted with lignosulfonate and Kraft lignin.

3.3 Effect of Lignin Substitution on the Wetting Properties
The wetting behavior of the prepared resins was measured using tensiometry and contact angle

measurements. In the case of the purely phenolic reference resin, the resin drops spread to such a large
extent on the glass surface that the contact angle could not be derived from the video images. This
means, however, that the contact angle of the reference PF resin is very low. The values for surface
tension, contact angle with glass as a reference surface and the polar and dispersive components of the
surface energy are summarized in Tab. 4.

Figure 9: Schematic representation of the effect of phenolation on resin morphology of the liquid pre-
polymer

Table 4: Surface tension (ctotL ), contact angle (CA), and polar (cPL) and dispersive (cDL ) components of the
surface energy for the phenolic resins

Resin CA (°) ctotL * (mN/m) cPL (mN/m) cDL (mN/m)

PF N.D.** 32.17 – –

L30PF 26.5 30.83 0.79 30.04

LP30PF 28.4 32.25 0.96 31.29

L50PF 25.0 28.71 0.53 28.18

LP50PF 34.1 30.88 0.53 30.35

K30PF 25.3 29.69 0.66 29.03

KP30PF 22.6 33.41 1.45 31.96

K50PF 38.1 33.55 0.72 32.83

KP50PF 24.4 33.04 1.29 31.75
Note: * upon water removal and solid content adjustment to 45% with methanol. Experimental error of contact angle values was from 1.7 to 2.8 angle units.

JRM, 2020, vol.8, no.6 617



All studied phenol-lignin hybrid resin liquids showed a very high dispersive surface energy
component, cDL , compared to their polar surface energy component, cPL . Hence, the total surface energy of
the resins, ctotL , was mainly governed by the dispersive surface energy component and was directly
proportional to cDL (Fig. 10c).

Compared to the unsubstituted resin, substitution of phenol by lignosulfonates yielded mostly resins
with slightly lower surface tension whereas substitution with Kraft lignin gave mostly resins with slightly
higher values. Similar results were found earlier by Matsushita et al. [25] who used inverse gas
chromatography and contact angle measurements of solid films made of phenolic resins that were
partially substituted by similar types of lignin materials. However, the measured differences in contact
angles and surface tension in our present study did not reveal statistically significant effects of the studied
factors in the ANOVA when the average values for the wetting properties were used in the analysis

Figure 10: (a) Contact angle vs. surface tension values for the lignin-phenolic hybrid resins. (b) Polar
component of surface tension. Circles (○, ●) represent lignosulfonate and squares (□, ■) represent Kraft
lignin containing lignin-phenolic hybrid resins. Open symbols represent resins without phenolation
modification, black symbols represent resins that were phenolated
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except for the response cPL . c
P
L showed some weakly significant correlation with the two factors “phenolation”

(p = 0.0447) and “lignin type” (p = 0.0702) and their second order interaction (p = 0.0879) at the significance
level of 0.1. This result was mainly due to the comparatively larger polar components of the two Kraft-lignin
containing resins that had experienced phenolation modification.

However, an instructive view on the structure of the data set is revealed by the scatter plot of the
tensiometer values for surface tension, ctotL versus the contact angle (Fig. 10a). For the phenolated resins,
the contact angle decreased linearly with increasing ctotL . A higher degree of substitution resulted in lower
surface tension values and correspondingly increased contact angles. The phenolated resins containing
Kraft lignin wetted the glass surface generally better than the phenolated resins with lignosulfonates.
Moreover, phenolation improved the wetting behavior of the resins containing Kraft lignin whereas it
caused a decrease in wetting with the lignosulfonate containing resins. Both effects were more
pronounced with a higher degree of substitution.

The lignin-phenolic hybrid resin containing 50% of Kraft lignin showed the largest difference in contact
angles between the phenolated resin and the one without modification. This phenolated resin wetted the glass
surface much better than its counterpart without modification. Although the phenolated and the non-
phenolated resins had practically the same surface energy (33.05 and 33.55 mN/m, respectively), their
contact angles differed by as much as 14°. Since these two resins also showed practically the same
molecular weight, phenolation in this case had caused a shift in the ratio between polar and dispersive
surface energy components towards more favorable wetting conditions without significantly changing the
overall Kraft lignin molar mass. While cPL increased upon phenolation, cDL decreased at the same. Both
changes were in favor of improved wetting but left the absolute value of ctotL practically unchanged. For
illustration, in Fig. 10b, the relative changes in ctotL and cPL upon phenolation are indicated with red and
blue arrows for the Kraft lignin containing PF hybrid resins. This is in good agreement with the
increasingly important phenolytic effect of the phenolation modification treatment at the lower level of
lignin substitution observed with the polydispersity index: obviously, phenolysis liberates relatively more
polar species at the lower degree of substitution.

The relative increase in cPL was even higher with the 30% Kraft lignin resin. However, the corresponding
improvement in surface wetting was much less pronounced here. Phenolation had caused an increase in the
dispersive component, cDL , too, which is superimposed to the increase in cPL and counteracted its effect on the
total surface energy, ctotL correspondingly. The relative changes in cPL and cDL become even more unfavorable
for the wetting behavior of the lignosulfonate-based hybrid resin. With lignosulfonate, phenolation even
leads to a slight increase in contact angle for both levels since the increase in cPL is practically negligible
and overcompensated by the increases cDL . As with Kraft lignin, the relative changes in cPL are more
pronounced at the lower level of lignin substitution.

3.4 Effect of Lignin Substitution on Viscosity
The dilution of a polymer in a solvent can completely change the viscosity behavior of a resin, as

observed in data of a previous work [42]. This relates to the chemical interactions between the polymer
molecules between themselves and the solvent. The shear stress and viscosity plots with shear rate
(Fig. 11) show the viscous behavior of each prepared resin system as liquids diluted with methanol (Tab. 5).

The observed behavior is rather complex. At the higher level of substitution (50%), the resins without
lignin phenolation become more viscous. All resins with substitution by lignin present a slight to significant
increase in viscosity compared to the non-substituted phenolic resin P. With some resins, the evolution of
viscosity with the shear rate was not progressive. A pseudo-periodicity that disturbed the rotation of the
spindle was notable for L50PF, LP50PF, K30PF and K50PF. This indicates the presence of particles in
these liquids. For most of the resins, the behavior was dilatant or shear thickening (e.g., the viscosity
increases with the shear rate): the lignin in the resins obviously tended to form aggregates, which
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produced suspensions in the liquid. Exceptions were encountered with resins LP50PF and K50PF, where the
viscosities had initially higher values, which decreased with the shear rate. Concerning K50PF, the evolution
of the viscosity profile was typical of a Bingham plastic fluid [22], whereas the resin L50FP had a
pseudoplastic (or shear-thinning) behavior, which is often seen in polymers in solution that are entangled
at rest but start to disentangle when sheared at a sufficiently high rate because of weak interactions. In the
case of LP50PF, the viscosity decreased until a minimum value around 50 s−1, which suggests a Bingham
liquid behavior and then increased slightly like a low-dilatant fluid. This dual effect could be due to a
mixture of cohesive high-molecular weight compound (responsible for the Bingham profile) and resin
particles that are in suspension in the methanol solvent (which is typical for dilatant fluids).

Statistical analysis of the viscosity measured at 100 s−1 reveals some interesting relationships and
illustrates the complex effects of the studied factors on the rheological behavior of the lignin-phenol
hybrid resins. The results of the ANOVA are summarized in Tab. 6. A highly significant two-factor

Figure 11: Plots of shear stress (on the left) viscosity values (on the right) with shear rate of each resin
system diluted in methanol (45% w/w of solid content). The dashed lines corresponds to the models
calculated according to the Herschel-Bulkley I method, except for K50PF (4th polynomial I method)
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interaction model (p = 0.0046) describes this response very well as indicated by all three regression
coefficients R2, R2

adjusted and R2
predicted which are all very close to 1 (Tab. 6). The model contains all

three studied factors and two second-order interactions. Lignin type in itself does not seem to be
statistically significant. However, lignin type must be included in the model since it is involved in a
highly significant synergistic effect with the degree of substitution. This two-factor interaction is the
second most important effect determining the viscosity of the system, as can be seen from the coefficient
estimates for the various effects summarized in Tab. 6. The most important effect is whether the
phenolation modification is performed or not. Being of the same order of magnitude, the third most
important effects then are the degree of substitution of phenol by lignin and its synergistic action with the
phenolation modification. Since there are two second-order interaction effects present, it is not surprising
that the rheological behavior of lignin-phenol hybrid resins is rather complex and difficult to understand.

Fig. 12 depicts the interaction plot for the largest synergistic effect for the response obtained without
phenolation modification (Fig. 12a) and with phenolation (Fig. 12b). While the viscosity of unphenolated
Kraft-lignin-containing PF resin is not significantly influenced by the amount of phenol substitution by
Kraft lignin, the amount of lignosulfonate present dramatically increases resin viscosity when no

Table 5: Viscosity data of resins diluted in methanol (45% w/w), using the Herschel-Bulkley I correlation
method

Resin Viscosity
20 s−1 (mPa.s)

Viscosity
50 s−1 (mPa.s)

Viscosity
100 s−1 (mPa.s)

Viscous profile

PF 14.6 15.8 17.7 Newtonian-Dilatant

L30PF 24.4 31.1 44.6 Dilatant

LP30PF 20.6 22.9 27.1 Dilatant

L50PF 190 268 304 Shear-thinning

LP50PF 65.3 41.1 52.3 Bingham-Dilatant

K30PF 31.6 48.7 87.5 Dilatant

KP30PF 30.1 35.9 45.9 Dilatant

K50PF 246* 104* 94.4* Bingham

KP50PF 23.3 24.5 26.5 Newtonian-Dilatant
Note: *Using the 4th Polynomial I correlation method

Table 6: ANOVA analysis of the effects influencing the response “viscosity at 100 s−1” for the studied
lignin-phenol hybrid resins

F-value p-value R2 R2
adjusted R2

predicted

Model 215.47 0.0046 0.9981 0.9935 0.9704

Effects Coefficient estimates (coded):

A: Lignin type 1.82 0.3097 −0.0018

B: Phenolation 586.50 0.0017 +0.0319

C: Substitution 96.44 0.0102 −0.0129

AC 320.98 0.0031 −0.0236

BC 71.59 0.0137 +0.0112
Note: Statistical analysis was performed after reciprocal square root data transformation
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phenolation modification is performed. However, phenolation decreases the viscosity of all resins
dramatically (please note the different scales in Figs. 12a and 12b!). This is also in line with the
presumed phenolytic depolymerization action of the phenolation treatment (Fig. 9). Phenolation, thus,
levels off greatly the effects of both lignin type and lignin amount and should be carried out in order to
adjust resin viscosity to reasonably low values if good resin flow properties are required. In terms of
viscosity, phenol can be substituted to fairly high degrees without increasing resin viscosity to
undesirably high levels as long as a phenolation treatment step is included in the resin formulation process.

3.5 Effect of Lignin Substitution on Thermal Properties
3.5.1 Effects on the Responses DH1 und DH2

The thermal properties of the lignin-phenol hybrid resins were analyzed with DSC. The exothermal
curing profiles (i.e., DSC traces) of PF resins typically depend on the condensation conditions of the
resins (P:F ratio, catalyst nature and content, heating temperature and duration) and are indicators for
their reactivity and curing kinetics. Fig. 13 collects the DSC traces of all prepared PF and lignin-modified
PF impregnation resins. The corresponding reaction enthalpies, onset, peak and endset temperatures are
listed in Tab. 7.

With all resins, two exothermal enthalpy peaks were obtained: the first exothermal peak was rather broad
for all resins and occurred in the temperature range from 125°C to 190°C. The second exothermal peak was
comparatively sharper for all lignin-modified resins and rather broad for the phenolic reference resin. It
occurred in the temperature region between 210°C and 230°C. For relatively slowly curing PF resins, an
exothermal peak temperature in this range is typically found in the literature [43,44].

In their 1985 Design-of-Experiment study on the influence of reaction parameters on PF resin properties,
Christiansen et al. [45] had also found two exothermic peak maxima in the DSC traces of their liquid resols.
They had assigned the first peak maximum (very sharp, found between 98 and 129°C) to the addition reaction
between phenol and formaldehyde (methylolation). The second exothermic peak maximum which was much
broader in their case was found between 139 and 151°C and was assigned to the condensation reaction [45].

Figure 12: Two-factor interaction plot for viscosity at 100 s−1 for the synthesized lignin-phenol hybrid
resins. (a) without phenolation, (b) with phenolation treatment. The black squares and the full line
represent the low level of substitution (30% lignin). The red triangles and the dotted red line represent the
high level of substitution (50% lignin) derived from the model. Correspondingly colored circles represent
the actually measured values
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The authors used liquid resols and systematically changed the sodium hydroxide portions during synthesis in
order to adjust differently methylolated and pre-condensed reaction species.

As an alternative interpretation, Park et al. [46] suggested to relate the two exothermal enthalpy maxima
and their corresponding temperature ranges to the average molecular weight distribution of PF resins: while
reactive species with a higher molecular weight presumably should cure at a lower temperature, smaller
species should require higher temperatures for curing. Hence, if the resin contained different fractions of
molecular weights, it would display two major exothermal peaks in the DSC thermograms [46].

In our case, all lignin-phenolic hybrid resins showed a much larger second exothermic curing enthalpy
signal DH2 than the reference phenolic resin (except for the one containing Kraft lignin at the 50% degree of
substitution level with the phenolation treatment: with the latter it was in the same order of magnitude). At the

Figure 13: DSC curves of the different resins at a heating rate of 10 °C/min

Table 7: Normalized enthalpies, DH1 and DH2, onset temperatures, To;1 and To;2, peak temperatures, Tpeak;1
and Tpeak;2, and endset temperatures, Te;1 and Te;2 obtained from the DSC thermograms of the phenol-lignin
model resins. The term DHtot ¼ DH1 þ DH2ð Þ is also included

Resin To;1

(°C)
Tpeak;1

(°C)
Te1
(°C)

DH1

(J/g)
To2
(°C)

Tpeak 2

(°C)
Te2
(°C)

DH2

(J/g)
DHtot

(J/g)

PF 127.38 157.31 179.90 74.00 194.37 212.65 239.06 48.01 122.01

L30PF 136.33 159.59 196.54 93.35 210.20 219.04 230.92 65.39 158.74

LP30PF 119.16 156.63 193.21 73.89 209.63 218.49 230.15 69.27 143.16

L50PF 118.37 155.34 186.53 67.83 207.36 215.44 225.54 151.81 219.64

LP50PF 120.13 156.51 173.88 70.92 208.85 217.17 227.58 105.40 176.32

K30PF 123.87 157.73 184.70 57.28 207.60 217.84 231.67 80.06 137.34

KP30PF 135.05 158.88 184.75 46.58 210.99 220.76 234.17 48.42 95.00

K50PF 121.62 156.75 195.44 63.48 207.19 216.98 228.81 134.85 198.33

KP50 119.57 154.91 190.48 36.28 210.11 219.65 231.87 101.02 137.30
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same time, nearly all lignin-phenolic hybrid resins had comparatively lower DH1-values (except for the non-
phenolation treated 30% lignosulfonate containing one) reflecting the partial substitution of phenol raw
material. This finding suggests that DH2 in our case should rather be assigned to the curing of a higher
molecular weight fraction.

This interpretation would also make sense since higher molecular weight compounds are less mobile and
hence should require more energy to overcome activation energy barriers in a diffusion-controlled reaction
regime. The relative proportion of the higher molecular weight fraction increased with increasing the level of
phenol substitution as did DH2: the integrals DH2 in the higher temperature region between 210 and 230°C
were always larger for the resins with 50% of phenol substitution compared to those with only 30% of phenol
substitution, whether they were phenolation modified (DH2;LP50PF > DH2;LP30PF , DH2;KP50PF > DH2;KP30PF)
or not (DH2;L50PF > DH2;L30PF , DH2;K50PF > DH2;K30PF). DH2 at 50% substitution was always larger than
100 J/g. At 30% substitution it was always ≤80 J/g. Phenolation treatment led to statistically significantly
smaller values.

The analysis of variance for the responses DH1 and DH2 are summarized in Tabs. 8 and 9. Only the
significant terms are given. The corresponding model graphs including all measurement points are given
in Figs. 14a and 14b.

Lignin type was the only significant term affecting the first exothermic enthalpy signal, DH1,
lignosulfonate yielding larger DH1. Besides phenolation treatment, the main effect for DH2 was the degree
of substitution by lignin. A larger degree of substitution led to an increased exothermic enthalpy signal. The
phenolation modification had a counteracting effect since it resulted in a decrease in DH2 for both lignin
types. Lignin type had no significant effect with DH2. Absolute values for DH2 were generally higher than
those for DH1 (please note the different scales for the enthalpy signal in Figs. 14a and 14b.

3.5.2 Effects on the Total Residual Curing Capacity DHtot

The most relevant thermal property of the impregnation resin is presumably its residual curing potential
which is measured by DSC as the total exothermic enthalpy change, DHtot. DHtot was calculated as the sum

Table 8: ANOVA of effects on the response (DH1) for the studied lignin-phenol hybrid resins

Sum of Squares F-value p-value R2 R2
adjusted R2

predicted

Model*) 1309.95 9.49 0.0217 0.6126 0.5480 0.3113

Effects Coefficient estimates (coded):

A: Lignin 0.0217 9.49 0.0217 −22.96

Residual 828.41

Table 9: ANOVA of effects on the response (DH2) for the studied lignin-phenol hybrid resins

Sum of Squares F-value p-value R2 R2
adjusted R2

predicted

Model*) 8067.05 2453 0.0026 0.9075 0.8704 0.7631

Effects Coefficient estimates (coded):

B: Phenolation 1458.00 8.86 0.0309 +13.50

C: Substitution 6609.05 40.17 0.0014 −28.74

Residual 822.65
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of the two exothermic peak integrals DH1 and DH2 observed in the DSC trace and is a measure of the resin’s
overall potential for self-gluing upon heating when the resin impregnated paper sheets are hot-pressed into a
decorative laminate. Since no additional glue is applied during lamination, good self-gluing ability is desired
and the resin should display sufficiently high values for DHtot.

Practically all lignin-phenol hybrid model resins displayed a higher residual curing capacity DHtot than
the pure phenolic resin (except for the KP30PF resin). Since all resins were prepared at the same reaction
time, this means that the reference PF resin was already at a more progressed condensation state after
synthesis than the lignin-modified ones. This would be expected since phenolic resins are more reactive
than lignin-modified ones due to the higher number of reactive sites available.

Among the lignin-modified resins, the non-phenolated ones with high degrees of phenol substitution
showed the highest values whereas the phenolated ones with low degree of substitution showed the
lowest ones. This correlates with the expected reactivity of the lignins during resin synthesis: high
contents of lignin would result in lower conversation rates which in turn would lead to higher residual
curing capacity. In contrast, phenolation leads to activation of the lignin and hence increased reaction rate
during synthesis and, thus, less residual curing capacity. This relationship is well reflected by the
DHtot-data. In principle, phenolysis of large lignin molecules during phenolation modification should
generally produce smaller fragments from the lignins. This in turn should result in a higher number of
aromatic ring sites that are reactive towards formaldehyde and methylolated phenol monomers and
oligomers. These reactive sites would be expected to readily undergo addition and condensation reactions
during the subsequent resin cooking. Therefore, lignin-substituted resins that had experienced a
phenolation treatment step should generally contain a smaller proportion of lower-molecular weight
reactive lignin-derived fragments after synthesis and this should be reflected by a lower total residual
curing capacity DHtot. This is exactly what is observed when the DHtot-values of the corresponding
phenolated and un-phenolated lignin-phenol hybrid resin species are compared: DHtot;L50PF

> DHtot;LP50PF , DHtot;K50PF > DHtot;KP50PF , and DHtot;K30PF > DHtot;KP30PF .

The ANOVAs given in Tabs. 8 and 9 had shown that the first exothermic peak integral, DH1 is only
influenced by the lignin type whereas the second exothermic peak integral, DH2 only depends on the two

Figure 14: Interaction plot for (a) the effect of lignin type on the first exothermic peak integral, DH1, and (b)
the effects of phenolation treatment and the degree of phenol substitution on the second exothermic peak
integral, DH2. Circles (○, ●) represent lignosulfonate and squares (□, ■) represent Kraft lignin containing
lignin-phenolic hybrid resins. Open symbols represent resins without and black symbols resins with
phenolation treatment. Triangles represent the average values
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other factors studied, the phenolation pretreatment and the lignin substitution degree. As a result, the term
DHtot should depend on these three factors. This is, in principle, the case (Tab. 10, ANOVA for the
response DHtot). Interestingly however, when the sum DH1 þ DH2 ¼ DHtot was analyzed, not only the
effects of all single factors were statistically significant but also two of their possible synergistic
interactions were found to be weakly statistically significant at a significance level of 0.05 (Tab. 10).
However, although DHtot is best described including the second-order interaction effects AB and BC, it is
evident from Fig. 15 and the comparatively small values for their coefficient estimates (Tab. 10) that the
interaction effects are rather weak and should not be overemphasized.

The residual curing capacity depends mainly on all three single factors varied in this study, the most
important one being the degree of substitution of phenol by lignin. Higher levels of lignin result in larger
values for total residual curing capacity. This effect is more pronounced with lignosulfonate than with
Kraft lignin. If no phenolation modification is performed, resins with larger total exothermic enthalpy
integrals are obtained.

Table 10: ANOVA of the effects influencing the response DHtot for the lignin-phenol hybrid resins

Sum of Squares F-value p-value R2 R2
adjusted R2

predicted

Model 10785.41 206.55 0.0048 0.9981 0.9932 0.9691

Effects Coefficient estimates (coded):

A: Lignin type 2108.93 201.94 0.0049 −16.24

B: Phenolation 3291.44 315.17 0.0032 +20.28

C: Substitution 4868.38 466.17 0.0021 −24.67

AB 247.20 23.67 0.0397 −5.56

BC 269.47 25.80 0.0366 +5.80

Residual 20.89

Figure 15: Two-factor interaction plot for the total residual curing capacity DHtot of the synthesized lignin-
phenol hybrid resins. (a) low level of substitution (30% lignin), (b) high level of substitution (50% lignin).
The full line represents the interaction graph for the resins with phenolation treatment, the dotted red line
represents the interaction graph for the resins without phenolation treatment
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4 Conclusion

Several phenolic resol resins were synthesized where phenol was substituted by different amounts of two
types of lignin materials. The effect of phenolation pretreatment on the properties of these hybrid resins was
studied in detail. The resulting hybrid PF resins were investigated using Fourier transform infrared
spectroscopy, gel permeation chromatography, contact angle measurements, tensiometry and differential
scanning calorimetry. The FTIR spectra showed the typical absorbance bands of phenolic resins and
allowed to accurately determine each lignin component. The viscosities of the studied resins showed a
rather complex behavior and depended strongly on the level of phenol substitution and whether a
phenolation pretreatment was performed or not. With phenolation modification, the resins became
generally much less viscous upon dilution with methanol although their average molecular weight was
systematically higher. Phenolation treatment lead generally to an increase in the polar component of the
surface energy. However, the overall contribution of the polar component to the total surface energy was
comparatively low and was in the case of lignosulfonate substitution compensated by relatively larger
changes in the dispersive component of the surface energy. However, the increase in surface energy was
more pronounced for resins substituted by Kraft lignin than with those containing lignosulfonate. The
curing behavior was modified by lignin addition, all tree investigated factors had an effect on the total
residual curing capacity, DHtot of the prepared lignin-phenol hybrid resins. While DH1 was only
influenced by the type of lignin, DH2 was affected by the degree of substitution and phenolation
treatment. The molecular weight distribution of the phenolated lignins generally showed a reduction in
average molecular weight and an increase in reactivity towards condensation with phenolic resin. It was
shown that the type of lignin, its content in the resin and the degree of its additional activation
(phenolation), significantly influence the relative proportions of different molecular weight fractions
present in the resulting oligomeric hybrid resin. Increasing the concentration of activated Kraft lignin and
lignosulfonate up to 50% significantly increased the content of high-molecular weight fractions in the
hybrid resins. However, the quality of the Indulin hybrid resins prepared under the same synthesis
conditions was found to be not optimal in terms of polydispersity. The differences in the molar mass
distribution profiles of phenolic resins, containing lignosulfonates or kraft lignin, were considered based
on local variations of the pKa, and consequently the pH-microenvironment at the lignin surface segments,
which are significantly dependent on the amount and the degree of dissociation of phenolic groups Ph-
OH as well as chemical changes of depolymerized lignin structures. The impregnation performance of the
resins studied in the present work will be subject of a subsequent study also submitted to this Journal [47].
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