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Abstract: The Internet of Things (IoT) has enabled various intelligent services, and IoT 
service range has been steadily extended through long range wide area communication 
technologies, which enable very long distance wireless data transmission. End-nodes are 
connected to a gateway with a single hop. They consume very low-power, using very low 
data rate to deliver data. Since long transmission time is consequently needed for each 
data packet transmission in long range wide area networks, data transmission should be 
efficiently performed. Therefore, this paper proposes a multicast uplink data transmission 
mechanism particularly for bad network conditions. Transmission delay will be increased 
if only retransmissions are used under bad network conditions. However, employing 
multicast techniques in bad network conditions can significantly increase packet delivery 
rate. Thus, retransmission can be reduced and hence transmission efficiency increased. 
Therefore, the proposed method adopts multicast uplink after network condition 
prediction. To predict network conditions, the proposed method uses a deep neural 
network algorithm. The proposed method performance was verified by comparison with 
uplink unicast transmission only, confirming significantly improved performance. 
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1 Introduction 
Recent information and communication technology advances have enabled small devices 
to collect data and forward it to remote servers, which is ultimately employed to provide 
intelligent services. This network architecture applies to most Internet of Things (IoT) 
services, including smart home, smart city, smart factory, smart farm, healthcare 
monitoring, etc. [Jing, Miao and Chen (2018); Gubbi, Buyya, Marusic et al. (2013); 
Wang, Gao, Yin et al. (2018); Yin and Wei (2019); Su, Sheng, Leung et al. (2019)]. 
Emerging long range wide area (i.e., low power wide area: LPWA) communication 
technology has already enabled long-range IoT services. It can transmit a packet up to 15 
Km in single hop transmission and have 50 Kbps as maximum data rate. The receiver 
sensitivity of the LPWA is about -145 dBm. That is, LPWA communication technology 
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transmits small data packets with very low power, while retaining relatively large 
transmission distances. Fig. 1 represents a typical LPWA network architecture. The 
LPWA is composed of numerous end-devices, several gateways, and a network server. 
Collected data from the end-devices is delivered to a network server, and an application 
server connects to the network server to exploit network server data to offer relevant 
services. A network server controls the LPWA network [Xiong, Zheng, Xu et al. (2015); 
Raza, Kulkarni and Sooriyabandara (2017); Centenaro, Vangelista, Zanella et al. (2016); 
Kim, Kim, Hassan et al. (2017); Kim and Kim (2019)]. Major traffic flow is uplinked 
from end-devices and a network server via a gateway. 

 
Figure 1: Typical LPWA network 

The core consideration for LPWA networks is to ensure robust wireless communication. 
Thus, data can be transmitted considerable distances. The transmitting to a network 
server(s) use very low data rate and small data packets for long range transmission, and 
hence long transmission delays can occur. The potentially long transmission distance 
means LPWA networks tend to have many end-devices in a single gateway area, which 
requires even stricter uplink data transmission efficiency. When numerous end-devices 
attempt to transmit a packet, network congestion can occur and this causes to drop the 
successful data transmission. In addition, the long range wireless conditions can be 
frequently changed to bad. LPWA networks comprise resource limited end-devices and 
cannot control efficient data transmission by exchanging control messages. Additional 
messages usage increases energy consumption of end-devices and transmission delays. 
Under poor wireless conditions, if a packet loss occurs in the LPWA network, 
conventional technologies attempt to retransmit the lost packet. After several 
subsequently unsuccessful retransmission attempt, they reduce transmission data rate by 
changing their modulation scheme. Reduced data rate can improve the number of 
successful data transmissions when wireless conditions are bad. However, it takes a long 
time to control the data rate [Sornin, Luis, Eirich et al. (2016); Augustin, Yi, Clausen et al. 
(2016); LoRa Alliance (2019); Cao, Zheng, Ji et al. (2018); He, Xie, Xie et al. (2019)]. In 
addition, because the transmission time of a single packet is long in LPWA networks, 
long packet transmission delays are caused as the retransmission is increased. Thus, a 
proper transmission method is essential even in poor LPWA network, or other conditions. 
This paper proposes a novel end-device transmission method for network conditions. 
Fundamentally, there are many gateways within end-device communication range. 
Therefore, the probability of successful data transmission will also probably be increased 
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if end-devices exploit multicast for uplink data transmissions under bad network 
conditions. This scheme should reduce long transmission delay under bad conditions. 
This paper considers and investigates various parameter effects for the proposed 
multicast system. Uplink multicasts form the basis for uplink multicast decisions, 
multicast group management, and uplink multicast transmission. We evaluated the 
proposed method performance compared with conventional approaches and showed the 
resulting predictions match observations reasonably well. 
The remainder of this paper is organized as follows. Section 2 discusses LPWA networks 
as the related work. In Section 3, the proposed method is explained. Performance 
evaluation and the results are described in Section 4. The paper is concluded in Section 5. 

2 Related work 
Several communication technologies are employed for LPWA networks, including 
LoRaWAN, SigFox, LTE-M, NB-IoT, etc., [Catalano, Coupigny, Delclef et al. (2018); 
SIGFOX (2019); Díaz-Zayas, García-Pérez, Recio-Pérez et al. (2016); 3GPP TR 36.802 
(2016)]. The long range wide area network (LoRaWAN) technique best represent 
communication technology adopted over this unlicensed band [Xiong, Zheng, Xu et al. 
(2015); Raza, Kulkarni and Sooriyabandara (2017); Centenaro, Vangelista, Zanella et al. 
(2016)], and is consequently widely used in long range IoT services. LoRaWAN 
transmits a data packet and waits for an ACK packet during receive_delay. ALOHA as a 
medium access control scheme is used to transmit packets in shared wireless media of 
LoRaWAN. Fig. 2 shows the data transmission of LoRaWAN. The packet is 
retransmitted if the original transmission failure occurs. If there is no response within 
adr_ack_delay, the end-device selects a lower data rate to maintain connectivity, since the 
modulation scheme for lower data rate can provide robust wireless transmission [Sornin, 
Luis, Eirich et al. (2016); Augustin, Yi, Clausen et al. (2016); LoRa Alliance (2019)]. 
This adaptive data rate (ADR) control is essential for data transmission under poor 
wireless conditions. However, it takes a long time to reduce the data rate to an 
appropriate value. If uplink multicast is available in LPWA networks, an end-device can 
send data to multiple gateway in a single transmission even though wireless conditions 
are bad. When data arrives at one of the gateways, it can be forwarded to a network 
server. A network server can stably collect data from the long range IoT domains. 
Therefore, the proposed method attempts to multicast data to several gateways, to 
increase the probability of data delivery. However, the conventional LoRaWAN supports 
only downlink multicast scheme and does not consider uplink multicast scheme. 
LoRaWAN’s downlink multicast serves to propagate the same command from the 
network server to end-devices in long range IoT domains. 
As mentioned earlier, LoRaWAN provides multicast data transmission downlinks, 
supporting up to four multicast groups, where end-devices identify multicast groups by 
their multicast ID and address. To reduce protocol overhead, the multicast ID can be used. 
End-devices organize the multicast group by exchanging several messages. Like a unicast 
network join procedure, end-devices can join a multicast group using a multicast join 
procedure as shown in Fig. 3. An end-device sends the Multicast_Join_Request message to 
a network server to be a member of a multicast group. When the network server receives 
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the message, it forms a multicast group and responds to the end-device with the 
Multicast_Join_Accept message. Then, the end-device receiving the message is assigned 
the multicast group address and can receive multicast data from the network server. 
LoRaWAN multicast provides commands to end-devices for managing multicast groups. 
If end-devices are included in a multicast group, a network server can send commands to 
the multicast group, and hence achieve significantly more efficient multicast 
transmissions than unicast [Stokking and Yegin (2018); Lim and Lee (2018)]. 

 
Figure 2: LoRaWAN data transmission 

 

Figure 3: LoRaWAN multicast procedure 

However, LoRaWAN’s multicast flow is downlink. In LPWA networks, major traffic flow 
is uplink and LoRaWAN’s major traffic flow is also uplink. Thus, multicast uplink in major 
traffic flow should be considered for efficient data transmission in long range IoT areas. 
The proposed method exploits uplink multicasting to increase data delivery probability 
under bad wireless conditions. Therefore, the proposed method includes decision making 
for uplink multicast, uplink multicast group management and multicast transmission. 

3 Proposed approach 
Since LPWA networks transmit data packets with very low power and wide communication 
range, there are generally several gateways within communication range of an end-device. 
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Therefore, the end-device must select the optimal gateway. As discussed above, the network 
has very low data rate and hence takes considerable time to transmit a data packet. If 
network wireless conditions are bad, data transmission will take more time due to 
retransmissions. Although long range IoT service data in LPWA is not time sensitive, long 
transmission delays could make it difficult to accurate and timely provide services. Thus, 
LPWA networks strongly require a method to reduce transmission delays. The proposed 
method identifies wireless conditions through learning and then performs uplink multicast 
transmission if the wireless condition is considered to be bad from the learned result. 

3.1 Wireless condition prediction 
A classifier algorithm for machine learning is used to predict states in various situations. 
The classifier algorithm learns the wireless state of LPWA networks from relevant 
network parameters, including signal strength (x1) and data rate (x2). Input parameter (X) 
is described with data attributes (x) and their weights (w). 
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where n is 2 because data attributes are two (i.e., x1 and x2). 
For the learning, the proposed classifier algorithm employs a deep neural network 
comprising two input nodes in the input layer and one output node in the output layer 
with nine hidden layers. The hidden layers include layers of seven and four nodes 
crossing each other. Fig. 4 shows the proposed deep neural network learning model. In 
the deep neural network, the output of each node connects to the input of a node in a next 
layer. Then, the input at the j-th node of a layer l is represented as 
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Then, the input parameter X is indicated to uj
(2)  

The output at each node (zj) is made by an activation function (f(∙ )). 
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The output of the final layer becomes a hypothesis h for the given inputs X. When the real 
output is y, there exists errors between y and h. The errors can be represented using an 
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error function. In the proposed method, the mean squared error function is used. 
2 21 1 ( )

2 2 j j
j

E y h y h= − = −∑ .                                                                                       (6) 

The errors can be minimized by learning. Through applying an optimization algorithm to the 
error function, the optimized weight (wji) of each node of the neural network can be obtained. 
Wireless condition prediction is performed with the optimized weights. In the proposed 
neural network, we use tanh as the seven nodes layer activation function, and ReLU for the 
four nodes layer. The output layer activation function is sigmoid. Training data is computed 
according to the forward direction of the deep neural network, and weights of each node in 
the neural network are optimized by backpropagation algorithm to minimize errors [Zhang, 
Patras and Haddadi (2019); Goodfellow, Bengio and Courville (2016)]. The proposed 
learning model achieves better accuracy with increased training data size. 

 
Figure 4: The proposed deep neural network model 

The propose deep neural network model can be operated in the LPWA gateway. Because 
end-devices in the LPWA network do not have enough computing resources, learning with 
a lot of data in the end-device is not appropriate. Thus, the LPWA gateway performs 
learning for the network prediction and then shares decision parameters for a classifier to 
end-devices. Then, the end-devices use the parameters to predict network conditions.  

3.2 Uplink multicast group management 
Uplink multicast groups are constructed to send multicast data from an end-device to 
adjacent gateways. The proposed approach performs uplink multicast when wireless 
conditions are bad, to improve packet forwarding probability. Thus, the uplink multicast 
does not require an additional procedure to manage the multicast groups. An end-device 
receives multicast group information through the network join procedure for unicast 
transmission [Sornin, Luis, Eirich et al. (2016); Augustin, Yi, Clausen et al. (2016); LoRa 
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Alliance (2019)]. Fig. 5 shows the procedure to obtain uplink multicast address, with 
detailed process as follows. 
 The end-device sends a join_request message to a network server via its gateway.  
 The gateway piggybacks an adjacent gateway list and relays the message.  
 The network server then allows the end-device to join the network, assigns an uplink 

multicast address to a group of gateways, and sends this information along with the list 
of the group to the end-devices’ gateway.  

 The gateway receives the join_accept message and group list, sends join_accept message to 
the end-device and forwards the uplink multicast address to the gateways in the group list. 

 
Figure 5: Procedure to obtain uplink multicast address 

3.3 Uplink multicast transmission 
The proposed approach uses unicast transmission if possible, and multicast transmission if 
wireless conditions are bad. Data learning to predict LPWA wireless condition is performed 
in a gateway deriving system parameters for the classifier algorithm and delivering them to 
end-devices. End-devices subsequently predict wireless conditions using these parameters. 
Fig. 6 shows that wireless condition prediction is performed periodically. The end-device 
determines a transmission mode depending on the predicted state: unicast or multicast. The 
end-device periodically predict wireless conditions using the received information for the 
deep neural network model. If wireless conditions are predicted to bad, the end-device 
forward packets using uplink multicast with multicast group address. The end-device uses 
the multicast group address obtained previously in the network join procedure. If wireless 
conditions are good, the end-device maintains uplink unicast to forward packets. 
A multicast data packet is transmitted to all gateways in the multicast group, but not all 
gateways may receive the packet depending on wireless conditions. If the multicast 
packet is delivered to an end-device’s gateway, LPWA data is converted to an IP packet 
and forwarded to a network server. If adjacent gateways receive the multicast packet, 
they forward the packet to the end-device’s gateway. The forwarded packet is converted 
to the IP packet for the network server in the gateway, and then sent to the network server. 
 



8                                                                                     CMC, vol.64, no.1, pp.1-15, 2020 

 
 
 
 
 

line 1: 
line 2: 
line 3: 
line 4: 
line 5: 
line 6: 
line 7: 
line 8: 
line 9: 
line 10: 
line 11: 

Uplink-Multicast (x1, x2, GW, Mcast)  
x1: Signal strength 
x2: Transmission rate 
GW: Gateway address of the end-device 
Mcast: Uplink multicast group address 
 repeat per periodic-interval:   
     wireless ← deep-Neural-Network (x1, x2)  
end repeat 
 
if wireless is bad : 
    dest ← Mcast 
    forward (dest) 
else  

 dest ← GW 
    forward (dest) 
end if 
 

Figure 6: Uplink multicast transmission of the proposed method 
In uplink unicast, successfully transmitted packets can be represented as 
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where N is total transmitted packets and Punicst(N,n) is a forward probability for n packets 
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where p is a wireless error probability. 
In uplink multicast, multiple gateways can receive packets from end-devices. 
Successfully transmitted packets in uplink multicast can be represented as 
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M is searched gateways in an end-device and pa is a probability of activated gateways. The 
activated gateway means a gateway can receive uplink multicast packets from end-devices. 
In the LPWA network, an end-device transmits a packet with a single hop transmission. 
When gateways are exponentially distributed with λ, their density function is 

( ) ,         0lf l e lλλ −= ≥ ,                                                                                                               (10) 
where l is a hop distance. Then, pa can be represented as 
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Because l is 1, pa becomes 1-e-λ. If M×pa is greater than 1, the uplink multicast 
probability is greater than the unicast probability and can successfully transmitted more 
packets to a network server. 

4 Performance evaluation 
4.1 Deep neural network implementation 
The proposed approach exploits a deep neural network to predict wireless conditions 
(Section 3.1), implemented with TensorFlow et al. [TensorFlow (2019); Keras (2019)] 
APIs. We employed the Adam optimizer, since it considers gradient direction and size, 
and hence obtains efficient and accurate computation results. We employ LPWA signal 
strength and data rate to predict wireless conditions. Tensorflow and Keras are open 
source libraries implementing deep learning models and have been widely used for many 
applications. We trained the learning model using 7,000 LPWA network data, and 
subsequently validated with additional 3,000 LPWA network data. Fig. 7 shows learning 
results of the test data set. The learning accuracy of the proposed deep neural network 
model is 93.7%, and the existing logistic regression model, which is the representative 
learning model for a classifier, is 74.3%. The proposed learning model using a deep 
neural network algorithm shows better accuracy than the existing learning model. 
The proposed LPWA transmission method then applies the learning results to unknown 
samples collected from the LPWA network, as shown in Fig. 7. LPWA network end-
devices then predict wireless conditions based on trained classifier parameters. 

 
(a) Proposed deep neural network model 

 
(b)  Existing logistic regression model 

Figure 7: The result of training and test set 
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4.2 Uplink multicast transmission 
Computer simulations were implemented using the SMPL C library [MacDougall (1987)] 
for event driven computer simulation. Two states Markov chain [Ross (2002); Trivedi 
(2002)] were considered for wireless channel model: good and bad as shown in Fig. 8. 
Good state is changed to bad state with a probability p. Bad state is changed to good state 
with a probability q. p and q are set to 0.3 and 0.7, respectively. Packet error rate was 
assumed to be 0.05 and 0.10, respectively. Wireless conditions were changed according 
to exponential distribution with mean NET_INTERVAL. 

 
Figure 8: Two state Markov chain for the wireless channel model of the LPWA network 

The NET_INTERVAL is set to 5 min. In the wireless channel model, retransmissions due 
to transmission failure were not considered for the simulation. End-device data traffic 
was generated with uniform random distribution (mean 10 min), and simulation time was 
set to 7 days. We assumed the end-device was located within the coverage of three 
gateways. Tab. 1 represents the simulation environments.  

Table 1: Simulation environments 
Parameters Values 

Simulation Time 7 days 

Network Change Interval 5 min 

Traffic Generation Interval 10 min 

Wireless Prediction Accuracy 94% 

Transmission Slot Time 500 ms 

Number of Neighbor Gateways 3 

 
Fig. 9 shows simulation results of the proposed approach. The end-device sent 2,017 data 
packets over the 7-day period, with 1,947 packets successfully delivered to the network 
server, and uplink multicast occurred 639 times. Thus, the proposed approach provided 
96.5% transmission success. That is, the proposed approach improves the probability of 
data delivery by using uplink multicast in the bad wireless condition. Thus, the proposed 
method can obtain more data packets in a network server. 
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Figure 9: The result of the proposed approach 

Fig. 10 compares simulated received data packets at the network server for conventional 
and proposed approaches. Overall, the conventional approach successfully transmitted 1887 
data packets (93.5%), compared with the proposed approach 96.5% success rate, i.e., 3% 
performance improvement. Including retransmission and energy consumption 
considerations in the simulation would increase the proposed approach advantage over 
the conventional approach. In addition, as mentioned earlier, the improvement of the 
forward probability on wireless leads to the increment of the amount of received data 
packets. If the wireless prediction accuracy is increased, uplink multicast is used in 
appropriate situation and the forward probability can be increased. This causes to 
increase the collected data at a network server. 

 
Figure 10: The result of received data packets in the network server 
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Fig. 11 represents the retransmission counts during the computer simulation. 
Retransmissions occurred 105 times in the proposed approach. In contrast, the 
conventional approach is 187 times. Uplink multicast can significantly reduce the number 
of retransmissions. Retransmission in wireless networks means more communication 
energy consumption. Thus, the proposed approach has less energy consumption than the 
conventional approach. It can improve lifetime of the long range IoT systems. That is, the 
proposed approach reduces energy consumption by improving transmission efficiency 
through increasing the transmission probability.  
Tab. 2 shows accumulated transmission delays. If the LPWA end-device fails to transfer 
data, computer simulation allows two retries. As retransmissions increase due to 
transmission failures, the transmission delay also increases. As shown in Fig. 11, the 
conventional approach has more retransmission counts. Because the LPWA 
communication has long transmission slot to deliver data packets far away, the 
retransmission causes long transmission delays. Therefore, the proposed approach can 
reduce the transmission delay because it reduces the retransmission by uplink multicast. 
The LPWA communication is a long range IoT system and the end-device has insufficient 
resources. It has constrains to use additional messages to improve data transmission 
efficiency. Thus, the proposed approach becomes a considerable way to improve 
transmission efficiency in LPWA communications. 

  
Figure 11: Retry counts during the computer simulations 

Table 2: Transmission delays (sec) 
Time Proposed Conventional 

86,400 212 216 
172,800 424 445 
259,200 631 660 
345,600 842 880 
432,000 1,061 1,102 
518,400 1,268 1,313 
604,800 1,476 1,533 
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5 Conclusions 
LPWA networks commonly incorporate numerous end-devices, typically within several 
gateways’ communication ranges. LPWA communication has long transmission delays 
but has few resources available to generate network control messages due to insufficient 
computing resources. Therefore, methods are required to improve data transmission 
efficiency without generating additional control messages, particularly under bad wireless 
conditions. The proposed approach employs uplink multicast transmission when it 
identifies bad condition state, thereby improving communication efficiency without 
requiring network control messages. Decision making is implemented using a deep neural 
network classifier algorithm. Simulations confirmed significant performance improvement 
in terms of successfully received data packets at the network server. However, the analysis 
did not consider retransmission or energy consumption, which would also be significantly 
improved under the proposed approach. Thus, the proposed approach provides a practical 
and viable alternative to improve transmission success for LPWA networks without 
increasing network overhead. 
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