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Abstract: One of the most attractive subjects in applied sciences is to obtain exact or 
approximate solutions for different types of linear and nonlinear systems. Systems of 
ordinary differential equations like systems of second-order boundary value problems 
(BVPs), Brusselator system and stiff system are significant in science and engineering. 
One of the most challenge problems in applied science is to construct methods to 
approximate solutions of such systems of differential equations which pose great 
challenges for numerical simulations. Bernstein polynomials method with residual 
correction procedure is used to treat those challenges.  The aim of this paper is to present 
a technique to approximate solutions of such differential equations in optimal way. In it, 
we introduce a method called residual correction procedure, to correct some previous 
approximate solutions for such systems. We study the error analysis of our given method. 
We first introduce a new result to approximate the absolute solution by using the residual 
correction procedure. Second, we introduce a new result to get appropriate bound for the 
absolute error. The collocation method is used and the collocation points can be found by 
applying Chebyshev roots. Both techniques are explained briefly with illustrative 
examples to demonstrate the applicability, efficiency and accuracy of the techniques. By 
using a small number of Bernstein polynomials and correction procedure we achieve 
some significant results. We present some examples to show the efficiency of our method 
by comparing the solution of such problems obtained by our method with the solution 
obtained by Runge-Kutta method, continuous genetic algorithm, rational homotopy 
perturbation method and adomian decomposition method. 
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1 Introduction 
Systems of ordinary differential equations have been studied in many areas of science 
such as applied mathematics, engineering and physics. For example, systems of second-
order boundary value problems (BVPs) have been employed to describe a variety of 
systems in applied sciences, engineering, theoretical physics and biology. Several 
techniques are used to solve such systems. Momani et al. [Momani, Abu Arqub and Abu 
Hammour (2014)] used the continuous genetic algorithm with convergence analysis to 
solve some nonlinear systems of second-order boundary value problems. The 
nonexistence of spurious solutions is applied to discrete two-point BVPs, see in 
Thompson et al. [Thompson and Tisdell (2003)]. Some authors applied the B-spline 
method to solve some linear systems of second-order BVPs, for instance see in Caglar et 
al. [Caglar (2009); Manni, Reali and Speleers (2015)]. New method based on homotopy 
perturbation method, called reproducing kernel method (RKM), is used to find the 
solutions of some nonlinear systems of second order boundary value problems (BVPs), 
see in Geng et al. [Geng and Cui (2011)]. Artificial neural network methods are used to 
find the solution of second order boundary value problems, see in Anitescu et al. 
[Anitescu, Atroshchenko, Alajlan et al. (2019)]. 
The Brusselator system is a fundamental model that displays Biological and Chemical 
oscillations. Adomian decomposition method (ADM) is used to solve the Brusselator 
system [Ayati and Biazar (2007)]. 
The stiff systems are considered to be the most important systems of equations that have 
been studied in many areas of science, chemistry and physics. In 1980, Cash [Cash (1980)] 
used extended backward differentiation formula with its modifications to solve stiff 
systems of ODEs. While, Hosseini et al. [Hosseini and Hojjati (1999)] developed EBDF 
and BDF methods to new one, called an adaptive method (A-EBDF) and they employed 
their new method to solve stiff system. Also, in Biazar et al. [Biazar, Ali and Salehi (2015)] 
introduced a new modification of the homotopy perturbation method, called rational 
homotopy perturbation method (RHPM), they used their new method to solve some stiff 
systems of ordinary differential equations. Recentely, in Alshbool et al. [Alshbool and 
Hashim (2016)] considered a modification of Bernstein polynomials method, called 
Multistage Bernstein polynomials, to solve some fractional-order stiff system. 
Bernstein polynomials method (B-polynomials) is one of the most important methods 
that can be used to solve linear and non-linear differential equations, for some works in 
this topics, refer to Bhatti et al. [Bhatti and Bracken (2007); Alshbool, Bataineh, Hashim 
et al. (2015); Isik and Sezer (2013); Khataybeh, Hashim and Alshbool (2015)]. B-
polynomials and the residual correction procedure are used to correct the solution of 
system differential equations. Both techniques hve attracted the attention of many 
researchers. B-polynomials with the residual correction procedure are used to solve a 
class of Lane-Emden type equations, see in Isik et al. [Isik and Sezer (2013)]. Alshbool et 
al. [Alshbool, Bataineh, Hashim et al. (2017)] used Caputo fractional derivative to obtain 
fractional Bernstein polynomials and converted 𝑥𝑥 → 𝑥𝑥𝛼𝛼  in the operational matrices of 
Bernstein polynomials to solve some fractional-order differential equations. Isik et al. 
[Isik, Sezer and Guney (2012)] applied Bernstein to solve some linear second-order 
partial differential equations and error analysis. Normalized B-polynomials are presented 
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to find the solution of the space-time fractional diffusion equation, see Baseri et al. 
[Baseri, Babolian and Abbasbandy (2017)], the authors have used normalized Bernstein 
polynomials. For the space domain, which is a semi-infinite domain. Recently, 
multidimensional B-polynomials and their applications are investigated by generating 
functions [Simsek (2018)]. 
The motivation underlying this work is to provide an efficient method to reduce the error 
in solving the systems of differential equations. The Bernstein polynomials method with 
residual correction procedure is applied to achieve our purpose. The problems will be 
solved for different values of 𝑚𝑚 and 𝑛𝑛. In the examples, we investigate several systems of 
ordinary differential equations as systems of second-order BVPs, the Brusselator system 
and stiff system. The results will demonstrate the efficiency and accuracy of the 
techniques. We have been able to reduce the error in solving the systems to the point of 
reaching the exact solution in some results.   
This paper is structured as follows: In Section 2, we describe our proposed method in 
details to give approximate solutions of such ordinary differential equations. In Section 3, 
we introduce two corollaries to give approximate solutions of such ordinary differential 
equations by minimizing the absolute error as much as we can. In Section 4, we obtain 
approximate solution of some known boundary value problems by using our technique 
and we compare our solution with some old methods to show the efficiency of our 
technique. In Section 5, we give a conclusion on our paper.  

2 Description of the proposed method 
The (𝑚𝑚 + 1) B-polynomials of degree 𝑚𝑚 are defined by  

𝐵𝐵𝑖𝑖,𝑚𝑚(𝑥𝑥) = �
𝑚𝑚
𝑖𝑖
�𝑥𝑥𝑖𝑖(1 − 𝑥𝑥)𝑚𝑚−𝑖𝑖,  𝑖𝑖 = 0,1, … ,𝑚𝑚 

where the binomial coefficient is  

�
𝑚𝑚
𝑖𝑖
� =

𝑚𝑚!
𝑖𝑖!  (𝑚𝑚 − 𝑖𝑖)!

. 

For mathematical convenience, the equation 𝐵𝐵𝑖𝑖,𝑚𝑚 = 0 if 𝑖𝑖 < 0 or 𝑖𝑖 > 𝑚𝑚.  
In general, any function 𝑦𝑦(𝑥𝑥) with the first (𝑚𝑚 + 1) B-polynomials are approximated as 
the following:  
𝑦𝑦(𝑥𝑥) ≈ ∑ 𝑐𝑐𝑖𝑖𝑚𝑚

𝑖𝑖=0 𝐵𝐵𝑖𝑖,𝑚𝑚(𝑥𝑥) = CT𝜙𝜙(𝑥𝑥), 
where 
CT = [c0, c1, … , c𝑚𝑚], and 
𝜙𝜙(𝑥𝑥) = [𝐵𝐵0,𝑚𝑚(𝑥𝑥),𝐵𝐵1,𝑚𝑚(𝑥𝑥), … ,𝐵𝐵𝑚𝑚,𝑚𝑚(𝑥𝑥)]T. 
The vector 𝜙𝜙(𝑥𝑥) can be expressed as the following: 
𝜙𝜙(𝑥𝑥) = 𝐴𝐴𝐴𝐴,                                                                                                                      (1) 
where 
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𝐴𝐴 = �

𝑑𝑑00 𝑑𝑑01 … 𝑑𝑑0𝑚𝑚
𝑑𝑑10 𝑑𝑑11 … 𝑑𝑑1𝑚𝑚
⋮ ⋮ ⋱ ⋮

𝑑𝑑𝑚𝑚0 𝑑𝑑𝑚𝑚1 … 𝑑𝑑𝑚𝑚𝑚𝑚

� ,   𝐴𝐴 =

⎝

⎜
⎛

1
𝑥𝑥
𝑥𝑥2
⋮
𝑥𝑥𝑚𝑚⎠

⎟
⎞

 and 

𝑑𝑑𝑖𝑖𝑖𝑖 = �
(−1)𝑖𝑖−𝑖𝑖

𝑅𝑅𝑖𝑖
�
𝑚𝑚
𝑖𝑖
� �
𝑚𝑚 − 𝑖𝑖
𝑗𝑗 − 𝑖𝑖

� ,  𝑖𝑖 ≤ 𝑗𝑗

  0    ,  𝑖𝑖 > 𝑗𝑗
. 

The derivatives of the vector 𝜙𝜙(𝑥𝑥) can be expressed as the following:  

D1𝜙𝜙(𝑥𝑥) = 𝐴𝐴
𝑑𝑑
𝑑𝑑𝑥𝑥

𝐴𝐴. (2) 

Eq. (2) can be written as   
D1𝜙𝜙(𝑥𝑥) = 𝐴𝐴.Ω.𝐴𝐴, (3) 
where 

Ω =

⎝

⎜
⎛

0 0 … 0
1 0 … 0
0 2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … (𝑚𝑚 − 1) 0⎠

⎟
⎞

. 

For example, if 𝑚𝑚 = 4, then  

Ω = �
0 0 0 0
1 0 0 0
0
0

2
0

0 0
3 0

� 

(4) 

From Eq. (1), 
𝜙𝜙(𝑥𝑥) = 𝐴𝐴𝐴𝐴 ⇒ 𝐴𝐴−1𝜙𝜙(𝑥𝑥) = 𝐴𝐴. 

(5) 

Since 𝐴𝐴 is a square matrix with rows and columns are not zero, not equals, and independent 
vectors in ℝ𝑛𝑛, then the determinant of A is exist and not equal zero. So 𝐴𝐴 is invertible. 
From Eqs. (3) and (5), we have 𝜙𝜙(𝑥𝑥) = 𝐴𝐴.Ω.𝐴𝐴−1𝜙𝜙(𝑥𝑥). So the derivative (D1) of the 
vector 𝜙𝜙(𝑥𝑥) can be expressed as  
D1 = 𝐴𝐴.Ω.𝐴𝐴−1, (6) 
where D1  is the (𝑚𝑚 + 1) × (𝑚𝑚 + 1)  operational matrix of derivative. Therefore, the 
derivatives of the vector 𝜙𝜙(𝑥𝑥) can be generalized as the following:  
𝑑𝑑𝜙𝜙(𝑥𝑥)
 𝑑𝑑𝑥𝑥

= D1𝜙𝜙(𝑥𝑥),
𝑑𝑑2𝜙𝜙(𝑥𝑥)
 𝑑𝑑𝑥𝑥2

= (D1)2𝜙𝜙(𝑥𝑥), … ,
𝑑𝑑𝑚𝑚𝜙𝜙(𝑥𝑥)
 𝑑𝑑𝑥𝑥𝑚𝑚

= (D1)𝑚𝑚𝜙𝜙(𝑥𝑥). (7) 

By means of the operational matrix of derivative, we approximate 𝑦𝑦(𝑥𝑥) 
by B-polynomials as the following:  

𝑦𝑦(𝑥𝑥) ≃ CT𝜙𝜙(𝑥𝑥).                                                                                                                (8) 
Then 
𝑦𝑦′(𝑥𝑥) ≃ CTD1𝜙𝜙(𝑥𝑥), (9) 
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𝑦𝑦′′(𝑥𝑥) ≃ CT(D1)2𝜙𝜙(𝑥𝑥), 
and 
𝑔𝑔(𝑥𝑥) ≃ GT𝜙𝜙(𝑥𝑥), (10) 
where the vector GT = [𝑔𝑔0(𝑥𝑥), … ,𝑔𝑔𝑚𝑚(𝑥𝑥)]T.  
Let us consider the system of ordinary differential equations as the following:  
𝑑𝑑𝑦𝑦𝑖𝑖
𝑑𝑑𝑥𝑥

+ 𝑓𝑓𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑔𝑔𝑖𝑖(𝑥𝑥), (11) 

subject to the initial conditions: 
𝑦𝑦𝑖𝑖(𝑥𝑥0) = 𝛼𝛼𝑖𝑖 , (12) 
where 𝛼𝛼𝑖𝑖 are constants, for 𝑗𝑗 = 1,2, …𝑘𝑘.  
By applying (7)-(10) on system (11), the residual ℜ(𝑥𝑥) is obtained as the following:  
C1TD1𝜙𝜙(𝑥𝑥) + 𝑓𝑓1[𝑥𝑥, C1T𝜙𝜙(𝑥𝑥)] − G1T𝜙𝜙(𝑥𝑥) = 0, 
C2TD1𝜙𝜙(𝑥𝑥) + 𝑓𝑓2[𝑥𝑥, C2T𝜙𝜙(𝑥𝑥)] − G2T𝜙𝜙(𝑥𝑥) = 0,                                                                 (13) 
⋮ 
C𝑘𝑘TD1𝜙𝜙(𝑥𝑥) + 𝑓𝑓𝑘𝑘[𝑥𝑥, C𝑘𝑘T𝜙𝜙(𝑥𝑥)] − G𝑘𝑘T𝜙𝜙(𝑥𝑥) = 0, 
with the initial conditions  
C1T𝜙𝜙(𝑥𝑥0) = 𝛼𝛼1,  C2T𝜙𝜙(𝑥𝑥0) = 𝛼𝛼2,  … ,  C𝑘𝑘T𝜙𝜙(𝑥𝑥0) = 𝛼𝛼𝑘𝑘 .  (14) 
The collocation points 𝑥𝑥0,𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 in system (13) can be found by applying Chebyshev 
roots: 

𝑥𝑥𝑖𝑖 =
1
2

+
1

2 𝑐𝑐𝑐𝑐𝑐𝑐 ( (2𝑖𝑖 + 1) 𝜋𝜋
2𝑛𝑛

)
,  𝑖𝑖 = 0,1, … ,𝑚𝑚− 1. (15) 

3 Error analysis and residual correction procedure 
In this section, we introduce two corollaries to give approximate solutions of such 
ordinary differential equations by minimizing the absolute error as much as we can. 
Let 𝑦𝑦𝑖𝑖𝑚𝑚(𝑥𝑥)  and 𝑦𝑦𝑖𝑖(𝑥𝑥)  be the approximate solution and the exact solution of (11) 
respectively. In the following procedure, the residual correction can be given for the 
estimation of the absolute.  
First, adding and subtracting the term  
𝑅𝑅𝑖𝑖: = 𝑦𝑦𝑖𝑖′𝑚𝑚 + 𝑓𝑓𝑖𝑖(𝑥𝑥,𝑦𝑦) (16) 
to (11) yields the following differential equation  
𝑒𝑒𝑖𝑖′𝑚𝑚(𝑥𝑥) + 𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑒𝑒𝑖𝑖𝑚𝑚(𝑥𝑥)) = 𝑔𝑔𝑖𝑖(𝑥𝑥) − 𝑅𝑅𝑖𝑖, (17) 
with the initial conditions: 
𝑦𝑦𝑖𝑖(𝑥𝑥0) = 0. 
Solve it by B-polynomials of degree 𝑛𝑛, 𝑛𝑛 > 𝑚𝑚, where 𝑒𝑒𝑖𝑖𝑚𝑚(𝑥𝑥) = 𝑦𝑦𝑖𝑖(𝑥𝑥) − 𝑦𝑦𝑖𝑖𝑚𝑚(𝑥𝑥).  
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3.1 Corollary 1 
Let 𝑦𝑦𝑖𝑖𝑚𝑚(𝑥𝑥) be an approximate solution of (11) and 𝐸𝐸𝑖𝑖𝑛𝑛(𝑥𝑥) be an approximate solution of 
(17). Then 𝑦𝑦𝑖𝑖𝑚𝑚(𝑥𝑥) + 𝐸𝐸𝑖𝑖𝑛𝑛(𝑥𝑥) is also an approximate solution of (11) and its error function 
is 𝑒𝑒𝑖𝑖𝑚𝑚(𝑥𝑥) − 𝐸𝐸𝑖𝑖𝑛𝑛(𝑥𝑥) . We will call the approximate solution 𝑦𝑦𝑖𝑖𝑚𝑚(𝑥𝑥) + 𝐸𝐸𝑖𝑖𝑛𝑛(𝑥𝑥)  the 
corrected approximate solution. Note that if ‖𝑒𝑒𝑖𝑖𝑚𝑚(𝑥𝑥) − 𝐸𝐸𝑖𝑖𝑛𝑛(𝑥𝑥)‖∞ < 𝜖𝜖, then the absolute 
error can be estimated by 𝐸𝐸𝑖𝑖𝑛𝑛(𝑥𝑥) . Moreover, if ‖𝑒𝑒𝑖𝑖𝑚𝑚(𝑥𝑥) − 𝐸𝐸𝑖𝑖𝑛𝑛(𝑥𝑥)‖∞ < ‖𝑦𝑦𝑖𝑖(𝑥𝑥) −
𝑦𝑦𝑖𝑖𝑚𝑚(𝑥𝑥)‖, then 𝑦𝑦𝑖𝑖𝑚𝑚(𝑥𝑥) + 𝐸𝐸𝑖𝑖𝑛𝑛(𝑥𝑥) is more accurate solution than 𝑦𝑦𝑖𝑖𝑚𝑚(𝑥𝑥)  in any given 
norm. Optimal 𝑚𝑚, which gives the minimal absolute error, might be found by measuring 
𝐸𝐸𝑖𝑖𝑛𝑛(𝑥𝑥)  in any given norm.  

3.2 Corollary 2 
Let us find the approximate solutions for different values of 𝑚𝑚. The triangle inequality 
implies  
||𝑦𝑦(𝑥𝑥) − 𝑦𝑦𝑚𝑚1(𝑥𝑥)| − |𝑦𝑦(𝑥𝑥) − 𝑦𝑦𝑚𝑚2(𝑥𝑥)|| ≤ |𝑦𝑦𝑚𝑚1(𝑥𝑥) − 𝑦𝑦𝑚𝑚2(𝑥𝑥)|. 
If the previous errors are not too close to each other, we can get a rough upper bound for 
the resulting error. We can test the upper bound as follows: 
If the error sequence is decreasing (or increasing), then  
�|𝑦𝑦(𝑥𝑥) − 𝑦𝑦𝑚𝑚+1(𝑥𝑥)| − |𝑦𝑦(𝑥𝑥) − 𝑦𝑦𝑚𝑚(𝑥𝑥)|� = (1 − C)|𝑦𝑦(𝑥𝑥) − 𝑦𝑦𝑚𝑚(𝑥𝑥)| ≤ |𝑦𝑦𝑚𝑚+1(𝑥𝑥) − 𝑦𝑦𝑚𝑚(𝑥𝑥)|  
or  

|𝑦𝑦(𝑥𝑥) − 𝑦𝑦𝑚𝑚+1(𝑥𝑥)| < |𝑦𝑦(𝑥𝑥) − 𝑦𝑦𝑚𝑚(𝑥𝑥)| ≤
1

(1 − 𝐶𝐶)
|𝑦𝑦𝑚𝑚+1(𝑥𝑥)− 𝑦𝑦𝑚𝑚(𝑥𝑥)|, (18) 

where 
|𝑦𝑦(𝑥𝑥) − 𝑦𝑦𝑚𝑚+1(𝑥𝑥)| = C|𝑦𝑦(𝑥𝑥) − 𝑦𝑦𝑚𝑚(𝑥𝑥)|,  0 ≤ 𝑥𝑥 < 1. 
If C < 1, then the bounds of both absolute errors are very well.  

4 Numerical results and discussion 
In this section,we introduce some examples to show the efficiency of our new technique.  
Example 1 
Consider the following system of second-order BVPs, see Momani et al. [Momani, Abu 
Arqub and Abu Hammour (2014)]:  

�
𝑦𝑦1′′(𝑥𝑥) + 𝑥𝑥𝑦𝑦1(𝑥𝑥) + 𝑥𝑥𝑦𝑦2(𝑥𝑥) = 𝑔𝑔1(𝑥𝑥),
𝑦𝑦2′′(𝑥𝑥) + 2𝑥𝑥𝑦𝑦1(𝑥𝑥) + 2𝑥𝑥𝑦𝑦2(𝑥𝑥) = 𝑔𝑔2(𝑥𝑥), (19) 

with the boundary conditions: 
𝑦𝑦1(0) = 0, 𝑦𝑦1(1) = 0 
𝑦𝑦2(0) = 0, 𝑦𝑦2(1) = 0, 
where 𝑔𝑔1(𝑥𝑥) = 2, 𝑔𝑔2(𝑥𝑥) = −2,  0 ≤ 𝑥𝑥 ≤ 1.  
The exact solution is  
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�
𝑦𝑦1(𝑥𝑥) = 𝑥𝑥2 − 𝑥𝑥,
𝑦𝑦2(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2.

 

By applying the technique of Section 2, for the case 𝑚𝑚 = 4, we have  

𝑦𝑦1(𝑥𝑥) = C1𝑇𝑇𝜙𝜙(𝑥𝑥) = (𝑐𝑐1,0 𝑐𝑐1,1 𝑐𝑐1,2 𝑐𝑐1,3 𝑐𝑐1,4)

⎝

⎜
⎛
𝑥𝑥4 − 4𝑥𝑥3 + 6𝑥𝑥2 − 4𝑥𝑥 + 1
−4𝑥𝑥4 + 12𝑥𝑥3 − 12𝑥𝑥2 + 4𝑥𝑥

6𝑥𝑥4 − 12𝑥𝑥3 + 6𝑥𝑥2
−4𝑥𝑥4 + 4𝑥𝑥3

𝑥𝑥4 ⎠

⎟
⎞

, (20) 

and 
𝑦𝑦2(𝑥𝑥) = C2𝑇𝑇𝜙𝜙(𝑥𝑥)

= (𝑐𝑐2,0 𝑐𝑐2,1 𝑐𝑐2,2 𝑐𝑐2,3 𝑐𝑐2,4)

⎝

⎜
⎛
𝑥𝑥4 − 4𝑥𝑥3 + 6𝑥𝑥2 − 4𝑥𝑥 + 1
−4𝑥𝑥4 + 12𝑥𝑥3 − 12𝑥𝑥2 + 4𝑥𝑥

6𝑥𝑥4 − 12𝑥𝑥3 + 6𝑥𝑥2
−4𝑥𝑥4 + 4𝑥𝑥3

𝑥𝑥4 ⎠

⎟
⎞

. 
(21) 

The residual ℜ(𝑥𝑥) for system (19) is obtained as: 
C1T(D1)2𝜙𝜙(𝑥𝑥) + 𝑥𝑥C1T𝜙𝜙(𝑥𝑥) + 𝑥𝑥C2T𝜙𝜙(𝑥𝑥) − 2 = 0, and 
C2T(D1)2𝜙𝜙(𝑥𝑥) + 2𝑥𝑥C1T𝜙𝜙(𝑥𝑥) + 2𝑥𝑥C2T𝜙𝜙(𝑥𝑥) + 2 = 0,    (22) 
with the boundary conditions  
C1T𝜙𝜙(0) = 0, C1T𝜙𝜙(1) = 0 
C2T𝜙𝜙(0) = 0, C2T𝜙𝜙(1) = 0. 
By substituting collocation points in Eq. (22) and applying maple program the unknowns 
𝑐𝑐𝑖𝑖 will be found, then the approximate solutions for 𝑦𝑦1(𝑥𝑥) and 𝑦𝑦2(𝑥𝑥) can be calculated.  
The unknowns 𝑐𝑐𝑖𝑖 found as  
𝑐𝑐1,0 = 0, 𝑐𝑐1,1 = 0.25, 𝑐𝑐1,2 = −0. 3̄, 𝑐𝑐1,3 = −0.25, 𝑐𝑐1,4 = 0, 
𝑐𝑐2,0 = 0, 𝑐𝑐2,1 = 0.25, 𝑐𝑐2,2 = 0. 3̄, 𝑐𝑐2,3 = 0.25, 𝑐𝑐2,4 = 0. 
Substitutethe values of 𝑐𝑐𝑖𝑖 Eqs. (20) and (21), the exact solution of system (19) is 

�
𝑦𝑦1(𝑥𝑥) = 𝑥𝑥2 − 𝑥𝑥
𝑦𝑦2(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2.

 

Note that our technique generated the exact solution of system (19), while the technique 
of Momani et al. [Momani, Abu Arqub and Abu Hammour (2014)] generated 
approximate solution. Thus our technique is efficient. 
Example 2 
Consider the following system of second-order BVPs, see Momani et al. [Momani, Abu 
Arqub and Abu Hammour (2014)]: 

�
𝑦𝑦1′′(𝑥𝑥) + 𝑥𝑥𝑦𝑦1(𝑥𝑥) + 2𝑥𝑥𝑦𝑦2(𝑥𝑥) + 𝑥𝑥𝑦𝑦12(𝑥𝑥) = 𝑔𝑔1(𝑥𝑥),
𝑦𝑦2′′(𝑥𝑥) + 𝑦𝑦2(𝑥𝑥) + 𝑥𝑥2𝑦𝑦1(𝑥𝑥) + sin( 𝑥𝑥)𝑦𝑦22(𝑥𝑥) = 𝑔𝑔2(𝑥𝑥),

 (23) 

with the boundary conditions: 
𝑦𝑦1(0) = 0,𝑦𝑦1(1) = 0 
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𝑦𝑦2(0) = 0,𝑦𝑦2(1) = 0, 
where 

�𝑔𝑔1(𝑥𝑥) = 2𝑥𝑥 sin(𝜋𝜋𝑥𝑥) + 𝑥𝑥2 − 2𝑥𝑥4 + 𝑥𝑥5 − 2,
𝑔𝑔2(𝑥𝑥) = sin(𝜋𝜋𝑥𝑥)(1 + sin( 𝑥𝑥) sin(𝜋𝜋𝑥𝑥)) + 𝜋𝜋 cos(𝜋𝜋𝑥𝑥) + 𝑥𝑥3 − 𝑥𝑥4,  0 ≤ 𝑥𝑥 ≤ 1.

 

The exact solution of system (23) is  

�𝑦𝑦1(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2,
𝑦𝑦2(𝑥𝑥) = sin(𝜋𝜋𝑥𝑥). 

The problem is solved for the case 𝑚𝑚 = 4  and 𝑚𝑚 = 8 . Some errors are found in the 
solution, so we need to improve the solution to obtain a more accurate solution, and the 
residual correction procedure for the case 𝑛𝑛 = 14 is applied to correct the solutions. Fig. 1 
shows the absolute error and the corrected absolute error, for the case 𝑚𝑚 = 4,𝑛𝑛 = 14. We 
can see that the solutions are corrected by applying the residual correction procedure, 
which was described in Section 3. Fig. 2 shows the absolute error and the absolute 
corrected error for the case 𝑚𝑚 = 8,𝑛𝑛 = 14, where the solutions are also corrected by 
applying the residual correction procedure. We were able to reduce the error in solving 
the system. In Figs. 3 and 4 comparison between 𝑛𝑛 = 14 and 𝑛𝑛 = 29, for the case 𝑚𝑚 =
5,𝑚𝑚 = 8 consequently is showed, as seen in the Figs. 3 and 4 the absolute error is 
reduced in the case 𝑚𝑚 = 5 but very close in the case 𝑚𝑚 = 8. In Fig. 5 the upper bound of 
error is found for consecutive numbers 𝑚𝑚 = 8,𝑎𝑎𝑛𝑛𝑑𝑑 𝑚𝑚 = 9. As seen in the figure, the 
absolute of 𝑒𝑒𝑚𝑚 and 𝑒𝑒𝑚𝑚+1 are b ounded by |𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑚𝑚+1| approximately. 
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Figure 1: Absolute error and corrected absolute error to Example 2, for the case 𝒎𝒎 =
𝟒𝟒,𝒏𝒏 = 𝟏𝟏𝟒𝟒 
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Figure 2: The absolute error and corrected absolute error to Example 2, for the case 
𝒎𝒎 = 𝟖𝟖,𝒏𝒏 = 𝟏𝟏𝟒𝟒 
 

  
Figure 3: Comparison between n=14 and n=29 with m=5 for Example 2 
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Figure 4: Comparison between n=14 and n=29 with m=8 for Example 2 

 
Figure 5: Upper bound for the error to Example 2, for the cases 𝒎𝒎 = 𝟖𝟖,𝒎𝒎 = 𝟗𝟗 

Example 3 
Consider the Brusselator system, see Ayati et al. [Ayati and Biazar (2007)]: 

�
𝑦𝑦1′(𝑥𝑥) = −2𝑦𝑦1(𝑥𝑥) + 𝑦𝑦12(𝑥𝑥)𝑦𝑦2(𝑥𝑥),
𝑦𝑦2′(𝑥𝑥) = 𝑦𝑦1(𝑥𝑥) − 𝑦𝑦12(𝑥𝑥)𝑦𝑦2(𝑥𝑥),

 
 

(24) 

with the boundary conditions: 
𝑦𝑦1(0) = 1, 𝑦𝑦2(0) = 1 
By using B-polynomials and the residual corrected procedure as in Section 3, with 𝑚𝑚 =
5 and 𝑛𝑛 = 14, the solutions were corrected. In Tab. 1, we listed the computed result and 
compared it with that given by the adomian decomposition method and the Runge-
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Kutta method. Fig. 6 shows the error function and corrected absolute error function for 
the case 𝑚𝑚 = 5,𝑛𝑛 = 14. The results that were obtained by using theour newprocedure 
are more accurate.  

 

 
Figure 6: Absolute of error function and corrected absolute error function of Example 3, 
for the case 𝒎𝒎 = 𝟓𝟓 and 𝒏𝒏 = 𝟏𝟏𝟒𝟒 
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Table 1: A comparison between the solutions by B-polynomials method, residual 
correction procedure and RungeKutta method for Example 3 

𝑥𝑥 𝑦𝑦𝑖𝑖  
[Ayati and 

Biazar (2007)] B-polynomials Correction 
procedure Runge-Kutta 

0.1 
𝑦𝑦1 
𝑦𝑦2 

0.900464015 
1.004524209 

0.900476626 
1.004516040 

0.9004640153 
1.0045242093 

0.9004640153 
1.0045242093 

0.2 
𝑦𝑦1 
𝑦𝑦2 

0.803448287 
1.016374098 

0.803477416 
1.016353898 

0.8034482894 
1.0163740976 

0.8034482894 
1.0163740976 

0.3 
𝑦𝑦1 
𝑦𝑦2 

0.710823962 
1.033327532 

0.710838632 
1.033314369 

0.7108240883 
1.0333274656 

0.7108240883 
1.0333274656 

0.4 
𝑦𝑦1 
𝑦𝑦2 

0.623890064 
1.053576241 

0.623882726 
1.053575456 

0.6238925325 
1.0535747860 

0.6238925325 
1.0535747860 

0.5 
𝑦𝑦1 
𝑦𝑦2 

0.543479975 
1.075665396 

0.543485270 
1.075656741 

0.5435045368 
1.0756499935 

0.5435045368 
1.0756499935 

0.6 
𝑦𝑦1 
𝑦𝑦2 

0.469991106 
1.098485574 

0.470141879 
1.098383767 

0.4701498027 
1.0983818413 

0.4701498027 
1.0983818413 

0.7 
𝑦𝑦1 
𝑦𝑦2 

0.403262683 
1.121371970 

0.404035137 
1.120852415 

0.4040240246 
1.1208593146 

0.4040240246 
1.1208593146 

 
Example 4 
Consider the nonlinear stiff system of the ordinary differential equation, see  Biazar et al. 
[Biazar, Ali and Salehi  (2015)]:  

�
𝑦𝑦1′(𝑥𝑥) = −1002𝑦𝑦1(𝑥𝑥) + 1000𝑦𝑦22(𝑥𝑥),
𝑦𝑦2′(𝑥𝑥) = 𝑦𝑦1(𝑥𝑥) − 𝑦𝑦2(𝑥𝑥) − 𝑦𝑦22(𝑥𝑥),

 (25) 

with the boundary conditions: 
𝑦𝑦1(0) = 1, 𝑦𝑦2(0) = 1. 
The exact solution of system (25) is  

�𝑦𝑦1(𝑥𝑥) = e−2𝑥𝑥
𝑦𝑦2(𝑥𝑥) = e−𝑥𝑥  (26) 
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Figure 7: The absolute error and corrected absolute error to Example 4, for the case 
𝒎𝒎 = 𝟓𝟓,𝒏𝒏 = 𝟏𝟏𝟒𝟒 
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Figure 8: Upper bound for the error to Example 4, for the case 𝒎𝒎 = 𝟒𝟒,𝒎𝒎 = 𝟓𝟓 

  
Figure 9: Comparison between n=14 and n=29 with m=5 for Example 4 
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Table 2: A comparison of absolute error between the solutions by B-polynomials method, 
residual correction procedure and other method for Example 4 

𝑥𝑥 𝑦𝑦𝑖𝑖 [Biazar, Ali and 
Salehi (2015)] 

HPM 
𝑈𝑈15(𝑥𝑥) 

B-poly. 
𝑚𝑚 = 5 

Correction procedure 
𝑛𝑛 = 14 

0 𝑦𝑦1 
𝑦𝑦2 

0 
0 

0 
0 

0 
0 

0 
0 

0.5 
 

𝑦𝑦1 
𝑦𝑦2 

3.0𝑒𝑒−10 
1.2𝑒𝑒−8 

0 
0 

1.5𝑒𝑒−6 
9.4𝑒𝑒−7 

1.1𝑒𝑒−7 
1.04𝑒𝑒−9 

1.0 𝑦𝑦1 
𝑦𝑦2 

1.5𝑒𝑒−8 
1.4𝑒𝑒−7 

0 
2.8𝑒𝑒−9 

6.0𝑒𝑒−6 
2.2𝑒𝑒−7 

1.6𝑒𝑒−8 
4.7𝑒𝑒−11 

The problem is solved for the case 𝑚𝑚 = 5. The residual correction procedure for the case 
𝑛𝑛 = 14  is applied to correct the problem. Fig. 7 shows the absolute error and the 
corrected absolute error for the case 𝑚𝑚 = 5 and 𝑛𝑛 = 14. In Fig. 8, the upper bound of 
error is found for consecutive numbers 𝑚𝑚 = 4 and 𝑚𝑚 = 5. As seen in Fig. 8, the absolute 
of 𝑒𝑒𝑚𝑚  and 𝑒𝑒𝑚𝑚+1  are bounded by |𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑚𝑚+1|  approximately.  In Fig. 9 comparison 
between 𝑛𝑛 = 14  and 𝑛𝑛 = 29 , for the case 𝑚𝑚 = 5,𝑚𝑚 = 8  consequently is showed. As 
seen in Fig. 9, the absolute error is very close between 𝑛𝑛 = 14 and 𝑛𝑛 = 29 for residual 
correction procedure. A comparison of absolute error between the solutions by B-
polynomials method, residual correction procedure, homotopy perturbation method, and 
rational homotopy perturbation method are displayed in Tab. 2. The above comparisons 
show that residual correction procedure can solve stiff problem more accurately with less 
number of iterations. 

5 Conclusions 
In this work, the Bernstein polynomials method and residual correcting procedure are 
applied to solve a system of second-order BVPs, Brusselator system and nonlinear stiff 
system. The main goal has been achieved by correcting the solutions, which are solved by 
the classical B-polynomials method. Some numerical examples are given to show the 
efficiency of our new technique by comparing the solutions obtained by our technique 
with some old methods such as the technique of Momani et al. [Momani, Abu Arqub and 
Abu Hammour (2014); Ayati and Biazar (2007)] and the Runge-Kutta method. For future 
work, we will apply the residual corrected procedure to solve chaotic systems and the 
Lorenz system.  
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