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Abstract: In this study, we applied a defined auxiliary problem in a novel error 
estimation technique to estimate the numerical error in the method of fundamental 
solutions (MFS) for solving the Helmholtz equation. The defined auxiliary problem is 
substituted for the real problem, and its analytical solution is generated using the 
complementary solution set of the governing equation. By solving the auxiliary problem 
and comparing the solution with the quasianalytical solution, an error curve of the MFS 
versus the source location parameters can be obtained. Thus, the optimal location 
parameter can be identified. The convergent numerical solution can be obtained and 
applied to the case of an unavailable analytical solution condition in the real problem. 
Consequently, we developed a systematic error estimation scheme to identify an optimal 
parameter. Through numerical experiments, the optimal location parameter of the source 
points and the optimal number of source points in the MFS were studied and obtained 
using the error estimation technique.  
 
Keywords: Error estimation, auxiliary problem, optimal parameter, method of fundamental 
solutions, complementary solution, quasianalytical solution. 

1 Introduction 
Meshless methods have become popular and attractive alternatives to traditional mesh or 
mesh reduction methods over the past decades. Meshless methods have been successfully 
applied to several major types of engineering problems, as described in the literature [Atluri 
and Zhu (1998); Atluri and Shen (2002); Atluri (2004)]. The method of fundamental 
solutions (MFS) is an intuitive meshless technique for obtaining numerical solutions [Chen, 
Chang, Chen et al. (2002); Chen, Chen, Chen et al. (2004); Reutskiy (2005); Liu (2008); 
Alves (2009); Karageorghis and Lesnic (2009); Liu and Sarler (2013); Zhang, Li, Wei et al. 
(2013)]. However, the MFS has several drawbacks that impair its computational ability and 
restrict its applicability to practical problems [Young, Chen and Lee (2005, 2006); Young, 
Chen, Chen et al. (2007); Chen, Chen and Kao (2008); Young, Chen, Liu et al. (2009); 
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Chen, Lin and Wang (2011); Chen and Gu (2012)]. Notably, the location parameter is 
crucial for the precision of a solution [Chen and Gu (2012)]. Some types of uncertainty 
occur in the MFS; we have no criteria for determining the applicable location of the source 
points outside the problem domain [Young, Chen and Lee (2005)]. A specific characteristic 
of the MFS is the wide freedom of choice it enables in selecting source points. This distance 
between the source and collocation points may lead to an ill-defined influence matrix, 
causing the behavior to lead to a potentially unstable solution. Different source locations 
may yield accurate or poor results [Young, Chen and Lee (2006)]. Consequently, the shape 
parameter for the source point locations substantially influences the stability and 
convergence rate of the solution [Chen, Kao, Chen et al. (2006)]. 
The MFS is successful because of its excellent performance and high convergent order that 
results from its exponential error convergence rate. Numerical tests described in the 
literature [Reutskiy (2005)] indicate that the MFS performs optimally concerning to the 
accuracy, stability, efficiency, memory requirement, and simplicity in implementation. 
Because the optimal location parameter in the conventional MFS can be detected, it can be 
considered a highly efficient and accurate algorithm beyond the reach of traditional 
methods [Song and Chen (2009)]. Theoretically, the radius of the enclosing circle on which 
the source points of fundamental solutions are distributed should be as large as possible 
[Huang, Lee and Cheng (2007)]. The aforementioned discussion of the optimal parameter 
is based on infinite precision computation. Infinite precision computation, the precision is 
limited to a double-precision that limits the optimal parameter value. Therefore, to 
determine the optimal parameter in the MFS, we developed an error estimation technique 
[Chen and Chen (2014)] to estimate the numerical error in different location parameters. 
We developed an alternative error estimation technique for detecting the optimal parameter 
in the MFS [Chen and Chen (2014)]. This technique predicts the applicable region of the 
source point distribution without deriving an analytical solution. The technique estimates 
the error magnitude, which is crucial for comparison with a different number of source 
points or a different parameter. By adopting the optimal distance between the source and 
field points in the MFS, the convergent result can be obtained and used in the case of an 
unavailable analytical solution condition. A quasianalytical solution similar to the real 
analytical solution is simulated to substitute the real analytical solution by employing the 
complementary solution set. The error curves are derived by comparing the computed 
numerical solution with the quasianalytical solution. Both the optimal parameter and the 
optimal number of source point locations can be determined from the obtained error curves. 
Subsequently, a systematic error estimation scheme is constructed to determine the optimal 
parameter in the MFS. The error estimation technique was successfully applied to solve the 
Laplace equation [Chen and Chen (2014)], therefore, we extend it to solve the Helmholtz 
equation in this study. 

2 Problem statement and solution method  
2.1 Problem statement 
For a boundary value problem for a two-dimensional (2D) bounded domain, the 
governing equation (GE) and mixed-type boundary conditions (BCs) for the interior 
Helmholtz problem are as follows: 
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2 2( ) ( ) 0,u x k u x x D∇ + = ∈  (1) 

1( ) ( ),u x u x x B= ∈  (2) 
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x
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n

∂
= = ∈

∂
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where 2∇ is the Laplace operator, )(xu is the potential function, k is the wavenumber, D 
is the domain of the problem, and 1 2B B B D= = ∂

 denotes the whole boundary of the 
domain D. ( )u x  of 1B  is the essential boundary (Dirichlet boundary) in which the 
potential is prescribed. ( )t x  of 2B  is the natural boundary (Neumann boundary) in 
which the normal derivative of the potential in the xn direction is specified. 

2.2 Solution method 
By employing the radial basis function concept, the representation of the solution in Eq. 
(1) can be approximated in terms of a set of interpolation functions, as follows: 

i j j i j
j 1

( ) ( ,  )
N

u x c x sφ
=

= ∑  (4) 

Here, 
j i j( ,  )x sφ  can be selected using the fundamental solution of the 2D Helmholtz 

equation, i.e., 
j i j( ,  )U x s , and as follows: 

( )(1)
0 i j

j i j i j( ,  ) ( ,  )
2

i H kr
x s U x s

π
φ

−
= =  (5) 

where r is the distance between the jth source point (singularity) js  and the ith observation 

point ix , k is the wavenumber, ( ) ( ) ( )(1)
n n nH kr J kr iY kr= +  is the nth order Hankel 

function of the first type, in which nJ is the nth-order Bessel function, and nY is the nth-

order Bessel function of the second type.  
The N source points are located outside the domain D. The potential and it’s derivative in 
the normal direction (flux) can be approximated in terms of the linear algebra system, 
represented as follows: 

1 1

2 2

U u
c

U u
   

=   
   

 (6) 

1 1

2 2

L t
c

L t
   

=   
   

 (7) 

After imposing the corresponding BCs, the resulting system of linear equations can be 
expressed in the matrix form of a linear combination of Eqs. (6) and (7), as follows: 
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1 1
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U u
c

L t
  

=   
  

 (8) 

We can derive the unknown coefficient jc of the linear algebra system in Eq. (8) using the 
linear algebraic solver as follows: 

1
1 1

2 2

U u
c

L t

−
  

=   
  

 (9) 

We can derive the unknown coefficient jc of the linear algebra system in Eq. (9) by using 
the linear algebraic solver. Notably, the location of the source points (shape parameters) 
critically affects the accuracy of the MFS and distance between the fictitious and physical 
boundaries, which are defined by d and must be considered deliberately. To overcome the 
aforementioned shortcoming, we developed an optimal parameter estimation technique to 
derive the applicable region, as described in Section 3. 

3 Novel error estimation technique 
The formula for obtaining the real analytical solution to obtain the error norm in the 
realistic engineering problem is difficult to derive. To overcome this drawback, an 
alternative problem is defined. 

3.1 Auxiliary problem definition 
3.1.1 Definition of GE and BC types and contour  
The GE and BC types and geometric contours in the new problem are identical to those in 
the original problem. 

3.1.2 Quasianalytical solution production 
In this study, the potential of a newly defined problem, ( )xφ , is specified by the 
complementary solution set, which is the complete set. The quasianalytical solution 

q-a ( )u x  to the new problem at an arbitrary point x in the domain is the linear 
combination of the complementary solutions, as follows: 

q-a

1

( ) ( ),
M

j j
j

u x v x x Dφ
=

= ∈∑  (10) 

The complementary solutions are selected as the ( )j xφ that satisfies the governing Eq. (1). 

M is the total number of complete functions and jv denotes the undetermined coefficient. 
The quasianalytical solutions for the Helmholtz equation are selected from the complete 
solution sets, expressed as follows: 

( ) ( ) ( ){ } ( )0 , cos , sin  for 1, 2,m mJ kr J kr m J kr m mϕ ϕ = 
 (11) 
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where ( ),r ϕ are polar coordinates. All the functions satisfy the governing Helmholtz 
equation in Eq. (1), indicated as follows: 

(1) (2) ( 1) ( )( ) 0, ( ) 0,  , ( ) 0, ( ) 0M Mx x x xφ φ φ φ−       ∆ = ∆ = ∆ = ∆ =         (12) 

where 2 2.k∆ = ∇ +  Because of the linear property of the differential equation operator in 
the GE, the potential ( )q-au x  satisfies the GE, as follows: 

q-a
1 (1) 2 (2) 1 ( 1) ( )( ) ( ) ( ) ( ) ( ) 0M M M Mu x v x v x v x v xφ φ φ φ− −         ∆ = ∆ + ∆ + + ∆ + ∆ =         

 (13) 

Notably, the potential, ( )qu x , in the newly defined problem is an exact solution because 
it satisfies GE (Eq. (13)). 

3.1.3 Specified BCs 
The two problems have the same boundary contour and BC type. The BC of the new 
problem is expressed as follows: 

1
1

( ) ( ),
M

j j
j

u x v x x Bφ
=

= ∈∑  (14) 

Its derivative in the normal direction (flux) is expressed as follows: 

2
1

( )( )( ) ,  
M

j
j

jx x

xu xt x v x B
n n

φ

=

∂∂
= = ∈

∂ ∂∑  (15) 

where ( )u x and ( )t x are the known potential and its derivative, respectively. The 
boundary value in the new problem with the M number of collocation points is specified 
by the BC in the original problem. The boundary value in the new problem with the 
specified M points is the same as that in the original problem. The undetermined 
coefficient jv can be determined by matching the original BC to a set of selected points 
(M number of points). Therefore, the analytical solution to the new problem is called the 
quasianalytical solution and is similar to the real analytical solution.  
By implementing the MFS to solve the defined auxiliary problem, the numerical solution 
can be compared with the quasianalytical solution to obtain the error norm.  

3.1.4 Error analysis between newly defined and original problems 

The relationship between the real analytical solution ( )au x  and quasianalytical solution 

( )q-au x  is expressed as follows: 

a q-a( ) ( ) ( )nu x u x R x= +  (16) 

where   
1

( ) ( )n j j
j M

R x v xφ
∞

= +

= ∑  
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The remainder function satisfies the GE, and its exponential convergence is expressed as 
follows: 

( ) ( ) ,  1n
nR x O r r−= >  (17) 

Therefore, the difference between the two space solvers is derived as follows: 

( ) ( )a q-a( ) ( ) n
nu x u x R x C r−− = =  (18) 

where C is a bounded constant.  

3.2 Obtaining error magnitude in the defined auxiliary problem using root mean 
square error 
The error in the numerical solution to the defined auxiliary problem is obtained using the 
root mean square (RMS) error, which is obtained by comparing the numerical solution 
with the quasianalytical solution, expressed as follows: 

( ) ( ) ( )2 2q-a q-a

1 1

1 1n n

i i i
i i

RMS u x u x u x
n n= =

   = ∑ − ∑     (19) 

where n is the number of field points and ( )u x is the numerical solution to the auxiliary 
problem solved by the MFS. Fig. 1 is a flow chart of the formulation for implementing 
the novel error estimation scheme. Through the error convergence analysis of the 
auxiliary problem, we can obtain the error curve. Based on the set criteria determined by 
the balance between computational cost and accuracy, we can obtain the optimal number 
of source points in the neighboring region of the corner in the error curve. 

3.3 Obtaining the optimal field solution to the original problem 
By adopting the obtained optimal parameter ( optd ) and the optimal number of source 
points (

optN ) described in the previous section, the optimal solution to the original 
problem can be obtained by implementing the MFS. 
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Figure 1: Flow chart of the new error estimation scheme 

4 Numerical examples 
Several problems subject to different BCs are considered for interior problems. We 
consider three cases for the interior problem to verify the accuracy of the new estimation 
technique and obtain the optimal parameter in the MFS. Although the new estimation 
technique does not require the aid of the analytical solution, we still provided the analytical 
solutions in the three cases to demonstrate the validity of the obtained error curve. 

4.1 Case 1: circular case 
A circular computational domain with a mixed-type BC is considered (Fig. 2) and the 
analytical solution to this problem is expressed as 

[ ]

( )
2

( )
2

,0

cos sin , 2
2

ik x y

ik x y

u e

ikt e

φ π

φ φ π φ π

+

+


= ≤ ≤


 = + ≤ ≤
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The analytical solution is expressed as follows: 
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( )
2( , )

ik x y

u x y e
+

=  (21) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Problem sketch and source point distribution for Case 1 

The wavenumber (k) of the solution equals 2 . We implement the MFS to solve the 
defined auxiliary problem. To identify the optimal parameters q-a

optd and a
optd , the RMS 

errors vs. the off-boundary distance (d) are plotted for various numbers of source points N 
(N=25, 28, 50) [Figs. 3(a-c)]. The error curves in Fig. 3 are used as indicators of error 
trends. The error curves in Figs. 3(a-c) demonstrate the optimal parameters q-a

optd and a
optd , 

which are observed at the corners of the curves. The optimal parameter q-a
optd  

approximating the optimal parameter a
optd indicates that q-a

optd  is sufficiently accurate to be 
used for obtaining the convergent solution. 
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 (a) 25 points                                           (b) 28 points 

 
 
 
 
 
 
 
 
 
 
 
 

(c) 50 points 

Figure 3: Error analysis vs. location parameters: d, with different terms of the Trefftz 
basis; M for Case 1 of the interior problem; and N=(a) 25 points, (b) 28 points, and (c) 
50 points 

A plot of the RMS errors versus the different numbers of source points is displayed in Fig. 
4. The RMS errors are obtained by adopting the optimal parameters ( q-a

optd  and a
optd ). The 

convergent result can be obtained when the number of source points equals 28. 
Therefore, we can obtain the optimal number of source points by employing the new 
error estimation technique. 
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Figure 4: Root mean square error versus the number of source points N for Case 1 

4.2 Case 2: square case 
Case 2 considers a square domain subjected to Dirichlet and Neumann BCs, as illustrated 
in the Figs. 5(a) and 5(b), respectively, and their corresponding analytical solutions can 
be expressed as follows:  

( , ) sin cos ,  0.5 0.5,  0.5 0.5.u x y x y x y= − ≤ ≤ − ≤ ≤  (22) 

  
 
 
       
 
 
 
 
 
 

(a) Dirichlet BC                                  (b) Neumann BC 
 

Figure 5: Problem sketch and source point distribution of Case 2; (a) Dirichlet boundary 
condition (BC) and (b) Neumann BC 

4.2.1 Case 2(a): Dirichlet BC 
The Dirichlet BC on the boundary ∂Ω  for a Dirichlet problem is expressed as follows: 

( , ) sin cos ,  ,u x y x y x y= ∈∂Ω  (23) 
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The RMS errors are plotted against different numbers of source points in Fig. 6, wherein 
the RMS errors are obtained by adopting the optimal parameters ( q-a

optd  and a
optd ). A 

convergent result can be obtained when the number of source points is over 24 points. 

4.2.2 Case 2(b): Neumann BC 
The Neumann BC on the boundary ∂Ω is specified as follows: 

( ) ( )( , ) cos cos sin sin ,  ,x y
x

u x y x y n x y n x y
n

∂
= − ∈∂Ω

∂


 (24) 

where ( ),x yn n is the component of the unit normal vector. Similar to the plot in the 

circular case, the RMS errors are plotted against different numbers of source points in Fig. 
7, wherein the RMS errors are obtained by adopting the optimal parameters (  and ). 
A convergent result can be obtained when the number of source points is over 24 points. 
 

 
Figure 6: Root mean square error vs. N for Case 2(a) 

 
 
 
 
 
 
 
 

q-a
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optd
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Figure 7: Root mean square error vs. N for Case 2(b) 

4.3 Case 3: elliptical case  
The BC on the boundary  for a Dirichlet problem (Fig. 8) is described as follows: 

 (25) 

Its analytical solution is given as follows: 
( , ) sin cos ,  2 2,  1 1.u x y x y x y= − ≤ ≤ − ≤ ≤  (26) 

The RMS errors are plotted against different numbers of source points in Fig. 9, wherein 
the RMS errors are obtained by adopting the optimal parameters ( q-a

optd  and a
optd ). A 

convergent result of the new problem can be obtained when the number of source points 
is over 28 points.  
Fig. 10(a) illustrates the analytical solution in the field in Eq. (26) and Fig. 10(b) 
demonstrates the field solution obtained by implementing the optimal parameter, q-a

opt 8d = , 
with 28 source points in the MFS. The results of Figs. 10(a) and 10(b) coincide. 
 
 
 
 
 

∂Ω

( , ) sin cos ,  ,u x y x y x y= ∈∂Ω
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Figure 8: Problem sketch and source point distribution for Case 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Root mean square error vs. N for Case 3 
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(a) Analytical solution   
             
 
 
 
 
 
 
 
 

(b) MFS 
Figure 10: Field solution for Case 3; (a) analytical solution and (b) method of 
fundamental solutions (MFS) 

5 Conclusions 
A new estimation technique was developed in this study. We successfully applied the 
estimation technique in the MFS to derive the optimal parameter without having an 
analytical solution. The technique was critical in maintaining the systematic 
characteristics of the MFS because of its excellent performance and high convergence 
order, because it has an exponential error convergence rate. The main disadvantage of 
using the MFS is that it raises a problem involving a perplexing fictitious boundary, 
which can be overcome by adopting the obtained optimal parameter. The convergence 
study of the cases yielded convergent results. The numerical results were consistent with 
the analytical solutions to the original problem. In conclusion, the numerical 
examinations successfully verified the validity of the error estimation technique. We 
successfully created an error estimation scheme with a high predictive capability. 
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