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Abstract: The recycling of glass bottles can reduce the consumption of resources and 
contribute to environmental protection. At present, the classification of recycled glass 
bottles is difficult due to the many differences in specifications and models. This paper 
proposes a classification algorithm for glass bottles that is divided into two stages, 
namely the extraction of candidate regions and the classification of classifiers. In the 
candidate region extraction stage, aiming at the problem of the large time overhead 
caused by the use of the SIFT (scale-invariant feature transform) descriptor in SS 
(selective search), an improved feature of HLSN (Haar-like based on SPP-Net) is 
proposed. An integral graph is introduced to accelerate the process of forming an HBSN 
vector, which overcomes the problem of repeated texture feature calculation in 
overlapping regions by SS. In the classification stage, the improved SS algorithm is used 
to extract target regions. The target regions are merged using a non-maximum 
suppression algorithm according to the classification scores of the respective regions, and 
the merged regions are classified using the trained classifier. Experiments demonstrate 
that, compared with the original SS, the improved SS algorithm increases the calculation 
speed by 13.8%, and its classification accuracy is 89.4%. Additionally, the classification 
algorithm for glass bottles has a certain resistance to noise. 
 
Keywords: Classification of glass bottle, HBSN feature, improved selective search 
algorithm, LightGBM. 

1 Introduction 
Glass bottles have become a popular food packaging method for food manufacturers and 
consumers due to their portable, aesthetic, and non-toxic characteristics. However, the 
production of glass bottles is accompanied by a large amount of resource consumption. 
By classifying and recycling glass bottles, energy consumption, air pollution, mineral 
waste, and water consumption can be reduced by 32%, 20%, 50%, and 50%, respectively 
[Xia (1992)]. However, there are differences in the types, shapes, and sizes of glass 
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bottles used in food packaging, which leads to difficulties in the classification and 
recycling of glass bottles, and ultimately a low reuse rate. Therefore, in the context of the 
current advocacy of garbage classification and sustainable development, it is extremely 
important to find an accurate and efficient glass bottle classification method. 
Object classification technology is indispensable in the classification of different kinds of 
glass bottles, and is currently a popular research topic in the computer vision field. Some 
of the existing object classification algorithms exhibit good performance in the 
application of real scenes. Nassih et al. [Nassih, Amine and Hmina (2019)] combined 
DCT (discrete cosine transform) and HOG (histogram of oriented gradient), then used a 
back-propagation neural network (BPNN) [Zhong, Liu, Sun et al. (2018)] to classify 
faces; the accuracies on the BOSS and MIT databases were found to be 99.4% and 
98.03%, respectively. Sevcan et al. [Sevcan and Hamidullah (2018)] proposed the use of 
LBPs (local binary patterns) to extract features from gastric cancer images, the use of the 
classical MDS (multidimensional scaling) algorithm to reduce the dimension of features, 
and finally the use of ANN to classify low-dimensional vectors to achieve early gastric 
cancer screening. Wei et al. [Wei, Tian, Guo et al. (2019)] used the Haar feature to 
extract the region of interest, then used the HOG algorithm to scan the region of interest 
to form feature vectors, and finally input the feature vectors into an SVM classifier for 
classification to achieve multi-vehicle target detection and tracking. Li et al. [Li, Niu, 
Fang et al. (2018)] proposed the use of the HOG algorithm to extract peanut features and 
the SVM algorithm to classify feature vectors to achieve the classification of a variety of 
peanuts; however, the problem of repeated calculation due to overlapping regions 
emerged in the HOG feature extraction window. To solve this problem, Huang et al. 
[Huang, Gu and Yang (2009)] introduced the idea of an integral graph to respectively 
improve the Haar and HOG features, and achieved good performance in practice. 
The main concept of these classification algorithms is to use one or more feature 
descriptors to extract features from images, and then encode these features to form feature 
vectors. Finally, classifiers in machine learning are used to classify the feature vectors. 
However, when classifying objects, it is necessary to scan multiple images with different 
scales using sliding windows [Huang, Ren and Tan (2014)], and then judge the type of 
objects in each window. This exhaustive algorithm may exist in the target window, which 
results in a great time overhead. Therefore, Uijlings et al. [Uijlings, Sande, Gevers et al. 
(2013)] proposed a selective search (SS) algorithm to improve it. It uses an image 
segmentation algorithm to divide the image into independent color blocks, taking full 
account of the textures, colors, sizes, and overlap, and finally combines the segmented 
color blocks by combining multiple similarities to form a new image set. This algorithm 
has a high recall rate and can provide a reasonable target area for image classification. It 
solves the problem of the large time overhead caused by exhausting the target area in 
sliding windows, and is widely used in Faster R-CNN [Ren, He and Girshick (2015)]. Li et 
al. [Li, Zhou and Lu (2018)] applied the SS algorithm to vehicle face component detection. 
The detection algorithm first uses the HOG descriptor instead of the SIFT [Iyad and Sahar 
(2017)] descriptor to form texture features to improve the SS algorithm, and the improved 
algorithm is then used to segment different parts of the car face; it was found to achieve 
good segmentation results on the car face data set. Wu et al. [Wu and Zhan (2017)] 
proposed the use of the perceptual hashing algorithm and Hamming distance algorithm to 
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improve the similarity calculation in an SS algorithm. Experiments demonstrated that the 
improved algorithm exhibited obvious advantages over the sliding window on the LFW 
data set. These algorithms primarily aim at the improvement of similarity calculation in the 
SS algorithm, and use a new feature extraction method instead of the SIFT algorithm to 
achieve fast calculation. However, when calculating the texture similarity of different 
regions, the overlapping regions result in repeated computation. 
In view of these problems, the improvement of the SS is first proposed in this paper. 
Moreover, different classifiers and the improved SS algorithm are selected to classify 
glass bottles. Finally, the superior classification algorithm of glass bottles is determined 
by comparing the performances of different classification algorithms on a data set of 
glass bottles. In the experimental stage, the original and improved SS algorithms are 
compared to verify the performance of the improved algorithm. Then, different glass 
bottle classification algorithms are tested on the data set to compare the effectiveness of 
the proposed algorithm. Finally, the stability of the glass bottle classification algorithm is 
tested by adding salt and pepper noise. 

2 Improve selection search algorithm 
The SS algorithm, Uijlings et al. [Uijlings, Sande, Gevers et al. (2013)] uses an image 
segmentation algorithm to divide an image into independent image regions, and uses a 
variety of similarity rules to merge the segmented image region to form new image regions. 
The specific process is as follows. 
Step 1: Input a colorful image A. 
Step 2: The algorithm proposed by Felzenszwalb et al. [Felzenszwalb and Huttenlocher 
(2004)] is used to segment the image A into different regions. The segmented image 
regions are recorded as set R, and R = {r1, r2, r3, …, ri, …, rn}. 
Step 3: Initialize the similarity set S to be empty, calculate the similarity s(ri, rj) for any 
two elements ri and rj in R, and save the result s(ri, rj) into the set S, that is, S=S∪s(ri, rj). 
Step 4: If set S is not an empty set, iterate through set S to take out the maximum of s(rk, 
rl) and merge the regions rk and rl to form a new image region rt, that is, rt=rk∪rl. 
Remove the similarity s(rk, r*) with rk and the similarity s(r*,rl) with rl from set S. 
Compute the similarity set St corresponding to rt. Merge St into S, that is, S=S∪St. Merge 
image region rt into set R, that is, R=R∪rt. 
Step 5: If S is an empty set, output all image regions in R. 

 
Figure 1: Effect of glass bottle segmentation 
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The segmented result after changing the segmentation threshold of the segmentation 
algorithm [Felzenszwalb and Huttenlocher (2004)] is presented in Fig. 1. 

2.1 HBSN feature 
The SS algorithm uses the SIFT feature [Ly, Teng and Lu (2016)] to extract texture 
features in the calculation of texture similarity. SIFT uses the Gauss differential to create 
a feature histogram on the R, G, and B channels corresponding to the image, which 
results in a large time consumption. To solve this problem, the HBSN feature (Haar-like 
based on SPP-Net) is proposed in this paper. First, the Haar-like descriptor is used to 
extract the features to generate the map of feature values from the input image. Many 
calculations of Haar-like operators are linear operations, which improves the operation 
speed. In addition, the map of feature values is mapped to a fixed-length feature 
histogram by using SPP-Net [He, Zhang and Ren (2014)]. Finally, the two processes are 
accelerated by using an integral graph to realize the fast calculation of texture similarity. 
As shown in Fig. 2(c), the horizontal direction is the x-axis, the vertical direction is the y-
axis, and the unit of length is the pixel. 
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(a)Two descriptors          (b) The input image                     (c) The descriptor scan the input images 

Figure 2: The feature extraction of Harr-like 

2.1.1 The map of feature values 
The Haar-like feature descriptor is an algorithm for the extraction of facial features proposed 
by Viola et al. [Viola and Jones (2001)]. It exhibits a strong texture description ability by 
comparing the gray differences of different parts. The Haar-like feature is used as a texture 
feature to detect auto [Wei, Tian, Guo et al. (2019)], and has many kinds of descriptors. In 
this paper, two kinds of Haar-like descriptors are selected, as presented in Fig. 2(a). The 
corresponding sizes of the two descriptors are respectively 6×3 and 3×6, and Fig. 2(b) 
presents the input image. Fig. 2(c) presents the use of the two descriptors to extract features 
from the input picture, and the process of image feature extraction is as follows. 
Step 1: As shown in Fig. 2(c), the Haar-like descriptor moves from the left-most end of 
the input image to the right-most end of the input graph with the stride of a pixel. In the 
process of Haar-like descriptor movement, Eq. (1) is used to calculate feature value V for 
the region covered by the Haar-like descriptor: 



 
 
 
Classification for Glass Bottles Based on Improved Selective Search Algorithm        237 

( , ) ( , )
( , ) ( , )

p x y Y p x y R
V pixel x y pixel x y

∈ ∈
= −∑ ∑                                      (1) 

where p(x,y) represents the position of each pixel, pixel (x, y) represents the corresponding 
pixel value of each pixel, and Y and R respectively represent the yellow and red regions 
corresponding to Fig. 2(c). 
Step 2: When the right end of the Haar-like descriptor reaches the end of the image, the 
Haar-like descriptor moves down one pixel. 
Step 3: Repeat Steps 1 and 2 until the right end of the Haar-like descriptor reaches the 
lower right corner of the input image. 
Step 4: The two kinds of Haar-like descriptors are used to output two maps of feature 
values corresponding to the input image. The size calculation of the map of feature values 
is given by Eq. (2): 

1 11 1
x y

W w H hW H
s s
− −

= + = +，                                         (2)

 where sx represents the stride of the Haar-like descriptor moving along the x-axis, and sy 
represents the stride of the Haar-like descriptor moving along the y-axis. Additionally, W, 
H, w, and h are shown in Fig. 2. 

2.1.2 HBSN vector 
The SPP-Net algorithm put forward by He et al. [He, Zhang and Ren (2014)] is used to 
solve the problem of the output of fixed-sized images from the input of images of 
different sizes. SPP-Net can map images of different sizes to vectors of fixed length, and 
has shown extremely good performance in neural networks. 
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Figure 3: The formation of HBSN vectors 

As presented in Fig. 3, SPP-Net is adopted, and the sizes of three convolution kernels are 
respectively 4×4, 3×3, and 2×2. The functions of these three convolution kernels are to 
divide the length and width of the map of feature values into four equal parts, three equal 
parts, and two equal parts, respectively. Each color block on the map of feature values in 
Fig. 3 represents one feature value. 
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Two maps formed by using two kinds of Haar-like descriptors respectively use the three 
convolution kernels. Thus, each map of feature values is divided into 16, 9, and 4 blocks. 
Eq. (3) is then used to pool the mean of each block in the corresponding region of the 
map of feature values and obtain the eigenvalue Vj corresponding to each block region. 
Thus, each map of feature values is mapped to a 29-dimensional eigenvector. According 
to the order in which different maps of feature values form eigenvectors under the same 
convolution kernel, two maps of feature values are mapped to a 58-dimensional vector, 
which acts as the eigenvector of every colorful channel of the input picture. 

( , )

1 ( , )
j

j
p x y Blockj

pixel x y
N

V
∈

= ∑                (3) 

where Blockj represents the j-th block region, jϵ[1, 2, ..., 29], Nj represents the total 
number of pixels in the j-th block region, p(x, y) represents the pixel in Blockj, and 
pixel(x, y) represents the corresponding pixel value of the p(x, y) pixel. 

2.1.3 Integral graph acceleration 
The integral graph was introduced into the image field by Viola et al. [Viola and Jones 
(2001)], and realizes a fast algorithm for the calculation of the sum of pixels in a 
rectangular region of arbitrary size. By indexing the four values corresponding to the four 
vertices of a rectangle, the integral graph performs fixed operations instead of computing 
between the pixels in the rectangular region. The formulas for calculating rectangular 
regions of different sizes are fixed linear combinations of four values corresponding to 
the four vertices. These linear operations greatly reduce the time consumption and 
accelerate the image. 
Accelerating the process of forming map of feature values by integral graph algorithm. 
As shown in Fig. 4(a), the pixel values in the input image are traversed. The Formula 4 is 
used to calculate the value T (x, y) corresponding to any point (x, y) on the pixel value 
integral graph and the formed pixel value integral graph is shown in Fig. 4(b). 
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(a) The input image                                  (b) The integral pixel value graph 

Figure 4: Acceleration of HBSN vector 

In Fig. 4(a), the sum of the pixel values in rectangular area A of any size is calculated, 
which is equivalent to using formula 5 to calculate TR at the corresponding position of A 
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in Fig. 4(b).  
( , )= ( , 1) ( , )

( , )= ( 1, ) ( , )

I x y I x y pixel x y
T x y T x y I x y

− +

− +
                             (4)

 
where I (x, y) denotes the sum of pixel values from the point (0, y) along the x-axis to the 
point (x, y), and T (x, y) denotes the sum of pixels values in the rectangular region from 
the point (0, 0) to the point (x, y), where I(-1, y) = 0, T(x, -1) = 0. 

1 1 2 1 1 2 2 2= ( , ) ( , ) ( , ) ( , )RT T x y T x y T x y T x y− − +              (5) 
where (x1, y1), (x2, y1), (x1, y2), and (x2, y2) respectively represent the four vertices of the 
rectangular region; x1 > x2 and y1 > y2. 
When the rectangular box A composed of x1, x2, y1, and y2 is the Haar-like descriptor 
shown in Fig. 2(a), x1, x2, x3, y1, y2, and y3 satisfy Eq. (6) in the process of using the 
descriptor to form the feature value V1 (x3, y3) in Fig. 5(a). 
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(a) The map of feature values   (b) The integral map of      (c) The convolution of 3×3 
                                                          feature values                   process the region of A1 

Figure 5: Accelerate the texture vectors 

When the Haar-like descriptor is the type (1) in Fig. 2(a), the rectangular region 
composed of x1, x2, y1, and y2 is divided into three rectangles. The coordinates of the three 
rectangles corresponding to eight points are (x1, y1), (x1-w/4, y1), (x1-3×w, y1), (x2, y1), (x1, 
y2), (x1-w/4, y2), and (x1-3×w, y2). Using Eqs. (5) and (1), the equation for calculating 
eigenvalue V1(x3, y3) is obtained as given by Eq. (7). Similarly, when the Haar-like 
descriptor is the type (1) in Fig. 2(a), the equation for calculating V2 (x3, y3) is given by 
Eq. (8). Finally, the map of feature values corresponding to different Haar-like 
descriptors is obtained, as presented in Fig. 5(a). 

1 3 2 3

1 3 2 3

( 1) , ( 1)
( 1) , ( 1)

x x

y y

x s x w x s x
y s y h y s y
= − + = −
= − + = −

              (6) 

where w and h respectively represent the width and height of the Haar-like descriptor, 
and sx and sy respectively represent the stride of the Haar-like descriptor on the x-axis and 
y-axis of the image. 
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( )1 3 3 1 1 1 2 1 1 2 2

1 2 1 1 1 2 2 1

( , ) ( , )+2 / 4, +2 ( 3 / 4, ) ( , )
( , ) 2 ( / 4, ) 2 ( 3 / 4, ) ( , )

V x y T x y T x w y T x w y T x y
T x y T x w y T x w y T x y

= − − +

− − − − − −
          (7) 

( )2 3 3 1 1 2 1 1 1 2 2

2 1 1 1 2 2 1 2

( , ) ( , )+2 , / 4 +2 ( , 3 / 4) ( , )
( , ) 2 ( , / 4) 2 ( , 3 / 4) ( , )

V x y T x y T x y h T x y h T x y
T x y T x y h T x y h T x y

= − − +

− − − − − −
          (8) 

where w and h respectively represent the width and height of the Haar-like descriptor. 
Integral graphs are used to accelerate the process of mapping the feature values for 
texture vectors.  
For the feature value V(x3, y3) of any point (x3, y3) in Fig. 5(a), the value Q(x3, y3) 
corresponding to (x3, y3) is calculated by Eq. (9) to form the integral map of feature 
values presented in Fig. 5(b). In this paper, sx=1 and sy=1 are used. When the input image 
is a rectangle A of any size in Fig. 4(a), Eq. (10) is used to calculate the coordinates of A 
in Fig. 5(b), and the area A1 corresponding to area A is obtained. As shown in Fig. 5(c), 
area A1 is divided into nine blocks by using the 3×3 convolution kernel. 

3 3 3 3 3 3

3 3 3 3 3 3

( , )= ( , 1) ( , )
( , )= ( 1, ) ( , )

N x y N x y V x y
Q x y Q x y N x y

− +
− +

              (9) 

where N(x3, y3) represents the sum of the feature values from the point (0, y) along the x-axis 
to the point (x3, y3), and Q(x3, y3) represents the sum of the feature values in the rectangular 
region from the point (0, 0) to the point (x3, y3), where N(-1, y3)=0, T(x3, -1)=0. 

4 1 5 2

4 1 5 5

+1 +1
+1 +1

x x w x x
y y h y y
= − =
= − =

，

，
             (10) 

The process of calculating the mean of each block to form a dimension eigenvector value 
is equivalent to summing all feature values in each block and dividing them by the total 
number of feature points in the corresponding block. In the preceding calculation process, 
the sum of feature values TR in any rectangle can be calculated by using the four values of 
the corresponding region on the integral map of feature values. k=3 is substituted into Eq. 
(11), and the mean of each block in Fig. 4(e) is obtained, forming a 9-dimensional vector. 
Similarly, when using convolution kernels of sizes 4×4 and 2×2, for A, k=4 and k=2 are 
respectively brought into Eq. (11) to form corresponding 16- and 4-dimensional vectors. 
According to the order of eigenvalues in Fig. 3, two maps of feature values are mapped to 
a 58-dimensional vector. 

5 5 5 5

5 5 5 5

1( , ) [ ( , ) ( ( 1), )

( , ( 1) ( ( 1), ( 1)]

V l m Q x al y bm Q x a l y bm
N

Q x al y b m Q x a l y b m

= + + − + − +

− + + − + + − + −
         (11) 

where a=(x4－x5)÷k, b=(x4－x5)/k and N=a×b. k is constant and kϵ[2, 3, 4]. 1≤l≤k and 
1≤m≤k. 
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2.2 The similarity S(ri, rj) 
2.2.1 Computation of texture similarity 
Two kinds of Haar-like descriptors presented in Fig. 3(a) are used to extract features from 
every color channel of image region ri. Two kinds of Haar-like descriptors form a 58-
dimensional feature vector on every color channel using Eq. (11). Every 58-dimensional 
vector obtained is then normalized by using L1-norm. The Haar-like features formed by 
R, G, and B channels are arranged sequentially to form the 174-dimensional vector Ti 
corresponding to the image region ri, Ti={ti

1, ti
2,…, ti

k,…, ti
174}. Similarly, the texture 

feature vector of the image region is Tj, Tj={tj
1, tj

2,…, tj
k,…, tj

174}. For image regions ri 
and rj, Eq. (12) is used to calculate the similarity Stext(ri, rj): 

174

1
( , ) min( , )k k

text i j i j
k

r r t tS
=

=∑                           (12) 

2.2.2 Computation of color similarity 
Every color channel in the image region ri is divided into 25 groups, forming 25 bins. L1-
norm is used to regularize the values of the 25 bins. A total of 75 bins are formed in the 
R, G, and B color channels. The 75 bins are mapped to a 75-dimensional vector Ci, and Ci 
={ci

1, ci
2,…, ci

k,…, ci
75}. Similarly, the color feature vector of the image region is Cj, Cj 

={cj
1, cj

2,…, cj
k,…, cj

75}. The color similarity Scolor(ri, rj) of the images ri and rj is 
calculated by Eq. (13): 

75

c
1

( , ) min( , )k k
olor i j i j

k
r r c cS

=

=∑              (13) 

2.2.3 Computation of size similarity 
To obtain as many candidate regions as possible, the smaller regions are merged first. 
The size similarity Ssize(ri, rj) between the image regions ri and rj is computed by Eq. (14): 

( ) ( )
( , ) 1

( )
i j

size i j

size r size r
r r

size im
S

+
= −             (14) 

where size(im) denotes the size of the image where ri and rj are located, and the unit is pixels. 

2.2.4 Shape compatibility  
Sfill(ri, rj) is defined to indicate the matching degree between the image regions ri and rj. If 
ri is a part of rj, ri and rj are merged; if there is no intersection between ri and rj, they are 
not merged. The formula of Sfill(ri, rj) is as follows: 

( ) ( ) ( )
( , )=1

( )
ij i j

fill i j

size BB size r size r
S r r

size im
− −

−            (15) 

where size(BBij) denotes the size of the bounding box that is around ri and rj. 
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2.2.5 Computation of similarity S(ri, rj) 
Using the linear combination of the four similarities mentioned previously, the 
calculation formula of S(ri, rj) is as follows: 

1 2 3 4( , )= ( , ) ( , ) ( , ) ( , )i j color i j texture i j size i j fill i jS r r a S r r a S r r a S r r a S r r+ + +          (16) 

where a1, a2, a3, a4 ϵ [0, 1]. 
Finally, the image region rt, is produced by the combination of ri and rj. The size(rt), 
texture feature vector Tt, and color feature vector Ct corresponding to image region rt are 
respectively calculated as follows: 

( ) ( ) ( )t i jsize r size r size r= +              (17) 

( ) ( )
( ) ( )

i i j j
t

i j

size r T size r T
T

size r size r
× + ×

=
+

             (18) 

( ) ( )
( ) ( )

i i j j
t

i j

size r C size r C
C

size r size r
× + ×

=
+

             (19) 

3.1 Data set 
The size of positive and negative samples in the whole data set was 200×200 pixels. As 
presented in Fig. 5, samples were made by considering factors including different 
placement angles, illumination intensities, and glass bottle proportions. Positive samples 
were divided into five categories, there were 500 training samples and 300 test samples in 
each class, and there were 4000 pictures in the data set. 

 
Figure 5: Glass bottle data set 
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3.2 Comparison between improved selective search and original SS algorithm 
3.2.1 Speed comparison of candidate regions generation 

 
(a)

(b)

(c)

 
Figure 6: Comparison of candidate regions 

The image in Fig. 6(a) presents the effect image after using the original SS algorithm, and 
the image in Fig. 6(b) presents the effect image after using the improved algorithm. The 
image segmentation algorithm [Felzenszwalb and Huttenlocher (2004)] used the values of 
sigma=0.8, scale=300, and min_size=800. The original and improved SS algorithms were 
respectively used for the image in the test set. For every class of glass bottle image, the 
average number of candidate regions generated per image and the corresponding average 
time consumption were tested. The data obtained are exhibited in Tab. 1. 

Table 1: Comparison of time and regions 

 
class 

Oriented Selective Search  Improved Selective Search 
Regions Time(s)  Regions Time(s) 

1 132 0.828  147 0.714 
2 127 0.824  141 0.709 
3 119 0.703  136 0.617 
4 134 0.797  143 0.677 
5 124 0.704  139 0.609 

As revealed by Tab. 1, the number of candidate regions generated by the improved SS 
algorithm on every class of glass bottle was significantly greater than that generated by the 
original algorithm, and the corresponding time consumptions were lower than those of the 
original algorithm. The experiments demonstrate that the speed of the generation of candidate 
regions by the improved algorithm was 13.8% faster than that by the original algorithm. 

3.2.2 Comparison of overlap 
In this study, ABO (average best overlap) [Uijlings, Sande and Gevers (2013)] was selected 
as the evaluation index of algorithm performance. For each fixed category c in the test set, 
each sample i in this type of glass bottle was calibrated manually, and the calibrated area is 
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represented by gi
c. The improved SS algorithm and the original algorithm were used to 

process the sample i, and the corresponding candidate region sets L1 and L0 were obtained. 
The ABO_ISS of the improved SS algorithm is given by Eq. (20), and the corresponding 
ABO_ISS of the original algorithm is given by Eq. (21). The calculation of Overlap(gi

c, lj) is 
given by Eq. (22). The corresponding data of the ABO_ISS and ABO_OSS values for 
different types of glass bottles are presented in Fig. 7.  
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where Gc represents all samples of glass bottles in class c, and lj represents the j-th 
candidate region in the set of candidate regions. 
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where area(gi
c) denotes the area corresponding to gi

c, and area(lj) denotes the area 
corresponding to lj in units of pixels. 

 
 Figure 7: Comparison of ABO 

In Fig. 7, the abscissa is the percentage of ABO, and the ordinate is the category of glass 
bottles. The length of the red bar corresponds to the ABO value of the improved SS 
algorithm, and the length of the blue bar corresponds to the ABO value of the original SS 
algorithm. As is evident, in terms of the ABO of Class 5, the performance of the original 
algorithm was better than that of the improved SS algorithm. In terms of the other four 
ABO values, however, the improved SS algorithm exhibited better performance. Overall, 
the improved SS algorithm was found to be superior to the original algorithm in ABO 
performance, and can provide a reasonable classification window for the subsequent 
classification of glass bottles. 
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3.3 Classification method and performance index of glass bottles 
3.3.1 Classification algorithm for glass bottles 
In this work, the improved SS algorithm and classifier were combined to classify glass 
bottles with various factors. The classification algorithm is presented in Fig. 8. 

BOW

Test samples Improved 
selective rearch Set L

Positive samples

Negative samples

The class

Classifer

BOW NMS

(a)

(b)

 
Figure 8: Classification algorithm for glass bottles 

Training stage: As shown in Fig. 8, the target area of positive samples in the data set was 
calibrated, and the area with an overlap degree of ~25%-50% of the calibrated area of 
positive samples was regarded as negative samples. The BoW (Bag of Words) algorithm 
[Sreejini and Govindan (2019)] was used to extract features from positive and negative 
samples to form feature vectors. The feature vectors were then input into the classifier for 
training. In the process of iterative training, negative samples with high scores were 
added to train the classifier. 
Testing stage: For the samples in the test data set, the improved SS algorithm was used to 
extract the candidate region set L. For the candidate region in L, the trained classifier was 
used to give the class score. The NMS (non-maximum suppression) algorithm [Vahid, Li, 
Jia et al. (2016)] was then used to merge the target region with a classification score greater 
than 0.7, and the merged region was input into the training. The trained classifier output the 
corresponding types of glass bottles and completed the classification of glass bottles. 
The LightGBM [Ma, Sha, Wang et al. (2018); Zhao, Ye, Su et al. (2019], SVM [Sun, Lv, 
Mo et al. (2019); Czarnecki and Tabor (2015)], Bagging [Piero, Roozbeh and Enrico 
(2011)], Gaussian [Guo, Jia and Lyu (2019)], and Decision Tree [Ihssan, Amjed and Isam 
(2019)] algorithms have exhibited excellent performance in the fields of big data and data 
mining, and have also presented good classification effects on small data sets. Therefore, 
these five algorithms were chosen as the classifiers in glass bottle classification algorithms, 
and were then combined with the SS algorithm before and after improvement to construct 
different glass bottle classification algorithms. Finally, the performances of the different 
glass bottle classification algorithms were tested on data sets. 

3.3.2 Performance indicators for classification of glass bottles 
 A (Accuracy), P (precision), R (recall), and F1 [Uijlings, Sande and Gevers (2013)] were 
selected as the performance evaluation criteria of the glass bottle classification 
algorithms, and can respectively be calculated as follows: 

TP TNA
TP TN FP FN

+
=

+ + +                                                                 
                 (23) 
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TPP
TP FP

=
+

               (24) 

TPR
TP FN
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               (25) 

1
2

2
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TP FP FN
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+ +
              (26) 

where TP represents the number of samples whose predicted class is positive and whose 
actual class is positive, TN represents the number of samples whose predicted class is 
negative and whose actual class is positive, FN represents the number of samples whose 
predicted class is negative and whose actual class is positive, and FP represents the 
number of samples whose predicted class is positive and whose actual class is negative. 
Among them, the positive class is the category of the specified class of glass bottles to be 
predicted, while the negative class is the type of glass bottles except the specific type of 
glass bottles. 

Table 2: Performance comparison of classification algorithms 
Algorithm A P R F1 

LightGBM+OSS 0.836 0.861 0.814 0.836 
SVM+OSS 0.776 0.784 0.769 0.776 

Bagging+OSS 0.825 0.832 0.814 0.823 
Gaussian+OSS 0.724 0.732 0.716 0.724 

DecisionTree+OSS 0.681 0.702 0.674 0.688 
LightGBM+ISS 0.894 0.903 0.872 0.887 

SVM+ISS 0.842 0.851 0.821 0.835 
Bagging+ISS 0.860 0.865 0.842 0.853 
Gaussian+ISS 0.762 0.760 0.754 0.757 

DecisionTree+ISS 0.738 0.742 0.729 0.735 
 

     
                                  (a) Accurary                                                        (b) Precision 
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                                 (c) Recall                                                            (d) F1 

Figure 9: Performance of different classification algorithms 
In Tab. 2, OSS represents the original SS algorithm, and ISS represents the improved SS 
algorithm. For the same classifier, it can be seen that the improved SS algorithm was 
superior to the original algorithm in terms of the A, P, R, and F1 values of glass bottle 
classification. Under the same combination of conditions, LightGBM was found to 
exhibit better classification performance than the other classifiers, and its corresponding 
classification accuracy was 89.4%. 

Table 3: F1 values of classification algorithms 
Class LightGBM SVM Bagging Gaussian DecisionTree 

1 0.942 0.862 0.898 0.835 0.829 
2 0.929 0.854 0.901 0.820  0.772 
3 0.878 0.859 0.842 0.691, 0.722 
4 0.809 0.780 0.788 0.625 0.624 
5 0.909 0.845 0.875 0.825 0.739 

 
Fig. 9 presents the performance comparison of glass bottles classified by the improved SS 
algorithm combined with the five classifiers. The A, P, R and F1 values of each class of 
glass bottles are respectively presented in Figs. 9(a)-9(d). It is clear that the improved SS 
algorithm combined with LightGBM, SVM, and Bagging performed better in the 
classification of glass bottles. The F1 values of different classification algorithms are 
presented in Tab. 3, which reveals that the F1 value of LightGBM for each kind of glass 
bottle was higher than that of the other classifiers; the highest value in the first category 
was 94.2%. The experiments demonstrated that the improved SS algorithm combined 
with LightGBM exhibited good performance in the classification of glass bottles. 
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Figure 10: Samples of glass bottles images with noise 

3.4 Noise testing of glass bottle classification algorithms 
Noise was added to each picture in the test set. For each noise image, the amount of noise 
accounted for 1% of the total number of pixels in the image, and salt and pepper noise 
each accounted for 50% of the total amount of noise. Five kinds of glass bottle image 
samples with noise are presented in Fig. 10. 
Five kinds of noise images were classified by using different glass bottle classification 
algorithms. As presented in Fig. 11(a), LightGBM exhibited the highest accuracy of 
82.4% for glass bottle classification. In terms of precision performance, as presented in 
Fig. 11(b), LightGBM was found to have a good classification effect on the first three 
types of glass bottles. 
As exhibited in Tab. 4, the classification accuracy of the third kind of glass bottles was 
the highest at 93.4%. In the prediction of the latter two kinds of glass bottles, the 
precision of SVM was higher. In terms of recall, as presented in Fig. 11(c), SVM had a 
higher recall rate for the first three types of glass bottles, and the highest recall rate was 
99.8% for class 1. LightGBM had higher recall rates for the latter two types of glass 
bottles. In terms of the F1 value, LightGBM performed better than the other classification 
algorithms, as presented in Fig. 11(d). It is evident from the data in Tab. 4 that 
LightGBM had the highest F1 values for the five samples as compared to the other 
classifiers, and the highest F1 value for the fifth sample was 0.852. The experiments 
therefore demonstrate that LightGBM combined with the improved SS algorithm 
displayed the ability to resist noise in images. 

    
(a) Accuracy                                                 (b) Precision 
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                             (c) Recall                                                               (d) F1 

Figure 11: Performance of different classification algorithms under noise 

Table 4: Performance of different classification algorithms under noise 
 

Class 
ISS+ Bagging+Noise  ISS+SVM+Noise  ISS+LightGBM+Noise 

P R F1  P R F1  P R F1 
1 0.672 0.881 0.762  0.658 0.998 0.794  0.733 0.991 0.843 
2 0.739 0.704 0.718  0.835 0.811 0.822  0.902 0.743 0.813 
3 0.753 0.673 0.709  0.845 0.732 0.785  0.934 0.715 0.807 
4 0.701 0.611 0.652  0.866 0.584 0.695  0.806 0.792 0.798 
5 0.809 0.762 0.784  0.837 0.822 0.828  0.817 0.890 0.852 

4 Conclusion 
In this work, the selective search algorithm was first improved. The subsequent 
experiments demonstrated that the improved algorithm was superior to the original 
algorithm in terms of the number, speed, and overlap of candidate boxes. Moreover, the 
improved SS algorithm was applied to the classification of glass bottles via combination 
with different classifiers to obtain different glass bottle classification algorithms. The 
experiments revealed that the classifiers combined with the improved SS algorithm were 
superior to those combined with the original SS algorithm. Among them, the improved 
SS algorithm combined with the LightGBM classifier was found to be superior to the 
other glass bottle classification algorithms in terms of classification performance and 
noise resistance. In summary, the glass bottle classification algorithm constructed via a 
combination of the improved SS algorithm and LightGBM exhibits satisfactory 
classification performance for glass bottles with illumination changes and noise. 
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