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Abstract: Microphone array-based sound source localization (SSL) is a challenging task 
in adverse acoustic scenarios. To address this, a novel SSL algorithm based on deep 
neural network (DNN) using steered response power-phase transform (SRP-PHAT) 
spatial spectrum as input feature is presented in this paper. Since the SRP-PHAT spatial 
power spectrum contains spatial location information, it is adopted as the input feature for 
sound source localization. DNN is exploited to extract the efficient location information 
from SRP-PHAT spatial power spectrum due to its advantage on extracting high-level 
features. SRP-PHAT at each steering position within a frame is arranged into a vector, 
which is treated as DNN input. A DNN model which can map the SRP-PHAT spatial 
spectrum to the azimuth of sound source is learned from the training signals. The azimuth 
of sound source is estimated through trained DNN model from the testing signals. 
Experiment results demonstrate that the proposed algorithm significantly improves 
localization performance whether the training and testing condition setup are the same or 
not, and is more robust to noise and reverberation. 
 
Keywords: Sound source localization, microphone array, steered response power-phase 
transform (SRP-PHAT) spatial spectrum, deep neural network. 

1 Introduction 
In many applications, such as speech enhancement [Kim (2014)], sound source 
separation [Nikunen and Virtanen (2014)], autonomous robots [Salvati, Drioli and Foresti 
(2016)] and video conferencing [Zhao, Ahmed, Liang et al. (2012)], location information 
of the sound source is very important. Microphone array-based sound source localization 
(SSL) aims at estimating the location information of the sound source by using the 
received multichannel signals. 
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Over the past few decades, a number of approaches have been developed for the task of 
SSL which can perform fairly well under certain acoustic conditions. However, in 
adverse acoustic scenarios, robust SSL is still a challenging task because the noise and 
reverberation would degrade the localization performance. The existing approaches for 
SSL can be generally categorized into two classes: indirect approaches and direct 
approaches [Salvati, Drioli and Foresti (2018)]. The indirect approaches first estimate 
time difference of arrivals (TDOAs) between microphone pairs, which are usually 
estimated by generalized cross correlation (GCC) methods [Knapp and Carter (1976)], 
and then achieve the sound source location by exploiting TDOAs and the knowledge of 
microphones’ positions. The direct approaches include the methods based on the multiple 
signal classification (MUSIC) [Zhao, Saluev and Jones (2014)], the estimation of signal 
parameters via rotational invariance techniques (ESPRIT) [Roy and Kailath (1989)], the 
steered response power (SRP) [Dibiase (2001)] and so on.  
Along with the development of artificial neural network, deep learning methods have 
been successfully applied in SSL task. There are two main schemes for applying the deep 
learning method to SSL: the first one is to combine deep learning with the traditional SSL 
methods, for example, time-frequency (T-F) masking is predicted by deep learning, then 
the sound source position is estimated by SRP with T-F masking; the second one is to 
establish the relationship between input features and sound source position by deep 
learning, which we call model-based methods. The related research for the first scheme is 
as follows. In Wang et al. [Wang, Zhang and Wang (2018, 2019)], speech dominant T-F 
units were identified by deep neural networks (DNNs), and the conventional 
crosscorrelation, beamforming and subspace-based approaches were weighted by T-F 
masking. In order to emphasize the direct path speech signal in time-varying interference, 
Pertila et al. [Pertila and Cakir (2017)] used convolutional neural network (CNN) to learn 
the mapping between a noisy input log-magnitude spectrogram and a corresponding 
desired T-F masking, and then estimated the azimuth by steered response power-phase 
transform (SRP-PHAT) with T-F masking. Salvati et al. [Salvati, Drioli and Foresti. 
(2018)] presented a deep learning-based SRP beamformer that fuses the narrowband 
response power of incoherent frequency by the weighting factors provided by CNNs. 
The related research for the second scheme of the application of deep learning in SSL is 
as follows. Takeda et al. [Takeda and Komatani (2016)] extracted the directional image 
by using the orthogonality of eigenvectors in the frequency domain, and then propagated 
and integrated the directional image at each sub-band through a hierarchical structure. 
Chakrabarty et al. [Chakrabarty and Habets (2017)] utilized CNN to learn the information 
required for direction of arrival (DOA) estimation from the phase components of the 
spectrogram. Methods in Xiao et al. [Xiao, Zhao, Zhong et al. (2015); Sun, Chen, Yuen et 
al. (2018); Vesperini, Vecchiotti, Principi et al. (2018)] arranged GCC of each 
microphone pair together to form the input feature vector or matrix. Xiao et al. [Xiao, 
Zhao, Zhong et al. (2015)] trained a multi-layer perceptron (MLP) model to learn the 
mapping regularity between the GCC and DOAs. Sun et al. [Sun, Chen, Yuen et al. 
(2018)] presented a probabilistic neural network-based SSL algorithm. Vesperini et al. 
[Vesperini, Vecchiotti, Principi et al. (2018)] studied the application of multi-layer 
perceptron (MLP) and convolutional neural network (CNN) in speaker localization under 
multi-room domestic environment. Adavanne et al. [Adavanne, Politis and Virtanen 
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(2018)] extracted the magnitudes and phases of the spectrograms as input feature to train 
a convolutional recurrent neural network (CRNN). The issue of binaural SSL is studied in 
Roden et al. [Roden, Moritz, Gerlach et al. (2015); Ma, May and Brown (2017); Yiwere 
and Rhee (2017); Ma, Gonzalez and Brown (2018); Zhou, Ma, Wang et al. (2019)]. 
Roden et al. [Roden, Moritz, Gerlach et al. (2015)] extracted inter-aural time difference 
(ITD) and inter-aural level difference (ILD) as input features for DNNs. Ma et al. [Ma, 
May and Brown (2017)] combined cross-correlation function (CCF) and ILD as input 
features for DNNs. Yiwere et al. [Yiwere and Rhee (2017)] trained the DNN model by 
the input features consisting of CCF and ILD, which can predict the direction and 
distance of sound source. Ma et al. [Ma, Gonzalez and Brown (2018)] trained the DNN 
model of each sub-band with CCF as input feature, and modeled each sound source using 
GMM with ratemap as feature in the training stage; and then integrated the posterior 
probabilities of azimuth at each sub-band estimated from DNN by the weights provided 
by GMM in the localization stage. Zhou et al. [Zhou, Ma, Wang et al. (2019)] extracted 
CCF of each Gammatone filter and combined the CCFs of all sub-bands to assemble a 
two dimensional feature matrix, then utilized CNN to establish the relationship between 
feature matrix and sound azimuth. 
In this paper, we propose a DNN-based localization algorithm using SRP-PHAT spatial 
spectrum as input feature. Unlike the existing algorithms, SRP-PHAT spatial power 
spectrum is adopted as the input feature due to its robust representation of spatial location 
information. DNN can effectively extract high-level features and learn the relationship 
between input and output. Therefore, we consider the SSL problem as multi-classification 
task and introduce DNN to learn the mapping regularity between the SRP-PHAT spatial 
power spectrum and the azimuth of sound source. The trained DNN model is used to 
predict probabilities of each azimuth with the testing signals, and the azimuth with 
maximum probability is considered as the estimated azimuth. Through experimental 
evaluation, the proposed algorithm has been shown to significantly improve localization 
performance under various acoustic conditions.  
The rest of this paper is organized as follows. Section 2 describes the proposed approach 
based on SRP-PHAT spatial spectrum and DNN. The experimental results and analysis 
are presented in Section 3. Finally, the conclusion is drawn in Section 4.  

2 DNN-based localization algorithm using SRP-PHAT spatial spectrum 
2.1 System architecture 
The core idea of our algorithm is to use DNN to extract effective location information 
from the spatial power spectrum. Fig. 1 illustrates the overall system architecture. The 
system includes two stages, the training stage and the localization stage. The system input 
is the signals received by microphone array. Since the reverberation and environmental 
noise alter, signals in diverse reverberation and noise environments are taken together as 
training data during the training stage for robustness. Then, SRP-PHAT at each steering 
position within a frame is combined into a vector, which is treated as DNN input. In the 
training stage, a DNN model is trained to establish the mapping regularity between the 
SRP-PHAT spatial power spectrum and the azimuth of sound source. In the localization 
stage, the probability of each azimuth is predicted through the trained DNN model on the 
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testing signals. Afterwards, the azimuth with maximum probability is considered as the 
estimated azimuth. 

Spatial spectrum 
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Figure 1: Overall architecture of the proposed sound source localization system 

2.2 Feature extraction 
In indoor scenarios, the signal received by mth microphone at time t can be modeled as 
follows: 

( ) ( ) ( ) ( ), ,   1, 2, ,m m s mx t h t s t v t  m M= ∗ + =r 
                                                            (1) 

where s(t) denotes the clean sound source signal, hm(rs ,t) denotes the room impulse 
response between the source position rs and the mth microphone, “*” denotes the linear 
convolution operator, vm(t) denotes the uncorrelated additive noise for the mth 
microphone, and M is the number of microphones. In the frequency domain, Eq. (1) can 
be formulated as: 

( ) ( ) ( ) ( ), + ,   1,m m s mX H S V m Mω ω ω ω= =r 
                                                        (2) 

where Xm (ω), S (ω), Hm (rs, ω) and Vm (ω) are the Fourier transforms of xm (t), s (t), hm (rs, 
t) and vm (t).  
The SRP can be calculated by summing the GCCs of the chosen pairs of microphones 
[Zhao, Tang, Zhou et al. (2013)], and the response power when the array is steered to the 
position r is expressed as: 
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where P(r) represents the response power when the array is steered to the position r, Δτmn 

(r)=τm (r)-τn (r), τm (r) is the propagation delay between the steering position r and the 
mth microphone, in the far-filed case, Δmn (r) is independent of the distance from the 
steering position r to microphone array and only related to the azimuth of the steering 
position r, Rm,n (Δmn(r)) is the GCC of the mth and nth microphone signals, ψm,n (ω) is the 
weighting function. The phase transform (PHAT) weighting function is defined as: 

( )
( ) ( ), *

1
m n

m nX X
ψ ω

ω ω
=                                                                                                  (4) 

Applying the PHAT weighting function to the response power in Eq. (3), we get SRP-
PHAT as follows: 
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Without considering the environment noise, i.e., Vm (ω)=0 in Eq. (2), Eq. (2) can be 
simplified as 

( ) ( ) ( ), ,   1,m m sX H S m Mω ω ω= =r                                                                            (6) 

Substituting Eq. (6) into Eq. (5), Eq. (5) can be rewritten as 
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From Eq. (7), we note that the SRP-PHAT function is independent of the content of the 
sound source signal, and it is dependent of the room impulse response. The room impulse 
response is related to the source position, microphone position, room size, reverberation 
time and so on. Therefore, the SRP-PHAT spatial power spectrum contains spatial 
location information, which is closely related to the source position and acoustic 
environment. Thus, the SRP-PHAT spatial power spectrum is exploited as the feature for 
sound source localization in this paper.  
In practical situation, there is not only environment noise but also spectrum leakage due to 
signal framing. The SRP-PHAT suffers from a deviation between the actual calculated 
value and the theoretical value resulting from the presence of environment noise and 
spectrum leakage. An example is given for normalized SRP-PHAT spatial spectrum of 
different frames in Fig. 2, where the sound source is located at 60° azimuth with 1.5 m 
from the array. Six omnidirectional microphones form a uniform circular array with radius 
of 0.1 m. The reverberation time is 0.5 s, and the SNR is 10 dB. The sample rate is 16 kHz, 
and the microphone signals are segmented into 32-ms frame length. Fig. 2 shows that the 
SRP-PHAT spatial spectrum has a main peak at 60° azimuth due to direct path, and many 
pseudo peaks at other azimuths resulting from reflection and noise. From Fig. 2, we also 
note that SRP-PHAT spatial spectrum of each frames are not identical, which is due to the 
presence of environment noise and spectrum leakage. In this paper, the DNN is used to 
extract the efficient location information from SRP-PHAT spatial power spectrum. 
The SRP-PHAT spatial spectrum is treated as the input feature for DNN. SRP-PHAT by 
Eq. (5) is the response power at one steering position, and then SRP-PHAT at each steering 
position within a frame is arranged into a vector, which can be expressed as follows: 

( ) ( ) ( ) ( )1 2, , , , ,
T

Lk P k P k P k=   r r rP  (8) 

where P (k) is the feature vector of kth frame, and P (rl, k) with l=1…L is the SRP-PHAT 
at rl in kth frame which is calculated by Eq. (5). In this paper, we consider the far-filed 
case, and then the argument rl is simplified to the azimuth with a distance of 1.5 meters 
from the steering position to the microphone array. The azimuth ranges from 0° to 360° 
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with a step of 5°, corresponding to 72 steering positions, which means that the dimension 
of SRP-PHAT feature vector is 72. 
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Figure 2: SRP-PHAT spatial spectrum for 10 frames 

2.3 The architecture of DNN 
DNN model is trained on a set of feature vectors P (k)s with given azimuths. The training 
azimuth ranges from 0° to 360° with a step of 10°, corresponding to 36 training positions. 
The DNN consists of an input layer, multiple hidden layers, and an output layer. For input 
layer, the input is the feature vector P (k) as described in Section 2.2. The number of input 
layer nodes is equal to the feature dimension, which is the dimension of the SRP-PHAT 
feature vector in of our algorithm. The system of our algorithm uses two hidden layers, 
each layer containing 50 nodes. The hidden layers use the sigmoid activation function. 
The system of our algorithm treats the sound source localization problem as a multi-
classification problem, and the output layer adopts the softmax regression model, which 
can be regarded as the generalization of the logistic model on the multi-classification 
problem. The number of class labels is the number of training positions, which is 36 in 
this paper. The SRP-PHAT feature vector of the test signal is extracted according to Eq. 
(8), and the probability that ( )test kP  belongs to each azimuth is estimated by softmax 
regression model as follows: 
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where N is the number of class labels, N=36 in this paper, θ is the model parameter 
derived from training stage, and Ptest (k) is the feature vector of kth frame test signals. 
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2.4 The training of DNN 
The training of DNN includes two phases: pre-training and fine-tuning. In the pre-
training phase, the model parameters are initialized using deep belief network (DBN) 
formed by layered stacked restricted Boltzmann machines (RBMs). Since the acoustic 
signal is a continuous signal, a Gaussian restricted Boltzmann machine (GRBM) [Wang 
and Wang (2013)] model is suitable between the input layer and the first hidden layer, 
and a RBM is adopted between the first hidden layer and the second hidden layer. The 
GRBM and RBM are stacked to form the DBN. The contrastive divergence (CD) 
algorithm [Hinton (2002)] is used in the pre-training phase. In the fine-tuning phase, a 
Softmax output layer for classification is added on the top of the DBN, and the network 
parameters are finely adjusted by the Back Propagation (BP) algorithm. 
In the pre-training phase, the mini-batch [Hinton (2010)] is set to 100, the number of 
epochs is set to 10, the momentum is set to 0.5, and the learning rate is set to 0.01. The 
fine-tuning phase is composed of two processes, and the mini-batch is also set to 100. In 
the first process, the number of epochs is set to 50, the momentum is set to 0.9, and the 
learning rate is set to 0.1; in the second process, the number of epochs is set to 50, the 
momentum is set to 0.9, and the learning rate is set to 0.01. DropOut and Cross 
Validation are used to prevent over-fitting in the proposed system. The Dropout ratio is 
set to 0.5, and a 1:10 Cross Validation is used to monitor the model errors in the fine-
tuning phase. 

3 Simulation and result analysis 
3.1 Simulation setup 
The dimensions of the simulated room are 7 m×7 m×3 m. Six omnidirectional microphones 
form a uniform circular array with radius of 0.1m, which is located at (3.5 m, 3 m, 1.6 m). 
The room impulse response is generated by the image method [Allen and Berkley (1979)]. 
The sound source signals with 16 kHz sampling rate are taken randomly from the TIMIT 
database. The microphone signal is generated by convolving the sound source signal with the 
room impulse response and then adding uncorrelated Gaussian white noise. The microphone 
signals are segmented into 32-m frame length and windowed by Hanning window.  
For the training signals, the distance between the training position and the array is set to 1.5 
m, the training azimuth ranges from 0° to 360° with a step of 10°, the SNR is varied from 0 
dB to 20 dB with a step of 5 dB, and the reverberation time T60 is set to 0.2 s, 0.5 s and 0.8 
s. Microphone signals in different reverberation and noise environments are taken together 
as training data during the training stage for robustness. The number of training data at each 
training position under each reverberation and noise environment is 400 frames. 
The performance of the proposed algorithm is compared with two baseline methods, 
namely the SRP-PHAT [Dibiase (2001)] and SRP-PHAT based on principal eigenvector 
(SRP-PHAT-PE) [Wan and Wu (2010)]. We evaluate the localization performance by the 
percentage of correct estimates, which is calculated as: 

c allp n N=                                                                                                                      (10) 
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where Nall is the total number of testing frames, nc is the number of correct estimate 
frames, and the correct estimate is defined that the estimated azimuth is the true azimuth. 

3.2 Evaluation in setup-matched environments 
In this section, we investigate and analyze the localization performance when the training 
and testing condition setup are the same. Fig. 3 depicts the localization performance as a 
function of SNR for SRP-PHAT, SRP-PHAT-PE and the proposed algorithm under 
various reverberation environments. 
In the high SNR and low reverberation environments, each of the methods performs well, 
and the percentage of correct estimates of the proposed method is slightly higher than that 
of the SRP-PHAT and SPR-PHAT-PE. As the SNR decreases and the reverberation time 
increases, the performance of SRP-PHAT and SRP-PHAT-PE deteriorates, and the 
proposed method outperforms the baseline methods significantly. The reason is that the 
proposed algorithm adopts DNN to extract the efficient spatial location information from 
the SRP-PHAT spatial power spectrum in diverse environments. 
Furthermore, at the same reverberation time, the performance improvement of the 
proposed algorithm compared with the baseline methods tends to increase gradually as 
the SNR decreases. For example, in the T60=0.5 s scenario, the improvement of the 
percentage of correct estimates of the proposed algorithm compared with the SRP-PHAT 
algorithm increases from 13.27% to 23.96% as the SNR decreases from 20 dB to 0 dB. 
This shows that performance improvement is especially in low SNR environments. 
It can also be seen that, for moderate to high SNR (10-20 dB), the performance 
improvement increases as the reverberation time increases with the same SNR. For 
example, the performance improvement of the proposed algorithm compared with the 
SRP-PHAT algorithm increases from 11.88% to 20.69% as the reverberation time 
increases from 0.2 s to 0.8 s with SNR=15 dB. And for low SNR (below 5 dB), the 
performance improvement is slightly reduced as the reverberation time increases in the 
same SNR scenario. For example, the performance improvement of the proposed 
algorithm compared with the SRP-PHAT algorithm is reduced from 29.04% to 21.18% as 
the reverberation time increases from 0.2 s to 0.8 s with SNR=0 dB. 
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(a) Percentage of correct estimates with T60=0.2 s 
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(b) Percentage of correct estimates with T60=0.5 s 
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(c) Percentage of correct estimates with T60=0.8 s 

Figure 3: Performance comparison of different algorithm in setup-matched environments  

3.3 Evaluation in untrained distance environment 
In this section, we investigate the robustness of the proposed method when the distance 
between the testing position and the array is not the same as the distance between the 
training position and the array. Two distances are tested: 1.3 m and 1.8 m. The setting of 
azimuth, reverberation time and SNR of the testing signals are consistent with those of 
the training signals. Figs. 4 and 5 depict the localization performance of the three 
methods for a distance of 1.3 m and a distance of 1.8 m, respectively. 
First, we have found that the regularity of data variation in Figs. 4 and 5 are consistent 
with those in Fig. 3, which has been described in Section 3.2. This reflects the robustness 
of the proposed algorithm to the distance between the testing position and the array. 
In addition, comparing Figs. 4 and 5 with Fig. 3, in the same reverberation and SNR 
scenario, the percentage of correct estimates with a testing distance of 1.3 m is slightly 
higher than that with a testing distance of 1.5 m, and the percentage of correct estimates 
with a testing distance of 1.8 m is lower than that with a testing distance of 1.5 m. For 
example, at T60=0.2 s, compared with the testing distance of 1.5 m, the percentage of 
correct estimates of the proposed algorithm is reduced by about 2~3% and that of the 
SRP-PHAT algorithm is reduced by about 3~4% when the testing distance is 1.8 m. The 
main reason is that the adverse effect of reverberation on localization performance is 
related to the distance between the sound source and the microphone array. The adverse 
effect of reverberation on localization performance increase as the distance increases. 
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(a) Percentage of correct estimates with T60=0.2 s 
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(b) Percentage of correct estimates with T60=0.5 s 
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(c) Percentage of correct estimates with T60=0.8 s 

Figure 4: Performance comparison of different algorithm with testing distance=1.3 m 
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(b) Percentage of correct estimates with T60=0.5 s 
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(c) Percentage of correct estimates with T60=0.8 s 

Figure 5: Performance comparison of different algorithm with testing distance=1.8 m 
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3.4 Evaluation in untrained noise or reverberation environments 
In this section, we investigate the robustness of the proposed method in untrained noise 
or reverberation environment. Three untrained reverberation times are tested: 0.3 s, 0.6 s 
and 0.9 s. Five levels of untrained SNR are tested: -2 dB, 3 dB, 8 dB, 13 dB and 18 dB. 
The setting of azimuth and distance between the testing position and the array are 
consistent with those of the training position. Figs. 6 and 7 depict the localization 
performance of the three methods in untrained SNR and untrained reverberation time 
scenarios, respectively. 
As shown in Figs. 6 and 7, the performance of the proposed method is much better than 
that of the baseline methods in untrained noise or reverberation environment, and the 
regularity of data variation in Figs. 6 and 7 are consistent with those in Fig. 3, which has 
been described in Section 3.2. Specifically, in moderate and low reverberation and high 
SNR environments, the performance improvement of the proposed algorithm compared 
with the SRP-PHAT algorithm is about 10%; in other scenario, the performance 
improvement is about 20% to 28%. This reflects that the proposed method is robust to the 
noise and reverberation. 
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(a) Percentage of correct estimates with T60=0.2 s 
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(b) Percentage of correct estimates with T60=0.5 s 
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(c) Percentage of correct estimates with T60=0.8 s 

Figure 6: Performance comparison of different algorithm in untrained noise environments 
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(a) Percentage of correct estimates with T60=0.3 s 
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(b) Percentage of correct estimates with T60=0.6 s 
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(c) Percentage of correct estimates with T60=0.9 s 

Figure 7: Performance comparison of different algorithm in untrained reverberation environments 

4 Conclusion 
In this work, a SSL algorithm based on SRP-PHAT spatial spectrum and deep neural 
networks has been presented. We treat the sound source localization problem as a multi-
classification task. Different from the existing algorithms, the SRP-PHAT spatial power 
spectrum is exploited as the feature vector in the proposed algorithm. DNN is utilized to 
learn the mapping regularity between feature vector and azimuth of sound source due to 
its advantage on extracting high-level features. Experiment results demonstrate that the 
proposed algorithm achieves superior localization performance whether the training and 
testing condition setup are the same or not, and is more robust to noise and reverberation. 
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