

Computers, Materials & Continua CMC, vol.64, no.1, pp.273-295, 2020

CMC. doi:10.32604/cmc.2020.09659 www.techscience.com/journal/cmc

Programming Logic Modeling and Cross-Program Defect
Detection Method for Object-Oriented Code

Yan Liu1, Wenyuan Fang1, Qiang Wei1, *, Yuan Zhao1 and Liang Wang2

Abstract: Code defects can lead to software vulnerability and even produce vulnerability
risks. Existing research shows that the code detection technology with text analysis can
judge whether object-oriented code files are defective to some extent. However, these
detection techniques are mainly based on text features and have weak detection
capabilities across programs. Compared with the uncertainty of the code and text caused
by the developer’s personalization, the programming language has a stricter logical
specification, which reflects the rules and requirements of the language itself and the
developer’s potential way of thinking. This article replaces text analysis with
programming logic modeling, breaks through the limitation of code text analysis solely
relying on the probability of sentence/word occurrence in the code, and proposes an
object-oriented language programming logic construction method based on method
constraint relationships, selecting features through hypothesis testing ideas, and construct
support vector machine classifier to detect class files with defects and reduce the impact
of personalized programming on detection methods. In the experiment, some
representative Android applications were selected to test and compare the proposed
methods. In terms of the accuracy of code defect detection, through cross validation, the
proposed method and the existing leading methods all reach an average of more than
90%. In the aspect of cross program detection, the method proposed in this paper is
superior to the other two leading methods in accuracy, recall and F1 value.

Keywords: Method constraint relationship, programming logic, code defect, hypothesis test.

1 Introduction
With the continuous development of software technology, software security is be-coming
more and more important for enterprises and individual users. But no organization can
fundamentally eliminate the emergence of vulnerabilities. Bielak et al. [Bielak and Biffl
(2003)] showed that programmers generate 100 to 150 errors per thousand lines of code
during development, and these errors tend to become a vulnerability exploited by

1 State Key Laboratory of Mathematical Engineering and Advanced Computing, PLA Strategic Support

Force Information Engineering University, Zhengzhou, 450001, China.
2 The School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK.
* Corresponding Author: Qiang Wei. Email: funnywei@163.com.
Received: 18 January 2020; Accepted: 01 March 2020.

274 CMC, vol.64, no.1, pp.273-295, 2020

attackers. IEEE/ISO/IEC 24765-2010 ISO/IEC/IEEE International Standard—Systems
and software engineering-Vocabulary defines code defects as code problems that can
cause an application to fail or produce incorrect results if not corrected. [ISO/IEC/IEEE
International Standard (2017)] Detecting and fixing all possible code defects is key to
ensuring the security of the underlying software system. However, how to use artificial
intelligence methods to guide software testers to detect potential software defects in a
targeted manner is a field worth studying. Therefore, cross program code defect detection
has become a research hotspot in recent years [Yao, Huang, Feng et al. (2019);
Gharehyazie, Ray, Keshani et al. (2019)].
Existing research shows that text analysis techniques can be used to detect code defects
and achieve good results [Scandariato, Walden, Hovsepyan et al. (2014)]. Traditional text
analysis often mines appropriate placards as feature words in source code, constructs
vector representations or statistical models by the frequency of occurrence of different
feature words and serves as a standard for classification. This kind of method has two
problems in the analysis process: Firstly, text-based feature words are greatly influenced
by the developer’s programming style (such as different naming methods), which results
in better performance when the training set and test set are from the same developer’s
software. Conversely the analysis of software defects across programs will be
significantly reduced; Secondly, the static text analysis of the source code often forms a
high-dimensional feature word set, which also brings huge computing resource
consumption. Compared with the code text uncertainty due to developer personalization,
programming languages have stricter logic specifications. Developers often follow
similar programming logic to implement the same method function. These programming
logics embody the rules of the language itself and the potential thinking of the developer.
Making full use of these programming logics can make the code defect detection method
based on text analysis break through the limitation of the probability of occurrence of
sentences/words in the code and reduce the influence of personalized programming on
the detection method. Unfortunately, in the current research, the code defect detection
method based on text analysis often lacks the research and utilization of these
programming logics, so that the accuracy of detection still has room for improvement.
In view of the above problems, this paper studies the modeling of programming logic and
implements code defect detection based on programming logic. The main contributions
of this article are:
1) Propose the method-based constraint-based programming logic model CPMMC (Code-
Predicting Model based on Method Constraints) to overcome the limitations of text analysis
on programming logic expression;
2) Propose an object-oriented code defect detection method based on programming logic
OCDDM (Object-Oriented Code Defect Detection Method) to improve the detection
capability of cross-language code defects.
The rest of the paper is organized as follows: Section 2 introduces the research status of
code defect detection; Section 3 presents the concept of code defect detection based on
programming logic and describes the problems to be solved by this method; Section 4
introduces the programming logic model; Section 5 introduces the code defect detection
method based on the programming logic model; Section 6 introduces the experimental

Programming Logic Modeling and Cross-Program Defect Detection 275

methods and results; Section 7 is conclusion.

2 Related work
With the increasing importance of software security, developers are expected to fix
vulnerabilities in software systems as much as possible. but for massive code files,
comprehensive detection and patching of potential vulnerabilities are time consuming and
expensive. Therefore, how to use data mining and other methods to detect code defects and
guide software testers to detect and repair potential vulnerabilities has become a research
hotspot focused by scholars at home and abroad. Code defect detection typically takes the
analysis and extraction of features from the source code of the program (advanced source
code or binary machine code) and uses machine learning algorithms (mainly supervised
learning) to automatically learn the flawed modules in the code. According to different
analysis methods, it can be roughly divided into general vulnerability code analysis, data
flow and control flow analysis, code text mining and so on.

2.1 General vulnerability code parsing
Neuhaus et al. [Neuhaus, Zimmermann, Holler et al. (2007)] focused on the correlation
between vulnerabilities and successfully used machine learning techniques to predict
vulnerabilities in the snapshot environment of Mozilla projects (including Firefox and
Thunderbird). The authors reported an average accuracy of 70% and a recall rate of 45%.
Zimmermann et al. [Zimmermann, Nagappan and Williams (2010)] found weak
correlations between vulnerabilities and various metrics, including code churn, code
complexity, dependencies, and organizational measures. In the Windows Vista
environment, they built two different predictors. The first is based on traditional metrics
(code churn metrics, code complexity metrics, dependency metrics, code cover-age
metrics, and organizational metrics) with an experimental accuracy of 66.7% and a recall
rate of 20%. The second prediction model is based on the dependency between binary
files with an accuracy of 60% but a recall rate of 40%. Yamaguchi et al. [Yamaguchi,
Lindner and Rieck (2011); Yamaguchi, Lottmann, Rieck (2012)] proposed a method to
assist in the discovery of vulnerabilities by introducing the concept of “vulnerability
extrapolation”. This method is designed to identify unknown vulnerabilities based on the
programming patterns observed in known security vulnerabilities. The motivation for
vulnerability extrapolation is based on the observation that security analysts search the
code base for similar vulnerabilities that have recently been discovered. To this end, the
author proposes four steps: Firstly, the abstract syntax tree (AST) for each function in the
C and C++ code is extracted; Secondly, the unrelated nodes in the AST are discarded and
each function is represented as a vector of the contained subtree, embedding the AST of
the function into a vector space; Semantic analysis is then used on the vector
representation to identify the corresponding code structure pattern; Finally, the
vulnerability extrapolation is performed by calculating the distance. The authors
experimented on four open source projects, LibTIFF, Pidgin, FFmpeg, and Asterisk,
using some of the latest re-ported vulnerabilities in each project as a seed for
extrapolation, helping to discover several “0 day” vulnerabilities. Zhang et al. [Zhang, Li,
Li et al. (2019)] summarized the characteristics of Android application software

276 CMC, vol.64, no.1, pp.273-295, 2020

vulnerabilities, established a model to assess the security level of the vulnerability, and
designed and implemented a secure container for the CM-Droid, a password abuse
vulnerability in Android application software. Features are extracted using only about 8
packets. This enables MalDetect to determine if a stream was generated by malware
before taking illegal actions, which can better protect network users from malware.
Although the general vulnerability code parsing method can find the code vulnerability
more directly, it has limited ability to detect vulnerabilities that are different from the
known vulnerability patterns. More importantly, it requires researchers with a wealth of
expertise in the field of vulnerability mining and a very high-quality training sample of a
certain scale, which poses a huge challenge to cross-disciplinary re-searchers.

2.2 Data flow and control flow analysis
Shar et al. [Shar and Tan (2012, 2013)] presented a set of static code attributes based on
data flow analysis of PHP web applications, which can be used to predict program
statements that are vulnerable to SQL injection (SQLI) and cross-site scripting (XSS) at-
tacks. The authors present a total of 20 static code attributes that reflect the different data
flow aspects of the code segment. For example: the source of input (HTTP re-quest, file,
database, etc.), the types of input data, the number of different output statements
(database query, HTML output, etc.), and the different input validations etc. To evaluate
the validity of the attribute, the author developed a prototype tool called PhpMinerI and
experimented with eight open source web applications based on PHP. PhpMinerI extracts
the control flow (CFG) and data flow graph (DFG) for a given PHP program and
performs a backward data flow analysis on the target receive statement. Using this
backward analysis, the above attributes are calculated and expressed as 20-dimensional
vectors. Experiments show that the method has a recall rate of 93% for statements that
are susceptible to SQL injection, and a false positive rate of 11%. For statements that are
vulnerable to XSS attacks, the recall rate is 78% and the false positive rate is 6%. Shar et
al. [Shar, Briand and Tan (2015)] further expanded their previous work in 2015. Firstly,
in addition to SQLI and XSS, they extended the scope of the vulnerability by adding
Remote Code Execution (RCE) and File Containment (FI) Web Vulnerabilities;
Secondly, they used static reverse program sharding and use control dependency
information to extract different execution paths from program shards; thirdly, they extend
static attributes to 10 static attributes and 22 dynamic attributes. The experiment achieved
an average recall rate of 77% and a false positive rate of 5%.

2.3 Code text analysis
Hata et al. used text features and spam filtering algorithms to predict defects in the software.
In their early work [Mizuno, Ikami and Nakaichi (2007)], this method was used to predict
defects in ArgoUML and Eclipse BIRT software with an accuracy of 72%-75% and a recall
rate of 70%-72%. In the follow up work [Hata, Mizuno and Kikuno (2010)], they tried 5
open source Eclipse projects with an accuracy rate and a recall rate of 40% and 80%
respectively. Gruska et al. [Gruska, Wasylkowski and Zeller (2010)] conducted large-scale
data mining by mining more than 6,000 open source Linux projects, and obtained 16
million attributes reflecting the normal interface usage. Based on these attributes, new

Programming Logic Modeling and Cross-Program Defect Detection 277

project anomalies were checked. The authors validated the method on 20 project samples
and found actual defects in the top 25% of the anomalies. Scandariato et al. [Scandariato,
Walden, Hovsepyan et al. (2014)] constructed a vector representation of source code files
by the frequency of different texts in the source code based on Bag-of-words, and
constructed naive Bayesian and random forest classification models. The author
experimented with code in 10 Android apps. The experimental results showed that the
accuracy and recall rate of file-level defect detection in 8 applications can reach more than
80%, and the detection accuracy of 5 applications is even more than 90%.
The code text analysis method treats the code as plain text with low computation-al
complexity and is suitable for large-scale data sets. But there are still some problems.
Firstly, it is impossible to judge the type of defect; secondly, the detection result has a
large granularity, it is difficult to accurately find the position of the defect code; Thirdly,
because the programming habits of developers vary from person to person (for example,
some people prefer Hungarian nomenclature, some may prefer camel nomenclature, etc.)
at the text level, and it is difficult to ensure accuracy in cross-program detection; The last
one is that the a large number of attributes or features generated (such as the 16 million
attributes discovered by Gruska et al. [Gruska, Wasylkowski and Zeller (2010)] result in
data sparseness or even dimensionality disaster.
In summary, although the existing code models have different fields of application, the
balance between the logic information of the code (such as syntax, structure, etc.) and the
complexity of the model is still a problem, and it does not meet the requirement to extract
developer programming logic modeling in large-scale open source code. However, in the
existing code defect detection method, the conventional vulnerability code parsing
method requires a large number of known vulnerability samples, and the data stream and
the control flow analysis method are very expensive to calculate, which makes it difficult
to analyze the large-scale network open source code; Although the code text analysis
method is suitable for the research field of large-scale open source code defect detection,
it still needs to be improved in terms of the granularity of detection results and the
applicability of cross-program detection.

3 Problem definition
Code-based text analysis has been proven to be successfully applied to code defect
detection, but the code text is more affected by the developer’s personalization. The
programming styles and naming conventions of different developers are different, which
makes the code defect detection based on text analysis not effective in dealing with cross-
program detection. Compared to the uncertainty of the code text, developers often follow
similar programming logic to achieve a certain function, not only because of the reuse of
code modules brought by the engineering of software development, but also in order to
avoid software vulnerabilities, experienced developers follow a standardized, mature
program structure and method call sequence. We understand programming logic as an
orderly code abstraction that expresses the programmer’s thinking logic. This paper hopes
to make better use of these programming logics when detecting code defects and improve
the effect of cross-program detection. Usually, the code in the program does not exist
independently. Several lines of code before and after it determine the appearance and use of

278 CMC, vol.64, no.1, pp.273-295, 2020

the code. The closer the two lines of code are, the more influence each other has.
Based on the above analysis, the object-oriented code defect detection problem in this
paper can be understood as trying to refine the programming logic from the source code
written by multiple developers, construct a statistical model that reflects the developer’s
programming thinking logic, and use the programming logic model to achieve the
detection of code defects.
In this section, we will present a conceptual programming logic model of the constraint
relationship of methods.
Definition 1 (Method constraint relationship) Method constraint relationship is defined as
the effect of usage mode between methods in an object-oriented programming language. In
an object-oriented programming language 𝑙𝑙 , for any method 𝑚𝑚1and 𝑚𝑚2 , if one of the
methods is used by another method, there is a constraint relationship between 𝑚𝑚1 and 𝑚𝑚2.
The constraint relationship of the method can be divided into two categories, the internal
constraint relationship of the method and the external constraint relationship of the method.
Definition 2 (Internal constraint relationship of the method) Internal constraint
relationship of a method is defined as the constraint relationship associated with a single
object. In an object-oriented programming language 𝑙𝑙, for any method 𝑚𝑚1 and m2, if the
usage of 𝑚𝑚2 is affected by 𝑚𝑚1 , and there is an object 𝑜𝑜 satisfies the condition that
𝑚𝑚1,𝑚𝑚2 ∈ 𝑜𝑜, there is an internal constraint relationship between 𝑚𝑚1 and 𝑚𝑚2.
Definition 3 (External constraint relationship of the method) External constraint
relationship of a method is defined as a constraint relationship that is associated across
objects. In an object-oriented programming language 𝑙𝑙, for any method 𝑚𝑚1 and 𝑚𝑚2, if
the usage of 𝑚𝑚2 is affected by 𝑚𝑚1, and there is no object 𝑜𝑜 Satisfies the condition that
𝑚𝑚1,𝑚𝑚2 ∈ 𝑜𝑜, then there is an external constraint relationship between 𝑚𝑚1 and 𝑚𝑚2.
Since the subject of the constraint relationship is the method call of the object, it is
especially important to represent a method in the model. Here we give the concept of
code feature words.
Definition 4 (Code feature words) Code feature word is defined as a feature segment that
expresses the grammatical structure of a method call statement, denoted as 𝑇𝑇 =
{𝑡𝑡1, 𝑡𝑡2 ⋯ 𝑡𝑡𝑛𝑛}.
This paper builds a programming logic model based on the constraint relationship of the
method, and on this basis do code defect detection.
It is mainly divided into three parts, the construction of feature vectors, the ordering of
features and the detection of code defects, as shown in Fig. 1. In the construction part of
the feature vector, the class file with label is first abstracted into a programming logic
model based on the method constraint relationship (CPMMC model); Then, the code
feature word sequence fragments in the model are used as code defect features, and the
feature vectors of each class file are constructed by the frequency of occurrence. In the
feature sorting part, the feature matrix is first constructed based on the feature vector of
each class file in the training set, each column represents a feature, and each row
represents a source file; Then the hypothesis test probability value of each feature is
calculated by the idea of hypothesis testing; Finally, the features are sorted based on the

Programming Logic Modeling and Cross-Program Defect Detection 279

probability values, and the features with larger contributions are selected. In the detection
part of the code defects, the second classifier is constructed based on the support vector
machine, and the class files without tags are detected.

Figure 1: Flow chart of object-oriented code defect detection method based on CPMMC

There are three key issues to consider in the code defect detection process based on the
programming logic model:
1) The difficult of Strong constraint relationship positioning. Not all methods have a
constraint relationship, even if there is a constraint relationship, the strength of the
relationship is not the same. How to determine the scope of this constraint relationship,
more accurately, how to find other methods with a strong constraint relationship with a
method is the first key issue in this paper.
2) The cross-program expression of the same method is quite different. Software
development is a subjective process, and developers have personalization issues when
naming objects. Compare two simple statements int len=str.length() and int l=s.length().
Although there are differences in expressions, essentially, there is no difference in the
rules of the call and the functions implemented. How to minimize the negative impact of
programming personalization on the model is the second key issue in this paper. 3)The
sparse and dimensionality of feature data. How to use the relevant methods to analyze the
influence degree of different features on code defects, and then select the features with
greater influence to effectively reduce the dimension of features, reduce the impact of
data sparseness on the model and avoid the occurrence of dimensionality disaster is the
third key issue of this paper.

4 Programming logic model based on method constraint relationship
Code-Predicting Model based on Method Constraints CPMMC mainly includes two steps
of programming logic abstraction and modeling. The overall modeling idea is shown in
Fig. 2. In the abstract part of the programming logic. Firstly, by analyzing and expanding
the constraint relationship of the method, the code feature words of the method call are
constructed; Then the sequence of method calls involved in the object is converted into a
sequence of code feature words. In the modeling part of the programming logic, based on
the N-gram idea, the abstracted code feature word sequence is segmented by sliding, the
frequency of different Nary segments is obtained statistically, and the programming logic
model is constructed.

280 CMC, vol.64, no.1, pp.273-295, 2020

Figure 2: Programming logic modeling idea diagram based on method constraint relationship

4.1 Code abstraction
Code abstraction is the core of the model build, which determines the overall structure of
the model and the representation of the method call in the model (code feature words).

4.1.1 Object hierarchical abstract structure
Before determining the overall structure of the model, we need to analyze the scope of the
method constraint relationship. That is to find strong constraints as much as possible. Alan
Kay analyzed the characteristics of object-oriented languages. He proposed that programs
are collections of objects that send messages to tell each other what to do [Eckel (2005)].
Therefore, an object-oriented program can be thought of as a network with objects as nodes
and method calls (messaging) as edges. Based on the basic characteristics of the network,
this paper can qualitatively believe that there is a close relationship between the edges of
the same node. That is to say, in general, there is a strong constraint relationship between
method calls involved in the same object. Therefore, this paper limits the basic structure of
the model to the sequence of meth-od calls involved in the same object. In this model, the
source code is abstracted into three levels, formalized as:
𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶 = {𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶1,𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶2,⋯ ,𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛} (1)

𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶 = {𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂1,𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂2,⋯ , 𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂} (2)

𝑆𝑆𝐶𝐶𝑞𝑞 = 𝑀𝑀𝐶𝐶𝑡𝑡ℎ𝑜𝑜𝐶𝐶1 ⋅ 𝑀𝑀𝐶𝐶𝑡𝑡ℎ𝑜𝑜𝐶𝐶2 ⋯𝑀𝑀𝐶𝐶𝑡𝑡ℎ𝑜𝑜𝐶𝐶𝑙𝑙 (3)
𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 represents the collection of code statements involved in the nth class,
𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 represents the sequence of method calls involved in the mth object in the
same class, and 𝑀𝑀𝐶𝐶𝑡𝑡ℎ𝑜𝑜𝐶𝐶𝑙𝑙 represents the lth method call in the same method call
sequence. This article converts source code into a collection of method call sequences
𝑆𝑆𝐶𝐶𝑞𝑞, each of which describes a method call statement that an object refers to.

4.1.2 Feature word selection based on method constraint relationship
On the basis of the previous section, this paper analyzes the method call statement
Method from the three main levels of the constraint relationship, the expression form and
the extension of the constraint relationship, and extracts the code feature words to
describe it. As shown in Fig. 3.

Programming Logic Modeling and Cross-Program Defect Detection 281

Figure 3: Code feature word analysis process of CPMMC

The Subject of the Constraint Relationship. The subject of the constraint relationship is the
method call with the constraint relationship. This method call can come from the object itself
or from other objects, so it needs to be represented by the object name 𝑂𝑂𝑂𝑂𝑂𝑂𝐶𝐶𝑂𝑂𝑡𝑡𝑂𝑂 of the
method call. Reference [Eckel (2005)] defines a combination of a parameter list (including
the number and type of parameters) and a method named as a “method signature”, which
uniquely identifies a method, and defined the method name 𝑀𝑀𝐶𝐶𝑡𝑡ℎ𝑜𝑜𝐶𝐶𝑂𝑂 and parameter list
𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝑚𝑚𝐶𝐶𝑡𝑡𝐶𝐶𝑃𝑃 as candidate feature words. In order to solve the problem of personalized
naming when developers name objects, this paper abstracts the object name 𝑂𝑂𝑂𝑂𝑂𝑂𝐶𝐶𝑂𝑂𝑡𝑡𝑂𝑂 as the
class name 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂. After experi-mental analysis, adding the parameter list directly to the
code feature word does not improve the accuracy of the model, so the parameter list
𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝑚𝑚𝐶𝐶𝑡𝑡𝐶𝐶𝑃𝑃 is finally eliminated. Based on the above analysis, the feature representing the
subject of the constraint relationship is determined to be < 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂,𝑀𝑀𝐶𝐶𝑡𝑡ℎ𝑜𝑜𝐶𝐶𝑂𝑂 >.
The Manifestation of the Constraint Relationship. The representation of the constraint
relationship is reflected in the code as the relationship between the method and the
𝑂𝑂𝑂𝑂𝑂𝑂𝐶𝐶𝑂𝑂𝑡𝑡𝑂𝑂 in the 𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛 . This relationship is divided into three cases in the Java
language: the object is the calling body of the method, the object is the parameter of the
method, and the return value of the method is assigned to object. In order to de-scribe
these three cases, this paper draws on the research results of Raychev et al. [Raychev,
Vechev and Yahav (2014)], which is represented by a placeholder 𝑅𝑅𝐶𝐶𝑙𝑙𝐶𝐶𝑡𝑡𝑅𝑅𝑜𝑜𝑂𝑂.
The Expansion of the Constraint Relationship. There are also interactions between
different code elements in the same line of code, where the assignment symbol represents
the strongest relationship. In order to reflect this relationship, this paper extends the
return value Return of the method as a complement to the method constraint relationship.
The value is as follows:

𝑅𝑅𝐶𝐶𝑙𝑙𝐶𝐶𝑡𝑡𝑅𝑅𝑜𝑜𝑂𝑂 = �
0 The object is the calling body of the method
𝑂𝑂,𝑂𝑂 ∈ 𝑂𝑂 The object is the nth argument of the method ret
𝑃𝑃𝐶𝐶𝑡𝑡 The return value of the method is assigned to the object

 (4)

In summary, a method call can be represented by a four-tuple, which is expressed as:

𝑀𝑀𝐶𝐶𝑡𝑡ℎ𝑜𝑜𝐶𝐶 = < 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂,𝑂𝑂𝐶𝐶𝑚𝑚𝐶𝐶,𝑅𝑅𝐶𝐶𝑡𝑡𝑅𝑅𝑃𝑃𝑂𝑂,𝑅𝑅𝐶𝐶𝑙𝑙𝐶𝐶𝑡𝑡𝑅𝑅𝑜𝑜𝑂𝑂 > (5)
𝑀𝑀𝐶𝐶𝑡𝑡ℎ𝑜𝑜𝐶𝐶 is a method call to the object, 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂 is the class name, 𝑂𝑂𝐶𝐶𝑚𝑚𝐶𝐶 is the method
name, 𝑅𝑅𝐶𝐶𝑡𝑡𝑅𝑅𝑃𝑃𝑂𝑂 is the return type of the method, and 𝑅𝑅𝐶𝐶𝑙𝑙𝐶𝐶𝑡𝑡𝑅𝑅𝑜𝑜𝑂𝑂 is the relationship between

282 CMC, vol.64, no.1, pp.273-295, 2020

the object and the method.
In addition, two common situations can affect the extraction sequence 𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛 .
1)When a conditional selection statement (such as if/else, switch/case) occurs, the
program executes several complete and independent instructions due to different
conditions, so it is necessary to construct several independent codes according to
different conditions. sequence. 2)When the same object appears in different code
structures, appropriate structural constraints become necessary to reduce complexity.
Considering that the code in the program is closely related to the previous lines of code
[Hindle, Barr, Gabel et al. (2016)], and the most closely coupled code statements are
often in the same function. This paper defines the scope of the code sequence as the
function body, and the same object appears in multiple function bodies. The situation is
treated as multiple independent code sequences.
Fig. 4 is a piece of code fragment in the Stack overflow 2 website, which can be
abstracted into a sequence of code feature words of three objects, as shown in Tab. 1.

Figure 1: Code fragment in Stack overflow

Table 1: Code feature word sequence of CPMMC
Class Code feature word sequence

SmsManager

{(SmsManager,getDefault,SmsManager,ret)·

(SmsManager,divideMsg,ArrayList<String>,0)·

(SmsManager,sendMultipartTextMessage,void,0)}

{(SmsManager,getDefault,SmsManager,ret)·

(SmsManager,sendTextMessage,Void,0)}

String

{(String,length,Int,0)·

(String,divideMsg,ArrayList<String>,1)}

{(String,length,Int,0)·

(String,sendTextMessage,Void,1)}

ArrayList

<String>

{(ArrayList<String>,divideMsg,ArrayList<String>,ret)·

(ArrayList<String>,sendMultipartTextMessage,Void,1)}

2 Stack Overflow. https://stackoverflow.com/.

Programming Logic Modeling and Cross-Program Defect Detection 283

4.2 Construct feature vector
Based on the code abstraction, inspired by the bag of words, the N-gram method is used to
segment the method call sequence of each object. CPMMC uses the trigram model to slide
a code feature word sequence 𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛 of length 𝑙𝑙 into 𝑙𝑙 − 2 consecutive sequences.
𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛 ↦ {𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂1, 𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂2,⋯ , 𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂𝑙𝑙−2} (6)
where 𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂1 represents a sequence of three consecutive code feature words
𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂𝑖𝑖 = 𝑀𝑀𝐶𝐶𝑡𝑡ℎ𝑜𝑜𝐶𝐶𝑖𝑖1 ⋅ 𝑀𝑀𝐶𝐶𝑡𝑡ℎ𝑜𝑜𝐶𝐶𝑖𝑖2 ⋅ 𝑀𝑀𝐶𝐶𝑡𝑡ℎ𝑜𝑜𝐶𝐶𝑖𝑖3 (7)
After the segmentation, the source 𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶 a becomes a set of n 𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂
𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶 ↦ {𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂1,𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂2,⋯ , 𝑆𝑆𝐶𝐶𝑞𝑞𝑂𝑂𝑛𝑛} (8)
When using unigram (N-gram split, N is 1) feature, you can get a list of features, as
shown in Tab. 2. A feature vector is created for each class file, the elements of which
represent the number of times each feature appears in the list, i.e., the frequency. Because
when the model in this paper considers the code logic, the conditional selection structure
is treated as multiple independent method call sequences according to different
conditions. Although the features (SmsManager, getDefault, SmsManager, ret) and
(String, length, Int, 0) appear only once in the code, the feature vector of the file is 1, 1, 1,
1, 1, 1, because they exist in the two method call sequences. Similarly, when using the
bigram (N-gram split, N is 2) feature, the feature list and appearance frequency are as
shown in Tab. 3. The feature vector of the file is {2, 1, 1, 1, 2, 1, 1, 1, 1}. It is worth
noting that when the program size increases, the dimensions of the bigram feature can be
much higher than the trigram feature.

Table 2: Unigram feature vector
Feature list Frequency

(SmsManager, getDefault, SmsManager, ret)

(SmsManager, divideMsg, ArrayList <String>, 0)
1

(SmsManager, divideMsg, ArrayList <String>, 0)

(SmsManager, sendMultipartTextMessage, void, 0)
1

(SmsManager, getDefault, SmsManager, ret)

(SmsManager, sendTextMessage, void, 0)
1

(String, length, Int, 0)

(String, divideMsg, ArrayList <String>, 1)
1

(String, length, Int, 0)

 (String, sendTextMessage, void, 1)
1

(ArrayList <String>, divideMsg, ArrayList <String>, ret)

(ArrayList <String>, sendMultipartTextMessage, void, 1)
1

284 CMC, vol.64, no.1, pp.273-295, 2020

Table 3: Bigram feature vector
Feature list Frequency

(SmsManager, getDefault, SmsManager, ret) 2

(SmsManager, divideMsg, ArrayList <String>, 0) 1

(SmsManager, sendMultipartTextMessage, void, 0) 1

(SmsManager, sendTextMessage, void, 0) 1

(String, length, Int, 0) 2

(String, divideMsg, ArrayList <String>, 1) 1

5 Object-oriented code defect detection based on programming logic
The essence of code defect detection is a binary Classification problem that deter-mines
whether a code defect exists on a given code component. After the construction of the
programming logic model, the data sparseness and dimensionality disasters have become
the key issues to be solved in this paper. In this section, the feature selection and vector
dimension reduction are completed by the idea of hypothesis testing, on the basis of
which the classifier is constructed to implement code defect detection.

5.1 Code feature word sorting algorithm based on hypothesis testing
The feature selection algorithm aims to identify a subset of features that have a greater
contribution to the classification. Feature selection is especially important in the case of
more features and fewer samples. In this paper, the feature features based on hypothesis
testing is used to sort features, thereby eliminating a large number of unrelated or less
important features, and retaining a small number of features. The remaining features are
discarded. This method has been applied to the fault location of graphics software by Xue
et al. [Xue, Pang and Namin (2015)] and has achieved good results.
Hypothesis testing is an important method in statistical inference. The basic idea is the
small probability counter method: the idea of small probability means that the small
probability event (𝑃𝑃 < 0.01 or 𝑃𝑃 < 0.05) does not basically occur in one experiment; the
idea of counter-evidence is to make the hypothesis first (Test hypothesis 𝐻𝐻0), and then
use appropriate statistical methods to determine the probability of the hypothesis being
established. If the probability is small, the hypothesis is not established. If the probability
is large, the alternative hypothesis cannot be considered to established. More specifically,
there are two competing assumptions: the null hypothesis and the alternative hypothesis.
The null hypothesis 𝐻𝐻0 assumes that there is no difference between the two sets of
features; and the alternative hypothesis 𝐻𝐻1 implies a statistically significant difference
between the two sets of features. The probability value (value 𝑝𝑝) of the hypothesis test
actually is the probability of error, that is, the original hypothesis 𝐻𝐻0 is true, but we still
assume that it is false and then reject it (Type I Error). So we expect the probability of
making mistakes to be as small as possible. The greater the value 𝑝𝑝, the more cautious
and the less likely it is to refuse 𝐻𝐻0. In summary, the magnitude of the value 𝑝𝑝 can be a
measure of the strength of the null hypothesis 𝐻𝐻0. We have developed the following null

Programming Logic Modeling and Cross-Program Defect Detection 285

hypotheses and alternative hypotheses, the purpose of which is to sort the features by the
calculated value 𝑝𝑝 .

𝐻𝐻0
𝑓𝑓𝑖𝑖:𝜇𝜇𝑟𝑟𝑟𝑟𝑂𝑂

𝑓𝑓𝑖𝑖 = 𝜇𝜇𝑑𝑑𝑂𝑂𝑓𝑓
𝑓𝑓𝑖𝑖 (9)

𝐻𝐻1
𝑓𝑓𝑖𝑖:𝜇𝜇𝑟𝑟𝑟𝑟𝑂𝑂

𝑓𝑓𝑖𝑖 ≠ 𝜇𝜇𝑑𝑑𝑂𝑂𝑓𝑓
𝑓𝑓𝑖𝑖 (10)

where 𝐻𝐻0
𝑓𝑓𝑖𝑖 represents that the statistical result of feature fi in the robust code is not

substantially different from the statistical result of feature fi in the defect code; 𝐻𝐻1
𝑓𝑓𝑖𝑖

means that there is an essential difference between the two in terms of statistics.
Therefore, the smaller the value 𝑝𝑝, the greater the probability that there is an essential
difference between the two.
Mann-Whitney-Wilcoxon is a non-parametric alternative to two-sample t-test, which
does not rely on the assumption of data complying with any distribution [Siegal (1956)].
The Wilcoxon rank sum test observes the observations of the two samples and derives the
shape and center of the two data sets based on the sum of the ranks observed for each
sample. More specifically, the Wilcoxon rank sum test statistic is the sum of observations
from one of the samples. Wilcoxon rank sum test has been widely used in bioinformatics,
including tumor diagnosis by analyzing gene maps [Deng, Ma and Pei (2004)], cell type-
specific labeling of microRNAs on target mRNA expression [Sood, Krek, Zavolan et al.
(2006)], and asthma research on the development of allergic rhinitis [Möller, DreborgM,
Ferdousi et al. (2002)].

Figure 2: Thought chart of feature word sorting algorithm based on hypothesis test

286 CMC, vol.64, no.1, pp.273-295, 2020

Fig. 5 shows the idea of the algorithm in this paper. The data is organized in a matrix,
with each column representing a feature, with each row representing a source file. The
elements in the 𝑘𝑘 column of the 𝑅𝑅 row represent the frequency of the kth characteristic 𝑓𝑓𝑘𝑘
appearing in the 𝑅𝑅 file. Line 1 of the matrix to the 𝑅𝑅 behavior robust code file, line 𝑅𝑅 + 1 to
the 𝑅𝑅 + 𝑂𝑂 behavior defect code file. For the first feature 𝑓𝑓1 in Fig. 3, the frequency vector
𝐶𝐶𝑟𝑟(𝑓𝑓1) = (3, 2, 1, 1, 2, 0) in the robust code file can be obtained statistically, while the
frequency vector 𝐶𝐶𝑑𝑑(𝑓𝑓1) = (1, 4, 0, 2, 3, 0) in the defect code file, based on 𝐶𝐶𝑟𝑟(𝑓𝑓1) and
 𝐶𝐶𝑑𝑑(𝑓𝑓1) , f1 can be calculated in the Wilcoxon rank sum test 𝑝𝑝 = 0.783.
In this paper, we finally sort them according to the 𝑝𝑝 value of each feature. The algorithm
of feature sorting is shown in Tab. 4.

Table 4: Feature sorting algorithm
Algorithm: Ranking Features for OCDDM
input:

N-gram feature number N, feature set𝐹𝐹 = {𝑓𝑓1, 𝑓𝑓2 ⋯𝑓𝑓𝑁𝑁},
Robust code source𝑆𝑆𝑅𝑅 = {𝐶𝐶𝑃𝑃1, 𝐶𝐶𝑃𝑃2 ⋯𝐶𝐶𝑃𝑃𝐼𝐼}
Defect code source𝑆𝑆𝑆𝑆 = �𝐶𝐶𝐶𝐶1 , 𝐶𝐶𝐶𝐶2 ⋯ 𝐶𝐶𝐶𝐶𝐽𝐽�

output:
Feature sorting 𝑅𝑅𝐹𝐹

1. define a list of features p-value: 𝑃𝑃 = {𝑝𝑝1, 𝑝𝑝2⋯𝑝𝑝𝑁𝑁}
2. define a list of robust code vectors: 𝐶𝐶𝑅𝑅 = {𝐶𝐶𝑟𝑟(𝑓𝑓1)⋯𝐶𝐶𝑟𝑟(𝑓𝑓𝐼𝐼)}
3. define a list of defect code vectors: 𝐶𝐶𝑆𝑆 = �𝐶𝐶𝑑𝑑(𝑓𝑓1)⋯𝐶𝐶𝑑𝑑�𝑓𝑓𝐽𝐽��
4. foreach p-value n=1 to N
5. initialize 𝑝𝑝𝑛𝑛 = 0
6. for n=1 to N
7. for i=1 to I
8. 𝐶𝐶𝑟𝑟(𝑓𝑓𝑛𝑛) = 𝐶𝐶𝑟𝑟(𝑓𝑓𝑛𝑛) ∪ �𝐶𝐶𝑃𝑃𝑖𝑖 .𝑂𝑂𝑅𝑅𝑚𝑚(𝑓𝑓𝑛𝑛)�
9. end for
10. for j=1 to J
11. 𝐶𝐶𝑑𝑑(𝑓𝑓𝑛𝑛) = 𝐶𝐶𝑑𝑑(𝑓𝑓𝑛𝑛) ∪ �𝐶𝐶𝐶𝐶𝑂𝑂 .𝑂𝑂𝑅𝑅𝑚𝑚(𝑓𝑓𝑛𝑛)�

12. end for
13. 𝑝𝑝𝑛𝑛 = 𝑊𝑊𝑅𝑅𝑙𝑙𝑂𝑂𝑜𝑜𝑊𝑊𝑜𝑜𝑂𝑂′𝐶𝐶 𝑇𝑇𝐶𝐶𝐶𝐶𝑡𝑡�𝐶𝐶𝑟𝑟(𝑓𝑓𝑛𝑛),𝐶𝐶𝑑𝑑(𝑓𝑓𝑛𝑛)�
14. end for
15. while 𝑂𝑂𝑜𝑜𝑡𝑡𝑂𝑂𝑅𝑅𝑙𝑙𝑙𝑙(𝑃𝑃) do
16. for n=1 to 𝑃𝑃. 𝑆𝑆𝑅𝑅𝑆𝑆𝐶𝐶
17. if 𝑅𝑅𝐶𝐶𝑀𝑀𝑅𝑅𝑂𝑂(𝑝𝑝𝑛𝑛) then
18. 𝑅𝑅𝐹𝐹.𝐶𝐶𝐶𝐶𝐶𝐶(𝑓𝑓𝑛𝑛)
19. 𝐹𝐹. 𝑃𝑃𝐶𝐶𝑚𝑚𝑜𝑜𝑟𝑟𝐶𝐶(𝑓𝑓𝑛𝑛)
20. 𝑆𝑆. 𝑃𝑃𝐶𝐶𝑚𝑚𝑜𝑜𝑟𝑟𝐶𝐶(𝐶𝐶𝑛𝑛)
21. end if
22. end for
23.end while

At this point, all features are ordered according to their strength in the hypothesis test.

Programming Logic Modeling and Cross-Program Defect Detection 287

The smaller the intensity, the smaller the value 𝑝𝑝, indicating that from a statistical point
of view, the feature has a clear distinction between robust code and defect code, and can
provide a greater contribution to the classifier.

5.2 Object-oriented code defect detection base on support vector machine
The essence of code defect detection is a binary classification that determines whether a
code defect exists for a given code component. Different researchers often use different
machine learning algorithms when classifying, such as support vector machines, logistic
regression, neural networks, decision trees, random forests, and k-means. It is widely
believed that this depends to a large extent on the characteristics of the training data and the
categorical data. In the research of this paper, because the training data requires labeled
source code, that is, which classes in the known code are robust and which are defective,
the experimental sample size is relatively small. In addition, although feature selection has
been made, the impact of high dimensional features on the classifier needs to be considered.
This paper compares different classification algorithms and finally decides to use support
vector machine (SVM) to solve object-oriented code defect analysis.
Support vector machine is a machine learning method based on statistical learning theory.
Its biggest feature is to maximize the learning machine’s generalization ability according
to the Vapnik structure [Vapnik (1997)] risk minimization principle, that is, small errors
obtained from a limited training set sample can still guarantee a small error for
independent test sets [Rao, Dong and Yang (2003)]. Since the support vector algorithm is
a convex optimization problem, the local optimal solution must be the global optimal
solution, which is be-yond the reach of other machine learning algorithms [Rao, Dong
and Yang (2003)]. In addition, the good adaptability of the support vector machine to
high dimensional features also makes it have certain advantages in the problem to be
solved in this paper.

6 Experimental implementation and results analysis
6.1 CPMMC model test
6.1.1 Experimental setup
According to the CPMMC model, the open source Java code is taken as a sample to
predict the method calls in the code, verify the effect and performance of the CPMMC
model, and analyze the applicable scope of the CPMMC model.
Data Collection. Validating the effect of the model in code prediction requires a large
amount of object-oriented source code. The experiments in this article obtained 11 Java
open source code scores above 1000 Stars on the GitHub website, with a total code of
139KLOC. In order to remove the interference of developers’ custom classes on
predictions, the experiment collected 4024 classes defined in the JavaTM Plat-form
Standard Ed. 7 version, 51641 methods contained in these classes, and set it as the scope
of experimental prediction.
Experimental Design. The experiment used 90% of the source code as the training set
and the remaining 10% as the test set. we randomly delete 100 method calls in the test
set, marked as the point P.P (Predicting Point) to be predicted, and ensure that the object

288 CMC, vol.64, no.1, pp.273-295, 2020

that calls P.P has at least involved the call of 2 methods.
The experiment is divided into a model training part and a code prediction part, as shown
in Fig. 6. In the model training part, we analyze the training set, get the inter-mediate
code. The call sequence of the method is extracted, and the obtained sequence is N-gram-
segmented to construct a CPMMC model. In the code prediction section, we analyze the
incomplete code fragments in the test set, and extract the method call sequence with P.P
to build the CPMMC model. Then, according to the probability distribution of the
sequence of feature words obtained by training, a recommendation list of P.P is given.

Figure 6: CPMMC model test experiment overall framework

In order to evaluate the accuracy of the prediction, the experiment designed three
indicators, Top 1, Top 3 and Top 15. Top 1 indicates the probability that the first meth-od
recommended by the model is the correct method. Top 3 indicates the probability that the
first three methods in the recommendation list contain the correct method, and Top 15
indicates the probability that the first 15 methods in the recommendation list contain the
correct method.

6.1.2 Comparative experiment and analysis
In order to evaluate the advanced nature of the CPMMC model, we compare the model of
this paper with the SLANG (Statistical Language Model) model [Nicolai and Cheng
(1981)] with the highest prediction accuracy. To verify the rationality of the model, we
also built a CPMMC model with a list of parameters (represented by CPMMC_P). We
used these three models to predict 100 identical P.P. The experimental results are shown
in Fig. 7.

Programming Logic Modeling and Cross-Program Defect Detection 289

Figure 7: Experimental results of the three models

It can be seen that compared with the SLANG model, the accuracy of the CPMMC model
is significantly improved, Top 1 is increased from 0.56 to 0.64, Top 3 is in-creased from
0.80 to 0.87, and Top 15 is increased from 0.94 to 0.95. This also verifies that the
CPMMC model solves the problem of personalized naming of objects. And the addition
of the constraint relationship of different elements in the same line of code significantly
improves the accuracy of the prediction. The two models have little difference in Top 15
indicators, both of which are above 94%, mainly because both models can effectively
capture the developer’s rules for using Java methods as the indicators are relaxed.
By comparing the experimental results of the CPMMCP model and the CPMMC_P
model, it can be found that the accuracy of the CPMMC_P model pre-diction is
significantly reduced. On the surface, adding a parameter list will make the model data
sparser. For example, the String class is common in source code. One of its methods
indexOf has four methods of the same name indexOf(int), indexOf(string), indexOf(int,
int), indexOf(string, int) after overloading. Although indexOf may get a higher
probability value, if it is dispersed into 4 methods, the probability value of each method is
not high. However, in essence, since the target of the prediction is the method name and
does not go deep into the overload of the method, adding the parameter list will cause the
over-fitting phenomenon, so the effect of the CPMMCP model is not good.

6.2 Code defect detection algorithm test
6.2.1 Experimental setup
Data Collection. In order to verify OCDDM’s ability to detect object-oriented code
defects, the experimental data selected Scandariato et al. [Scandariato, Walden,
Hovsepyan et al. (2014)] provided four Android software source code with annotations in
2014, as shown in Tab. 5. These codes are available on the F-Droid and GitHub websites,
which are of different types and have a large user base. Another reason for choosing these
programs is that Scandariato et al. [Scandariato, Walden, Hovsepyan et al. (2014)] and
Pang et al. [Pang, Xue, and Namin (2015)] and others have verified their proposed text-
based analysis of code defect detection methods on this data set, and achieved good

290 CMC, vol.64, no.1, pp.273-295, 2020

results.

Table 5: Labeled experimental data

Software Number of classes Average size of the class

Anki-Android 255 18.95 K

Connectbot 235 6.41 K

CoolReader 94 13.18 K

k9Mail 519 11.96 K

Evaluation Index. In the field of statistics, in order to evaluate the performance of the
classifier, it is often necessary to evaluate two important indicators of the classifier:
Precision and Recall. The precision reflects the proportion of the true positive case in the
positive case determined by the classifier; the recall reflects the proportion of the positive
case correctly determined by the classifier in all true positive cases. Obviously the larger
the two indicators, the better the performance of the classifier.
In order to calculate the above indicators, the experimental results are divided into four
categories, the real example TP (true positive), false positive example FP (false positive),
true counterexample TN (true negative), false counterexample FN (false negative).
Precision and recall rates are calculated as follows:

𝑃𝑃𝑃𝑃𝐶𝐶𝑂𝑂𝑅𝑅𝐶𝐶𝑅𝑅𝑜𝑜𝑂𝑂 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (11)

 𝑅𝑅𝐶𝐶𝑂𝑂𝐶𝐶𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

 (12)

Although in the ideal case, the better the precision and accuracy are higher, in reality, the
two tend to have a negative correlation, while one increases and the other is likely to
decrease. In order to better evaluate the effectiveness of our method, the value of F1 is
used to comprehensively assess classification performance. The definition is as follows:

𝐹𝐹1 = 2×𝑇𝑇𝑟𝑟𝑂𝑂𝑂𝑂𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛×𝑅𝑅𝑂𝑂𝑂𝑂𝑅𝑅𝑙𝑙𝑙𝑙
𝑇𝑇𝑟𝑟𝑂𝑂𝑂𝑂𝑖𝑖𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛+𝑅𝑅𝑂𝑂𝑂𝑂𝑅𝑅𝑙𝑙𝑙𝑙

 (13)

6.2.2 Comparative experiment and analysis
In order to verify the advanced nature of the method, the OCDDM method is com-pared
with the method proposed by Scandariato et al. [Scandariato, Walden, Hovsepyan et al.
(2014)] and Pang et al. [Pang, Xue, Namin et al. (2015)], which are in a leading state in
the code defect detection method based on text analysis. For convenience of description,
we will refer to these two methods as SM (Scandariato’s Method) and PM (Pang’s
Method). In the experiment, we take all the features of N≤3 in the N-gram segmentation,
and take the top 5% to 20% of the features after sorting the features. We designed two
experiments to compare these three methods.
Cross-Validation. This article uses a layered 5-fold cross-validation experiment for each
application and provides support using the Weka [Holmes, Donkin and Witten (2002)]

Programming Logic Modeling and Cross-Program Defect Detection 291

tool. The tool randomly divides the file into five subsets, with the constraint that the ratio
between the robust code file and the defect code file is the same in all subsets. Each
subset is used as a test set in an iterative manner, and the remaining subsets are used as
training sets. The experimental results are shown in Fig. 8.

Figure 8: Cross-validation result

It can be seen from the experimental results that the PM method is higher than the SM
method in terms of various indexes, which is the same as the text analysis theory, and the
PM method is related to the improvement of the SM method.
Compared with the two, OCDDM has a better effect on detection accuracy, but the recall
rate is lower than PM. This can explain two problems. One is that programming logic
errors have a very high probability of causing code defects. Second, some code defects
cannot be represented by the programming logic model (such as the overflow of the
operation results).
It can be seen from the F1 value that the OCDDM method is superior to the SM method
in overall performance and has little difference from the PM method. This shows that this
method can effectively detect code defects in the same program detection.
Cross-Program Detection. Cross-program detection is a very important indicator of
code defect detection. It embodies the versatility of the detection method, because it is
difficult for the tester to label a part of the code file as a training set when testing each
software. In order to verify the performance of each method in cross program detection,
this paper uses all the Java files of each application as the training set, and the other three
programs as the test set. The experimental results are shown in Fig. 9:

292 CMC, vol.64, no.1, pp.273-295, 2020

Figure 9: Cross-program test results

From the experimental results, in the cross-program detection, although compared with
the experimental (1), the detection performance is difficult to avoid a large de-cline, but
the OCDDM is better than the other two in the accuracy, recall and F1 value indicators.
This is a delightful result, although different developers have different programming
styles, but they still follow similar programming logic, thanks to the relatively standard
way of using a large number of Java methods. At the same time, this set of experiments
also shows that adding programming logic to text analysis can make code defect
detection more versatile.

7 Conclusion
This paper takes open source code as the research object, and studies the general rules
and personalization habits of human programming process, studies the object-oriented
open source code programming logic modeling and application, and explores the
potential logic and rules of human programming, aiming at code defects based on text
analysis. The detection method is not effective in cross-program. A CPMMC based
object-oriented code defect detection method is proposed, which uses programming logic
instead of plain text analysis and N-gram technology to extract code features. The
Wilcoxon rank sum test method is used to select the appropriate features and vectorize
them, and finally realize the defect detection of the object-level code at the file level.
Experiments show that this method can effectively detect the defect files in the object-
oriented code, and the accuracy, recall rate and F1 value of the existing methods are
improved in the cross-program detection.
The work of further research includes the following two aspects:
1. The object-oriented programming logic model constructed in this paper is at the

Programming Logic Modeling and Cross-Program Defect Detection 293

method level, which studies the logic of the developer when calling the method and does
not analyze the finer granular programming behavior. In fact, in order to further
implement technologies such as automated programming, it is necessary to extend the
programming logic to the entire programming behavior, from the creation of more
granular classes, the instantiation of objects, to the use of less granular keywords.
Therefore, the next step will be to explore and model the developer’s thinking logic at a
fine-grained level.
2. The CPMMC-based object-oriented code defect detection method proposed in this
paper improves the performance of the existing text-based defect detection technology in
cross-program detection, but at present it can only effectively determine whether the file
contains defects and it is difficult to determine the code. The specific location of the
defect. Therefore, the next step will be to study the manifestation of code defects in
programming logic, break the limitations of file detection, and conduct research on code
body detection at the function body and fragment level.

Funding Statement: This work was supported by National Key RD Program of China
under Grant 2017YFB0802901.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Bielak, J; Biffl, S. (2003): Personal software process. Computer Engineering &
Applications, vol. 13, no. 3, pp. 1-580.
Deng, L.; Ma, J.; Pei, J. (2004): Rank sum method for related gene selection and its
application to tumor diagnosis. Chinese Science Bulletin, vol. 49, no. 15, pp. 1652-1657.
Eckel, B. (2005): Thinking in Java (Revision 4.0). http://www.mindview.net.
Gharehyazie, M.; Ray, B.; Keshani, M.; Zavosht, M. S.; Heydarnoori, A. et al.
(2019). Cross-project code clones in GitHub. Empirical Software Engineering, vol. 24,
no. 3, pp. 1538-1573.
Gruska, N.; Wasylkowski, A.; Zeller, A. (2010): Learning from 6,000 projects:
lightweight cross-project anomaly detection. Nineteenth International Symposium on
Software Testing and Analysis, pp. 119-130.
Hata, H.; Mizuno, O.; Kikuno, T. (2010): Fault-prone module detection using large-
scale text features based on spam filtering. Empirical Software Engineering, vol. 15, no.
2, pp. 147-165.
Hindle, A.; Barr, E. T.; Gabel, M; Su, Z.; Devanbu, P. (2016): On the naturalness of
software. Communications of the ACM, vol. 59, no. 5, pp. 122-131.
Holmes, G.; Donkin, A.; Witten, I. H. (2002): WEKA: a machine learning workbench.
Proceedings of ANZIIS ‘94-Australian New Zealnd Intelligent Information Systems
Conference, pp. 357-361.

294 CMC, vol.64, no.1, pp.273-295, 2020

ISO/IEC/IEEE International Standard (2017): ISO/IEC/IEEE international standard-
systems and software engineering-vocabulary. ISO/IEC/IEEE 24765:2017(E).
Mizuno, O.; Ikami, S.; Nakaichi, S.; Kikuno, T. (2007): Spam filter based approach for
finding fault-prone software modules. International Workshop on Mining Software
Repositories, pp. 1-4.
Möller, C.; DreborgM, S.; Ferdousi, H. A.; Halken, S.; Høst, A. et al. (2002): Pollen
immunotherapy reduces the development of asthma in children with seasonal
rhinoconjunctivitis (the PAT-study). Journal of Allergy and Clinical Immunology, vol.
109, no. 2, pp. 251-256.
Neuhaus, S.; Zimmermann, T.; Holler, C.; Zeller, A. (2007): Predicting vulnerable
software components. ACM Conference on Computer and Communications Security, pp.
529-540.
Nicolai, M.; Cheng, R. (1981): SLANG, a statistical language for descriptive time series
analysis. Computer Science and Statistics: Proceedings of the 13th Symposium on the
Interface, pp. 320-323.
Pang, Y.; Xue, X.; Namin, A. S. (2015): Predicting vulnerable software components
through N-gram analysis and statistical feature selection. IEEE International Conference
on Machine Learning and Applications, pp. 543-548.
Raychev, V.; Vechev, M.; Yahav, E. (2014): Code completion with statistical language
models. Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, vol. 49, no. 6, pp. 419-428.
Rao, X.; Dong, C.; Yang, S. (2003): Statistic learning and intrusion detection. Wang, G.,
Liu, Q., Yao, Y., Skowron, A. (eds.) Rough sets, fuzzy sets, data mining, and granular
computing. Lecture Notes in Computer Science, vol. 2639, pp. 652-659.
Scandariato, R.; Walden, J.; Hovsepyan, A.; Joosen, W. (2014): Predicting vulnerable
software components via text mining. IEEE Transactions on Software Engineering, vol.
40, no. 10, pp. 993-1006.
Shar, L. K.; Tan, H. B. K. (2012): Predicting common web application vulnerabilities
from input validation and sanitization code patterns. IEEE/ACM International
Conference on Automated Software Engineering, pp. 310-313.
Shar, L. K.; Tan, H. B. K. (2013): Predicting SQL injection and cross site scripting
vulnerabilities through mining input sanitization patterns. Information & Software
Technology, vol. 55, no. 10, pp. 1767-1780.
Shar, L. K.; Briand, L. C.; Tan, H. B. K. (2015): Web application vulnerability
prediction using hybrid program analysis and machine learning. IEEE Transactions on
Dependable & Secure Computing, vol. 12, no. 6, pp. 688-707.
Siegal, S. (1988): Nonparametric Statistics for the Behavioral Sciences, Second Edition.
McGraw-Hill Humanities.
Sood, P.; Krek, A.; Zavolan, M.; Macino, G.; Rajewsky, N. (2006): Cell-type-specific
signatures of microRNAs on target mRNA expression. Proceedings of the National
Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2746-2751.

Programming Logic Modeling and Cross-Program Defect Detection 295

Vapnik, V. N. (2000): The nature of statistical learning theory, second edition. Statistics
for Engineering and Information Science, pp. 1-314
Xue, X.; Pang, Y.; Namin, A. S. (2015): Feature selections for effectively localizing
faulty events in GUI applications. International Conference on Machine Learning and
Applications, pp. 306-311.
Yamaguchi, F.; Lindner, F.; Rieck, K. (2011): Vulnerability extrapolation: assisted
discovery of vulnerabilities using machine learning. USENIX Workshop on Offensive
Technologies, pp. 13-13. San Francisco, CA, USA.
Yamaguchi, F.; Lottmann, M.; Rieck, K. (2012): Generalized vulnerability
extrapolation using abstract syntax trees. Computer Security Applications Conference, pp.
359-368. Orlando, FL, USA.
Yao, Y.; Huang, S.; Feng, C.; Liu, C.; Xu, C. (2019): CD3T: cross-project dependency
defect detection tool. International Journal of Performability Engineering, vol. 15, no. 9,
pp. 2329-2337.
Zhang, W.; Li, K.; Li, T.; Niu, S.; Gao, Z. (2019): CM-Droid: secure container for
android password misuse vulnerability, Computers, Materials & Continua, vol. 59, no. 1,
pp. 181-198.
Zimmermann, T.; Nagappan, N; Williams, L. (2010): Searching for a needle in a
haystack: predicting security vulnerabilities for windows vista. International Conference
on Software Testing, pp. 421-428.

	Programming Logic Modeling and Cross-Program Defect Detection Method for Object-Oriented Code
	Yan Liu0F , Wenyuan Fang1, Qiang Wei1, *, Yuan Zhao1 and Liang Wang2

	7 Conclusion
	References

