
 
 
 
Computers, Materials & Continua                           CMC, vol.64, no.1, pp.359-371, 2020 

CMC. doi:10.32604/cmc.2020.09821                                                           www.techscience.com/journal/cmc 

 

 
Authentication of Vehicles and Road Side Units in Intelligent 

Transportation System 
 
Muhammad Waqas1, 2, Shanshan Tu1, 3, *, Sadaqat Ur Rehman1, Zahid Halim2, Sajid 

Anwar2, Ghulam Abbas2, Ziaul Haq Abbas4 and Obaid Ur Rehman5 
 

 
Abstract: Security threats to smart and autonomous vehicles cause potential 
consequences such as traffic accidents, economically damaging traffic jams, hijacking, 
motivating to wrong routes, and financial losses for businesses and governments. Smart 
and autonomous vehicles are connected wirelessly, which are more attracted for attackers 
due to the open nature of wireless communication. One of the problems is the rogue 
attack, in which the attacker pretends to be a legitimate user or access point by utilizing 
fake identity. To figure out the problem of a rogue attack, we propose a reinforcement 
learning algorithm to identify rogue nodes by exploiting the channel state information of 
the communication link. We consider the communication link between vehicle-to-
vehicle, and vehicle-to-infrastructure. We evaluate the performance of our proposed 
technique by measuring the rogue attack probability, false alarm rate (FAR), mis-
detection rate (MDR), and utility function of a receiver based on the test threshold values 
of reinforcement learning algorithm. The results show that the FAR and MDR are 
decreased significantly by selecting an appropriate threshold value in order to improve 
the receiver’s utility. 
 
Keywords: Intelligent transportation system, authentication, rogue attack. 
 
1 Introduction 
The connection of vehicles is a new intelligent transportation system (ITS) to improve the 
safety of vehicles and efficiency by leveraging wireless transmission [Waqas, Niu, Li et 
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al. (2019)]. Decades ago, Vehicle-to-everything (V2X) communications attracted interest 
in terms of extensive research and development projects from academia, industries and 
standard organization [Salem, Elhillali and Niar (2018); Xu, Liu, Wang et al. (2018)]. 
However, with the advent of ITS, the main enthusiasm for the development of an ITS is 
safety, and the development of reliable and secure applications by providing information 
and help to vehicles for the prevention of road accidents, selection of appropriate 
direction and routes, speed control, pedestrian safety, hijacking and lane change warning 
[Marković, Sekuła, Vander et al. (2018); Wang, Liu, Yu et al. (2019)]. In this regard, 
security is the major concern of high-priority because the attackers with malicious threats 
are extremely dangerous, and can cause various consequences such as, accident, break 
failure, showing wrong directions and routes, and stealing personal information 
[Sedjelmaci, Hadji and Ansari (2019)]. The attackers may attack infrastructure as well as 
vehicles directly to cause these negative consequences [Hahn, Munir and Behzadan 
(2019); Waqas, Niu and Ahmed (2018)]. However, stealing the information from vehicles 
and private data of users is much more crucial [Msahli, Labiod and Ampt (2019)]. In this 
regard, the authentication of road side units (RSUs) and vehicles are extremely 
significant for the implementation of an ITS [Yu, Liu and Zhang (2019)]. 
Authentication helps to identify the rouge nodes in an ITS. The main objective is to 
achieve the authentication of vehicles and RSUs by leveraging physical layer security 
(PLS) and reinforcement learning algorithm (RLA) to get the authenticity and integrity 
[Moradikia, Bastami and Kuhestani (2019)]. RLA is employed to find out the probability 
of misdetection rate (MDR) and false alarm rate (FAR) by identifying the rouge 
vehicle/RSUs. Thus, we seek to tackle the rogue attack to stop stealing the data of the 
authentic vehicles during communication by leveraging RLA. It is due to the reason that 
a rogue node pretends to be a legitimate user for fraud with authorized users to steal the 
information. To cope with the challenge, the physical layer authentication (PLA) 
technique can be applied [Haus, Waqas and Ding (2017)]. The PLA techniques exploit 
the physical layer properties of wireless channels to detect the impersonation attack. 
These properties include received signal strength (RSS), channel impulse response (CIR), 
received signal strength indicators (RSSI), channel state information (CSI) and channel 
frequency response (CFR) [Zou, Wang and Shen (2013)]. These properties can be 
utilized as the characteristics of wireless channels to detect rogue vehicles/RSUs. 
However, there are certain problems in wireless channels. One of the specific challenges 
is that the wireless channel is not static, and the channel characteristics are changing 
dynamically due to the mobility of vehicles [Xiao, Li, Han et al. (2016)]. Therefore, it is 
difficult to predict the channel information. For instance, the channel-based impersonator 
detector in Xiao et al. [Xiao, Wan, Su et al. (2018)] differentiates the transmitters at 
different locations due to which a hypothesis test in RLA compares the CFR of the data 
with the identical address. Thus, the accuracy of the PLA can be performed at the 
receiver that depends on the threshold test in the hypothesis test. Again, there is an issue 
of the test threshold because it becomes difficult for the receiver to select an appropriate 
threshold value to detect the rogue node without knowing the exact values of the channel 
parameters, especially in the dynamic environment. Moreover, the legitimate vehicle, as 
well as attackers, have autonomy and flexible control over their transmission. Thus, 
conventional methods such as game theory have shown strengths to improve the security 
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strength [Waqas, Ahmed, Li et al. (2018); Shanmugapriya, Baskaran and Nayanatara 
(2019)]. Still, they are mostly applicable in a static environment and not in a dynamic 
environment, particularly in case of a vehicle. Therefore, we utilize an RLA technique in 
which a user can achieve the optimal strategies in a dynamic environment without being 
aware of the system’s information [Chen, Zhan, Chen et al. (2018)]. 
In RLA, we conduct a hypothesis test that concerns the estimation of the channel 
information; whereas in the hypothesis test, we conclude the threshold test value between 
vehicles and vehicles-to-RSU by leveraging CSI. As a result, the precision to detect a 
rogue vehicle and RSU depends on the threshold test value, which can be achieved at the 
receiver end. Thus, the receiver itself is responsible for identifying between authentic and 
rogue vehicle/RSU. Therefore, we focus mainly on the rogue attack and receiver response 
in this work. Our main contributions of this work are summarized as follows. 
• We derive an optimal threshold value in the hypothesis test. This helps us to 
distinguish between authentic and rogue vehicle/RSU. It also helps us to improve 
detection accuracy and receiver’s utility (gain or loss) from the test threshold value. 
• We evaluate the performance of our proposed technique by measuring attack 
probability, FAR, MDR, and average cost and gain based on test threshold values. 
• With the help of the proposed technique, we find out that the FAR and MDR are 
decreased significantly by selecting an appropriate threshold value. Besides, the average 
gain is increased by approximately 40% by selecting an appropriate threshold value. 
Similarly, the average cost is decreased by 30% by our proposed technique. 
The rest of the paper is structured as follows. After the introduction in Section I, we present 
the system model, problem formulation and proposed solution in Section II. The simulation 
results are discussed in Section III. Finally, we offer our conclusion in Section IV. 

2 System model, problem formulation and proposed solution 
We consider a communication link between vehicles-to-vehicle, vehicle-to-RSUs, and 
RSU-to-vehicle that are physically connected through wireless links as shown in Fig. 1. 
Hence, we exploit three cases to identify the rogue node. Here, node refers to a vehicle or 
an RSU. 
Case #1: If there is a communication between vehicle-to-vehicle, then the vehicle at the 
receiver end will calculate the test threshold value to identify the transmitter vehicle as a 
legitimate node or rogue one. 
Case #2: If there is a communication between vehicle-to-RSU, then the RSU at the 
receiver end will calculate the test threshold value to identify the transmitter vehicle as a 
legitimate node or rogue one. 
Case #3: If there is a communication between RSU-to-vehicle, then the vehicle at the 
receiver end will calculate the test threshold value to identify the transmitter RSU as a 
legitimate node or rogue one. 
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Figure 1: Communication scenario of vehicle-to-vehicle, vehicle-to-RSU and RSU-to-
vehicle in an ITS 

In this regard, we consider a network that consists of vehicles, i.e., 𝒱𝒱such that, 𝒱𝒱 =
{1,2,⋯ ,𝑉𝑉},∀𝑉𝑉 ∈ 𝒱𝒱.  We also consider the number of RSUs, i.e., ℬ such that, ℬ =
{1,2,⋯ ,𝐵𝐵},∀𝐵𝐵 ∈ ℬ.  For simplicity, we also assume the rogue nodes comprise of 
vehicles and RSUs i.e., ℛ, such that, ℛ = {1,2,⋯ ,𝑅𝑅},∀𝑅𝑅 ∈ 𝒱𝒱/ℬ. The rogue node can 
either be an RSU that wants to steal the information of legitimate vehicle or a vehicle that 
wants to steal the information of other vehicles or a vehicle that wants to steal the 
information of RSU. Hence, the total number of nodes in the network is 𝒟𝒟 = (𝒱𝒱 ∪ ℬ). 
Among them, let ℒ,∀ℒ ∈ 𝒟𝒟 is the total number of legitimate transmitters (vehicle+RSU), 
and ℐ,∀ℐ ∈ 𝒟𝒟 is the total number of rogue transmitters (vehicle+RSU), such that 𝑇𝑇 =
(ℒ ∪ 𝒟𝒟). As a result, the receivers can be calculated as 𝑆𝑆 = 𝒟𝒟 − 𝑇𝑇, where 𝑆𝑆 is the total 
number receivers (vehicles+RSUs). 
Next, we consider the set of MAC addresses, denoted by ℳ, of all the transmitters. For 
instance, the MAC-Address of 𝑡𝑡𝑡𝑡ℎ   transmitter (vehicle/RSU), ∀𝑡𝑡 ∈ 𝑇𝑇 is represented by 
𝛾𝛾𝑡𝑡 ∈ ℳ. The rogue node can send fake address in a time slot with probability, i.e., 𝑃𝑃𝛾𝛾𝑡𝑡 ∈
[0, 1]. The receiver 𝑠𝑠 ∈ 𝑆𝑆 calculates the CSI related to the packet, once the packet is 
arrived at the receiver. The receiver 𝑠𝑠 ∈ 𝑆𝑆 samples the CSI of each packet and reserves 
the channel vector of the 𝑧𝑧𝑡𝑡ℎ  packet from the 𝑡𝑡𝑡𝑡ℎ  transmitter. This channel vector is 
denoted by 𝕂𝕂𝛾𝛾𝑡𝑡

𝑧𝑧 = �𝕂𝕂𝛾𝛾𝑡𝑡,𝑥𝑥
𝑧𝑧 �

1≤𝑥𝑥≤𝑋𝑋
. Another important factor for sampling the CSI of each 

packet is the channel record. Here, we denote the channel record of the 𝑧𝑧𝑡𝑡ℎ packet from 
the 𝑡𝑡𝑡𝑡ℎtransmitter by𝕃𝕃𝛾𝛾𝑡𝑡

𝑧𝑧 = �𝕃𝕃𝛾𝛾𝑡𝑡,𝑥𝑥
𝑧𝑧 �

1≤𝑥𝑥≤𝑋𝑋
. Hence, 𝕂𝕂𝛾𝛾𝑡𝑡

𝑧𝑧  and 𝕃𝕃𝛾𝛾𝑡𝑡
𝑧𝑧  are the channel vector and 

channel record, respectively of the 𝑥𝑥𝑡𝑡ℎ tone of the 𝑧𝑧𝑡𝑡ℎ packet from the transmitter 𝑡𝑡 ∈ 𝑇𝑇. 
In the view of above discussion, we now perform the hypothesis value test to evaluate the 
authentication of each packet at the receiver i.e., 𝑆𝑆. The transmitter transmits a MAC 
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addresses where the channel vectors are denoted by ℳ�𝕂𝕂𝛾𝛾𝑡𝑡
𝑧𝑧 �. Now, the set of receivers 

𝑆𝑆 implies the hypothesis value test by considering two cases as follows. 
Case #1: The hypothesis test 𝒲𝒲°considers ℳ�𝕂𝕂𝛾𝛾𝑡𝑡

𝑧𝑧 �from the authentic vehicle/RSU, i.e., 
𝒲𝒲°:ℳ�𝕂𝕂𝛾𝛾𝑡𝑡

𝑧𝑧 � ≥ ℳ. 
Case #2: The hypothesis test 𝒲𝒲⋆  considers ℳ�𝕂𝕂𝛾𝛾𝑡𝑡

𝑧𝑧 � from the rogue vehicle/RSU, 
i.e., 𝒲𝒲_ ⋆:ℳ(𝕂𝕂_(𝛾𝛾_𝑡𝑡)^𝑧𝑧) ≠ℳ. 
As we know, CSI is unique and is the property of PLS. Thus, the vehicle/RSU can 
authenticate the 𝑧𝑧𝑡𝑡ℎ packet based on CSI. In contrast, the authentic packet can be 
identified if and only if �𝕂𝕂𝛾𝛾𝑡𝑡,𝑥𝑥

𝑧𝑧 �
1≤𝑥𝑥≤𝑋𝑋

= �𝕃𝕃𝛾𝛾𝑡𝑡,𝑥𝑥
𝑧𝑧 �

1≤𝑥𝑥≤𝑋𝑋
. Hence, if the channel vector and 

channel record remain the same, we will consider the packet as authentic packet sent by 
authentic vehicle/RSU. Otherwise, the packet is sent by rogue node, i.e., �𝕂𝕂𝛾𝛾𝑡𝑡,𝑥𝑥

𝑧𝑧 �
1≤𝑥𝑥≤𝑋𝑋

≠
�𝕃𝕃𝛾𝛾𝑡𝑡,𝑥𝑥

𝑧𝑧 �
1≤𝑥𝑥≤𝑋𝑋

. However, for this purpose, we need to formulate the hypothesis statistics to 
find out the rogue attack in a precise manner. The statistics of the hypothesis test is   

𝒢𝒢 ��𝕂𝕂𝛾𝛾𝑡𝑡
𝑧𝑧 �, �𝕃𝕃𝛾𝛾𝑡𝑡

𝑧𝑧 �� =
∥(𝕂𝕂𝛾𝛾𝑡𝑡

𝑧𝑧 −𝕃𝕃𝛾𝛾𝑡𝑡
𝑧𝑧 )∥2

∥�𝕃𝕃𝛾𝛾𝑡𝑡
𝑧𝑧 �∥2

                (1) 

In Eq. (1), ||•|| represents the Frobenius norm, and  𝒢𝒢 is the normalized Euclidean distance 
between 𝕂𝕂𝛾𝛾𝑡𝑡

𝑧𝑧  and 𝕃𝕃𝛾𝛾𝑡𝑡
𝑧𝑧 , respectively. 𝒢𝒢 ��𝕂𝕂𝛾𝛾𝑡𝑡

𝑧𝑧 �, �𝕃𝕃𝛾𝛾𝑡𝑡
𝑧𝑧 �� must be illustrated by introducing a 

fix threshold value test denoted by 𝛹𝛹 . Once, the threshold value test is fix, we can 
illustrate that if 𝒢𝒢 ��𝕂𝕂𝛾𝛾𝑡𝑡

𝑧𝑧 �, �𝕃𝕃𝛾𝛾𝑡𝑡
𝑧𝑧 �� < 𝛹𝛹, the receiver vehicle accepts 𝒲𝒲°, otherwise it will 

accept 𝒲𝒲⋆ . Consequently, the overall illustration of identifying the real and rogue 
vehicles/RSU is given by 

𝒢𝒢 ��𝕂𝕂𝛾𝛾𝑡𝑡
𝑧𝑧 �, �𝕃𝕃𝛾𝛾𝑡𝑡

𝑧𝑧 �� < 𝛹𝛹 ⇒𝒲𝒲°,                       (2) 

𝒢𝒢 ��𝕂𝕂𝛾𝛾𝑡𝑡
𝑧𝑧 �, �𝕃𝕃𝛾𝛾𝑡𝑡

𝑧𝑧 �� > 𝛹𝛹 ⇒𝒲𝒲⋆.                          (3) 

We now define the probability of FAR and MDR for our three cases, as mentioned above. 
FAR and MDR are defined as follows. 
Definition 1. FAR is defined as the probability that a receiver rejects the packets and 
consider it as unauthentic packet, although the packet is sent by legitimate node. 
Mathematically, it is given by 𝑃𝑃𝐹𝐹 = 𝑃𝑃(𝒲𝒲⋆|𝒲𝒲°). 
Definition 2. MDR is defined as the probability that a receiver accepts the packets and 
considers it as authentic packet, although the packet is sent by rogue node. 
Mathematically, it is given by 𝑃𝑃𝑀𝑀 = 𝑃𝑃(𝒲𝒲°|𝒲𝒲⋆).  
Here, 𝑃𝑃(⋅ | ⋅)is the conditional probability. Now, we consider the three cases. 
In Case #1, the transmitter and receiver both are vehicles. Hence, the probability for 
receiver to accept the authentic packet from authentic transmitter vehicle by reducing the 
FAR is 𝑃𝑃𝒱𝒱(𝒲𝒲°|𝒲𝒲°) = 1 − 𝑃𝑃𝒱𝒱. 
In Case #2, the transmitter is a vehicle, and the receiver is RSU. The transmitter (vehicle) 
to send signals for getting some valuable information or requesting to act as a relay for 
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better communication. Hence, in this case, the RSU must be active in tackling rogue 
vehicles. Therefore, the RSU to accept the authentic packet from authentic transmitter 
vehicle by reducing the FAR is 𝑃𝑃ℬ(𝒲𝒲°|𝒲𝒲°) = 1 − 𝑃𝑃𝒱𝒱 .  
The last Case #3 is about RSU-to-vehicle communication. In this case, the transmitter is 
RSU and receiver is vehicle. Therefore, the vehicle to accept the authentic packet from 
authentic RSU transmitter by reducing the FAR is 𝑃𝑃𝒱𝒱(𝒲𝒲°|𝒲𝒲°) = 1 − 𝑃𝑃ℬ. For simplicity, 
we assume all the three cases in a generalized form by 
𝑃𝑃(𝒲𝒲°|𝒲𝒲°) = 1 − 𝑃𝑃𝐹𝐹 .                 (4) 
Similarly, the MDR is also calculated for all the three cases in mathematical form given by 
[𝑃𝑃𝒱𝒱(𝒲𝒲⋆|𝒲𝒲⋆) = 1 − 𝑃𝑃𝒱𝒱], [𝑃𝑃ℬ(𝒲𝒲⋆|𝒲𝒲⋆ = 1 − 𝑃𝑃𝒱𝒱], [𝑃𝑃𝒱𝒱(𝒲𝒲⋆|𝒲𝒲⋆) = 1 − 𝑃𝑃ℬ],  respectively. 
Generally, it is  
𝑃𝑃(𝒲𝒲⋆|𝒲𝒲⋆) = 1 − 𝑃𝑃𝑀𝑀 .                     (5) 
However, the FAR and MDR accuracy of PLA depends on the threshold value, i.e., 𝛹𝛹. 
Thus, if we increase the threshold value test 𝛹𝛹, the MDR increases while decreasing 𝛹𝛹, 
the FAR increases. Therefore, the receiver must select an appropriate value of 𝛹𝛹  to 
identify the rogue packets from a rogue node. However, it is assumed in this work that 
higher-layer authentication (HLA) is also necessary to accept the packets. Hence, we use 
both PLA and HLA to accept the legitimate packets from a legitimate node. For instance, 
the channel record 𝕃𝕃𝛾𝛾𝑡𝑡

𝑧𝑧  is only updated if the packet is acknowledged by HLA, i.e., 𝕃𝕃𝛾𝛾𝑡𝑡
𝑧𝑧 ←

𝕂𝕂𝛾𝛾𝑡𝑡
𝑧𝑧 , otherwise, 𝕃𝕃𝛾𝛾𝑡𝑡

𝑧𝑧 ← 𝕃𝕃𝛾𝛾𝑡𝑡
𝑧𝑧−1. 

The RLA has the ability to point out the optimal strategy in a dynamic environment 
without adequate information of the channel/system [Tu, Waqas and Rehman (2018)]. In 
this regard, the receiver nodes are oblivious of the CSI and delude frequencies in a 
dynamic environment. Thus, the optimal threshold value 𝛹𝛹 can be attained by the 
receivers through trial and error to find out rogue nodes. The precision to detect rogue 
packets from rogue nodes depend on the utility of receiver. Thus, we define the gain and 
cost of the receiver to figure out FAR and MDR. 
Definition 3. The gain of the receiver is defined as to accept legitimate packet or reject 
rogue packets, and are denoted by 𝔾𝔾𝑎𝑎 and 𝔾𝔾𝑟𝑟, respectively. 
Definition 4. The cost of the receiver is defined as to accept rogue packets or reject 
legitimate packets, and are denoted by ℂ𝑎𝑎 and ℂ𝑟𝑟, respectively.  
In this regard, we apply Bayesian risk [Ma, Lai and Kleijn (2018)] under a prior 
distribution function which is given by 

𝔼𝔼(𝜆𝜆,ℝ) = �𝔾𝔾𝑎𝑎�1 − 𝑃𝑃𝐹𝐹(𝜆𝜆)� − ℂ𝑎𝑎𝑃𝑃𝐹𝐹(𝜆𝜆)��1 −� 𝑃𝑃𝛾𝛾𝑡𝑡
ℳ

𝛾𝛾=1
�+ �𝔾𝔾𝑟𝑟�1 − 𝑃𝑃𝑀𝑀(𝜆𝜆)� −

ℂ𝑟𝑟𝑃𝑃𝑀𝑀(𝜆𝜆)��� 𝑃𝑃𝛾𝛾𝑡𝑡
ℳ

𝛾𝛾=1
�.                         (6)  

In Eq. (6), is the set of all rogue packets sent by rogue nodes and is given as ℝ =

�𝑃𝑃𝛾𝛾𝑡𝑡�1≤𝛾𝛾≤ℳ , and �1−� 𝑃𝑃𝛾𝛾𝑡𝑡
ℳ

𝛾𝛾=1
� is the probability of receiver to reject rogue packet. 



 
 
 
Authentication of Vehicles and Road Side Units                                                365 

Hence, �𝔾𝔾𝑎𝑎�1− 𝑃𝑃𝐹𝐹(𝜆𝜆)� − ℂ𝑎𝑎𝑃𝑃𝐹𝐹(𝜆𝜆)��1 −� 𝑃𝑃𝛾𝛾𝑡𝑡
ℳ

𝛾𝛾=1
� represents the gain of the 

legitimate packets, and �𝔾𝔾𝑟𝑟�1 − 𝑃𝑃𝑀𝑀(𝜆𝜆)� − ℂ𝑟𝑟𝑃𝑃𝑀𝑀(𝜆𝜆)��� 𝑃𝑃𝛾𝛾𝑡𝑡
ℳ

𝛾𝛾=1
� represents the gain 

under rogue attack. It is also believed that the optimal threshold value 𝛹𝛹  will 
automatically decrease when the number of rogue nodes increases. Hence, the receiver 
needs to evaluate 𝛹𝛹 with each 𝑧𝑧𝑡𝑡ℎ packet acknowledged in the time slot 𝜏𝜏. Hence, 𝛹𝛹 is 
chosen from the experience of states, i.e., 𝛽𝛽. Hence, the state (𝛽𝛽) calculated by receiver at 
time 𝜏𝜏 is denoted by 𝛽𝛽𝜏𝜏, and given as 𝛽𝛽𝜏𝜏 = [𝑃𝑃𝐹𝐹𝜏𝜏 − 1,𝑃𝑃𝑀𝑀𝜏𝜏 − 1] ∈ 𝛤𝛤, where 𝛤𝛤 is the set of all 
the states calculated by the receiver. The receiver selects 𝛹𝛹 based on 𝛽𝛽𝜏𝜏 to maximize the 
expected utility sum, given as 

𝛱𝛱𝜏𝜏 = � 𝒰𝒰𝒩𝒩
𝜏𝜏 . (𝜆𝜆,ℝ),𝑇𝑇

𝜏𝜏=1                  (7)  

where 

𝒰𝒰𝒩𝒩
𝜏𝜏 . (𝜆𝜆,ℝ) = 𝔼𝔼(𝜆𝜆,ℝ) = �𝔾𝔾𝑎𝑎�1− 𝑃𝑃𝐹𝐹(𝜆𝜆)� − ℂ𝑎𝑎𝑃𝑃𝐹𝐹(𝜆𝜆)��1 −� 𝑃𝑃𝛾𝛾𝑡𝑡

ℳ

𝛾𝛾=1
�+ �𝔾𝔾𝑟𝑟�1 −

𝑃𝑃𝑀𝑀(𝜆𝜆)� − ℂ𝑟𝑟𝑃𝑃𝑀𝑀(𝜆𝜆)� �� 𝑃𝑃𝛾𝛾𝑡𝑡
ℳ

𝛾𝛾=1
�. 

𝒰𝒰𝒩𝒩
𝜏𝜏  is basically the immediate utility function that indicates the suboptimal strategy with 

a small probability 𝜖𝜖 on the basis of 𝜖𝜖-greedy policy. On the other side, the preference of 
the utility that is maximized by the optimal 𝛹𝛹 is1 − 𝜖𝜖. 

𝑃𝑃𝛾𝛾(𝛹𝛹) = ��1 − 𝜖𝜖,𝛹𝛹 = 𝛹𝛹∗, 𝜖𝜖
𝐿𝐿

,𝛹𝛹 ∈ {𝑙𝑙 𝐿𝐿⁄ }𝛹𝛹≤𝑙𝑙≤𝐿𝐿 ,𝛹𝛹 ≠ 𝛹𝛹∗. �                  (8) 

where  are the stages to select an optimal threshold value 𝛹𝛹. The error rates are also 
quantized into 𝐿𝐿 + 1 levels, i.e., 𝑃𝑃𝐹𝐹 ,𝑃𝑃𝑀𝑀 ,∈ {𝑙𝑙 𝐿𝐿⁄ }0≤𝑙𝑙≤𝐿𝐿. Hence, the optimal value of 𝛹𝛹_ ⋆ is  
𝛹𝛹∗ = argmax𝛹𝛹∈{𝑙𝑙 𝐿𝐿⁄ }0≤𝑙𝑙≤𝐿𝐿𝒬𝒬(𝑠𝑠𝜏𝜏,𝛹𝛹).                (9)  
As we consider Q-learning, hence we denote the learning rate as 𝜇𝜇 ∈ (0,1]. The weight is 
given by 𝒬𝒬(𝑠𝑠𝜏𝜏,𝛹𝛹), and the discount factor is 𝜎𝜎 ∈ (0,1]. The maximum value of the Q-
function is 𝒱𝒱(𝑠𝑠𝜏𝜏) ← max

𝛹𝛹∈{𝑙𝑙 𝐿𝐿⁄ }0≤𝑙𝑙≤𝐿𝐿
𝒬𝒬(𝑠𝑠𝜏𝜏 ,𝛹𝛹) . Consequently, the receiver updates the Q-

function as 
𝒬𝒬(𝑠𝑠𝜏𝜏+1,𝛹𝛹𝜏𝜏+1) = (1 − 𝜇𝜇)𝒬𝒬(𝑠𝑠𝜏𝜏,𝛹𝛹𝜏𝜏) + 𝜇𝜇�𝛱𝛱𝜏𝜏 + 𝛿𝛿𝒱𝒱(𝑠𝑠𝜏𝜏 + 1)�.            (10) 
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The overall discussion is summarized in our proposed Algorithm 1. 

 

Figure 2: Attack probability of rogue nodes by varying no. of nodes 
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Figure 3: Probability of FAR and MDR according to no. of nodes 

Figure 4: Probability of FAR and MDR according to threshold values 
 
3 Simulation results 
We perform our simulation results to evaluate FAR and MDR along with attack 
probability, gain and cost of a receiver during detection. In the simulation environment, 
we assume randomly scattered nodes by assuming 80 nodes. All the channels’ gains are 
rendered accordingly to the normal distribution. In our first analysis, we find out the 
attack probability by varying the number of nodes, as depicted in Fig. 2. It is obvious that 
as the number of nodes (whether vehicles, RSUs or both), the rogue devices 
(vehicles/RSUs) may also increase due to which the attack probability increases. It can be 
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seen that there is an abrupt change when the number of nodes is varying from 10 to 40. 
However, as the number of nodes increases, the attack probability is maximum, i.e., 1. 
Hence, after 40 number of nodes, the attack probability is always maximum, and the 
receivers must be careful while establishing a link with other vehicles or RSUs. Keeping 
this point in view, we find out FAR and MDR by varying the number of nodes, as shown 
in Fig. 3. Obviously, when the attack probability is increased, the FAR and MDR will 
automatically increase. It is due to the reason that as the number of nodes increases in the 
network, it becomes difficult for the receivers to detect these attacks. Thus, the receivers 
reject the packets and consider it as an unauthentic packet, although the packet is sent by 
legitimate node due to a large number of other nodes (vehicles/RSUs), and hence the 
probability of FAR increases. Similarly, the probability of MDR also increases due to a 
large number of other nodes. This is because, due to high attack probability, the receivers 
accept the packets and consider it an authentic packet, although the rogue node sends the 
packet. For instance, the probability of FAR and MDR is 0.43 and 0.25, respectively, 
when the number of nodes is 40, and increases accordingly.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Average cost and an average gain of a receiver by varying no. of nodes at 
different threshold values 

In addition, we also investigate the probability of FAR and MDR of the receivers by 
selecting their optimal threshold value. Since by selecting an optimal threshold value, the 
probability of FAR and MDR at the receivers is decreased. Hence, this is an important 
experiment to find out 𝑃𝑃𝐹𝐹 and 𝑃𝑃𝑀𝑀 at a given threshold value. Observed from Fig. 4, as the 
threshold value increases, 𝑃𝑃𝐹𝐹 and 𝑃𝑃𝑀𝑀 decreases. For instance, when the threshold value is 
in negative, i.e., -2, 𝑃𝑃𝐹𝐹 and 𝑃𝑃𝑀𝑀 are at maximum value. However, as the threshold value 
increases, i.e., to find optimal value by the receivers, 𝑃𝑃𝐹𝐹 and 𝑃𝑃𝑀𝑀 exponentially decreases. 
It means that certain receivers have diverse threshold value to reduce 𝑃𝑃𝐹𝐹 and 𝑃𝑃𝑀𝑀 , 
respectively. Suppose the receiver selects the optimal threshold value “4”, the probability 
to miss-detect or false alarm rate for that specific receiver is approximately equal to 
and respectively. 
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Similarly, the utilities of a receiver, i.e., gain and cost, are also essential factors for 
verification. Thus, we illustrate the average loss and average profit of the receiver by 
exploiting the threshold values and a varying number of nodes, as shown in Fig. 5. It is 
clear from Fig. 5 that as the number of nodes increases, the average gain increases due to 
the rise in the threshold value. For instance, As the number of nodes increases from 10 to 
40, the threshold value increases from 0.8 to 1.1 based on the average gain of the 
receiver. Similarly, the threshold value decreases as the number of nodes increases based 
on the average cost of the receiver. For example, the threshold value is dropping from 2.1 
to 0.6 when the number of nodes increases from 10 to 30, respectively. Thus, the average 
cost is reduced due to the threshold value of the receiver decreases. 

4 Conclusion 
The connection of vehicles is a new intelligent transportation system to improve the 
safety of vehicles and efficiency by leveraging wireless transmission. However, security 
threats to smart and autonomous vehicles cause potential consequences such as traffic 
accidents, economically damaging traffic jams, hijacking, motivating to wrong routes, 
and financial losses for businesses and governments. One of the problems is a rogue 
attack, in which the attacker is trying to be a legitimate user or access point (AP) by 
utilizing fake identity. Thus, we apply RLA to tackle rogue attacks during 
communication between vehicle-to-vehicles, vehicle-to-RSU, and RSU-to-vehicle. In this 
regard, we derive an optimal threshold value to distinguish between authentic and rogue 
nodes.  It helps us to improve detection accuracy and receiver's utility (gain or cost) from 
the test threshold value. Hence, we evaluate the performance of our proposed technique 
by measuring attack probability, FAR, MDR, and utility function of receivers. With the 
help of our proposed technique, we find out that the FAR and MDR are decreased 
significantly by selecting an appropriate threshold value. Moreover, the average gain is 
increased by approximately 40% by selecting an appropriate threshold value. Similarly, 
the average cost is decreased by 30% by our proposed technique. 
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