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Abstract: In this paper, maximizing energy efficiency (EE) through radio resource 
allocation for renewable energy powered heterogeneous cellular networks (HetNet) with 
energy sharing, is investigated. Our goal is to maximize the network EE, conquer the 
instability of renewable energy sources and guarantee the fairness of users during 
allocating resources. We define the objective function as a sum weighted EE of all links 
in the HetNet. We formulate the resource allocation problem in terms of subcarrier 
assignment, power allocation and energy sharing, as a mixed combinatorial and 
non-convex optimization problem. We propose an energy efficient resource allocation 
scheme, including a centralized resource allocation algorithm for iterative subcarrier 
allocation and power allocation in which the power allocation problem is solved by 
analytically solving the Karush-Kuhn-Tucker (KKT) conditions of the problem and a 
water-filling problem thereafter and a low-complexity distributed resource allocation 
algorithm based on reinforcement learning (RL). Our numerical results show that both 
centralized and distributed algorithms converge with a few times of iterations. The 
numerical results also show that our proposed centralized and distributed resource 
allocation algorithms outperform the existing reference algorithms in terms of the 
network EE. 

Keywords: Heterogeneous networks, energy harvesting, energy efficiency, resource 
allocation, energy sharing.  

1 Introduction 
After decades of intensive research on improving the energy efficiency (EE) of wireless 
networks driven by environmental and economic concerns, EE has become a main 
performance metric for the designing of current and future wireless mobile networks, e.g., 5 
G NR [Buzzi, I, Klein et al. (2016)]. Many approaches have been investigated trying to 
improve the EE of wireless networks from three points of view: network plan, renewable 
energy supply and system design. First, heterogeneous cellular networks (HetNet) in which 
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a macro cell is overlaid with small cells which have smaller coverage range, lower transmit 
power and thereafter lower energy consumption are promising network deployment for EE. 
Second, energy harvesting wireless networks with power transfer is the other approach to 
improving EE by reducing the amount of traditional energy consumption. Third, radio 
resource allocation in terms of spectrum assignment and power allocation can be designed 
with the goal of maximizing the network EE. Building on the above observation and 
combining these three aspects, this paper focuses on designing radio resource allocation 
schemes for renewable energy powered HetNet with the goal of maximizing EE.  
Generally, resource allocation with the objective of maximizing the network EE of the 
HetNet with both intra-tier and inter-tier interference is formulated as a mixed 
combinatorial and non-convex optimization problem. By decomposing the original 
problem and leveraging on the quasi-concavity of the EE function, Tang et al. [Tang, So, 
Alsusa et al. (2015)] proposes a convex programming-based optimization scheme with 
extremely high complexity to solve the resource allocation problem. In order to reduce 
the complexity, zero forcing suboptimal algorithm which removes the inter-cell 
interference, is proposed thereafter. Xu et al. [Xu, Mao, Leng et al. (2017)] divides the 
resource allocation problem of maximizing EE of a ultra dense small-cell networks into 
two parts, i.e., sub-channel allocation and power allocation, in which the power allocation 
sub-problem is formulated as a two-stage Stackelberg game. Qu et al. [Qu, Wu, Wang et 
al. (2017)] investigates the effects of a particular type of noise in channels. Resource 
allocation in 5 G heterogeneous cloud radio access (H-CRAN) networks based on online 
learning is investigated in Alqerm et al. [Alqerm and Shihada (2018)] to mitigate 
inter-tier interference between macro and small cells and to maximize the network EE 
whilst maintaining the QoS requirements for all users in both centralized and distributed 
manners. Distributed resource allocation algorithm for self-organizing HetNet is 
proposed in Arani et al. [Arani, Mehbodniya, Omidi et al. (2017)] where each base 
station (BS) selects its channel and allocates power in a fully distributed manner. Channel 
allocation is modeled as a noncooperative game and solved by a no-regret learning 
algorithm. Transmit power is chosen based on an ON-OFF switching scheme.  
When the HetNet is powered by renewable energy, the resource allocation problem with 
the goal of maximizing EE becomes more challenging and more important as well, due to 
the instability of the renewable energy sources. A fundamental study of resource 
allocation for EE optimization in CoMP-SWIPT HetNet is provided in Tang et al. [Tang, 
Shojaeifard, So et al. (2018)]. Joint beam forming and power allocation with intra-cell 
and inter-cell interference makes EE maximization problem non-convex and thereafter 
extremely hard to solve. To make the resource allocation problem easy to handle, it is 
separated into two sub-problems: beamforming design and power allocation. Linear 
zero-forcing beamforming is adopted to suppress the interference between users to reduce 
the complexity of the beamforming design sub-problem. Then the complexity of power 
allocation sub-problem is reduced as well and can be solved effectively. Qu et al. [Qu, 
Cheng, Liu et al. (2019); Qu, Li, Xu et al. (2019)] proposes the information can be 
embedded into the quantum carrier, and the receiver can decode the information to ensure 
the security of the information and provide guarantee for the effective allocation of 
resources. A mesh adaptive direct search algorithm is proposed in Chughtai et al. 
[Chughtai, Ali, Qaisar et al. (2018)] for EE maximization resource allocation in energy 
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harvesting aided H-CRAN without the inter-cell interference.  
In this paper, we investigated the resource allocation problem in renewable energy 
powered HetNet with intra-tier and inter-tier interference aiming at maximizing network 
EE. The contributions of this paper are threefold.  
First, we define the objective function as the sum weighted EE to guarantee the priority 
of each user and constrain the power consumption of each BS with energy sharing to 
adapt to the uneven renewable energy supply.  
Second, we develop an iterative subcarrier assignment and power allocation algorithm to 
solve the problem in a centralized manner.  
Third, we also propose a distributed resource allocation algorithm which has a lower 
complexity based on reinforcement learning (RL).  
The paper is organized as follows. We describe the system model and formulate the 
problem in Section II. The proposed centralized and distributed solutions to the 
formulated problem is presented in Section III. Section IV evaluates the performance of 
the proposed resource allocation algorithms. Section V concludes this paper.  

2 System model and problem formulation 
This section introduces the system scenario and energy sharing model, and formulates the 
HetNet EE optimization problem.  

2.1 System scenario 
Consider the downlink of a two-layer OFDMA HetNet in which 𝑀𝑀𝑚𝑚 macro cells are 
overlaid with 𝑀𝑀𝑠𝑠 small cells. Each macro (small) cell is serviced by a renewable energy 
powered macro (small) BS (MBS (SBS)). The set of MBSs and SBSs is denoted by ℳ 
with |ℳ| = 𝑀𝑀where |·| is the cardinality of a set and 𝑀𝑀 = 𝑀𝑀𝑚𝑚 + 𝑀𝑀𝑠𝑠 . All BSs are 
indexed from 1 to M in the set ℳ with the first 𝑀𝑀𝑚𝑚 indicating MBSs and the latter 𝑀𝑀𝑠𝑠 
SBSs. A total of K user equipment (UEs) are distributed in the HetNet with 𝐾𝐾𝑚𝑚 UEs 
associating to BS m (m ∈ ℳ). The set of UEs associated with BSm is denoted by 𝒦𝒦𝑚𝑚 
with |𝒦𝒦𝑚𝑚| = 𝐾𝐾𝑚𝑚 . For SBSs, open access model [Parkvall, Furuskar, Dahlman et al. 
(2011)] is adopted which means UEs are allowed to connect to either a SBS or a MBS. 
Total bandwidth B, which is divided into N subcarriers with 𝐵𝐵𝑠𝑠 = 𝐵𝐵/𝑁𝑁 the bandwidth of 
each subcarrier, is reused in all cells. Within one cell, in each execution period of resource 
allocation, each subcarrier can only be assigned to one UE and one UE can use multiple 
subcarriers. The set of subcarriers is denoted by 𝒩𝒩 with |𝒩𝒩| = 𝑀𝑀. For subcarrier 𝑛𝑛 ∈ 𝒩𝒩, 
let 𝑘𝑘𝑚𝑚𝑛𝑛 indicates the UE chosen by BS m on subcarrier n, 𝐤𝐤𝑛𝑛 = (𝑘𝑘1𝑛𝑛,⋯ ,𝑘𝑘𝑚𝑚𝑛𝑛 ,⋯𝑘𝑘𝑀𝑀𝑛𝑛 )𝑇𝑇. 
The subcarrier assignment is 𝐤𝐤 = {𝐤𝐤1,⋯ ,𝐤𝐤n,⋯ ,𝐤𝐤N}.Let 𝑝𝑝𝑚𝑚𝑛𝑛  indicate the transmit power 
of BS m on subcarrier n, and then the power allocation is 𝐩𝐩 = {𝐩𝐩1,⋯ ,𝐩𝐩n,⋯ ,𝐩𝐩N} where 
𝐩𝐩𝑛𝑛 = (𝑝𝑝1𝑛𝑛,⋯ ,𝑝𝑝𝑚𝑚𝑛𝑛 ,⋯𝑝𝑝𝑀𝑀𝑛𝑛 )𝑇𝑇. Assume perfect channel state information (CSI) is available at 
both the BS and UE. Indeed, FDD system can obtain CSI through feedback from UE while 
TDD system via uplink pilot signal. The signal to interference plus noise ratio (SINR) from 
BS m to UE 𝑘𝑘𝑚𝑚𝑛𝑛  on subcarrier n can be expressed as  
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where 𝑁𝑁0 is the spectral density of AWGN, and ℎ𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛
𝑛𝑛  and ℎ𝑚𝑚′,𝑘𝑘𝑚𝑚𝑛𝑛

𝑛𝑛  are respectively the 
channel impulse response which reflects the joint effects of path loss, shadowing, and 
multi-path fading from BS m to UE 𝑘𝑘𝑚𝑚𝑛𝑛  and from BS m′ to 𝑘𝑘𝑚𝑚𝑛𝑛  on subcarrier n. The EE 
of the link from BS m to UE 𝑘𝑘𝑚𝑚𝑛𝑛  on subcarrier n, denoted by η𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛

𝑛𝑛 , can be expressed as  

𝜂𝜂𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛
𝑛𝑛 =

𝐵𝐵𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙2�1+𝛾𝛾𝑚𝑚,𝑘𝑘𝑚𝑚
𝑛𝑛

𝑛𝑛 (𝒑𝒑𝑛𝑛)�

𝑝𝑝𝑚𝑚𝑛𝑛 +𝑃𝑃𝐶𝐶,𝑚𝑚
𝑛𝑛                                               (2) 

where 𝑃𝑃𝐶𝐶,𝑚𝑚
𝑛𝑛  is the constant circuit power consumed by BS m for the transmission on 

subcarrier n. The EE of the HetNet, denoted by 𝜂𝜂𝐸𝐸𝐸𝐸, is given by  
𝜂𝜂𝐸𝐸𝐸𝐸 = ∑ ∑ 𝜔𝜔𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛

𝑛𝑛𝑀𝑀
𝑚𝑚=1 𝜂𝜂𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛

𝑛𝑛𝑁𝑁
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where weight 𝜔𝜔𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛
𝑛𝑛  configures the priority of the EE of the link from BS m to UE 𝑘𝑘𝑚𝑚𝑛𝑛  

on subcarrier n to reduce the tendency of favoring links with better channel quality during 
the execution of resource allocation which is the case in global EE optimization in which 
the network EE is represented by the ratio of total amount of transmitted data and total 
amount of consumed power.  

2.2 Energy sharing model 
The resource allocation decision is made every execution period in a medium time scale 
which could be tens of seconds or minutes in order to control the signaling overhead and 
execution time. Each execution period, the energy budget for BSm is Pm which is 
determined by the renewable energy generation rate. The amount of energy transferred 
from BSm to BS 𝑚𝑚′ ∈ ℳ ⊉ {𝑚𝑚} is denoted by 𝑒𝑒𝑚𝑚 with 𝑒𝑒𝑚𝑚 > 0, 𝑒𝑒𝑚𝑚 < 0 and  𝑒𝑒𝑚𝑚 =
0 successively meaning that BS m has sufficient energy and supplies 𝑒𝑒𝑚𝑚 amount energy 
to other BSs, BSm is deficient in energy and demands 𝑒𝑒𝑚𝑚 amount energy from other 
BSs, and BSm does not share energy with other BSs. In practice, energy can be 
transferred through wireless (wireless power transfer [Gurakan, Ozel, Yang et al. (2013)]) 
or wired (smart grid [Chia, Sun, Zhang et al. (2014); Tutuncuoglu and Yener (2015)]) 
method. The constraint of energy consumption of BSm with energy sharing can be 
expressed as  
∑ �𝑝𝑝𝑚𝑚𝑛𝑛 + 𝑃𝑃𝐶𝐶,𝑚𝑚

𝑛𝑛 �𝑁𝑁
𝑛𝑛=1 ≤ 𝑃𝑃�𝑚𝑚 − 𝑒𝑒𝑚𝑚                                             (4) 

The energy sharing policy of the HetNet is described as 𝒆𝒆 = {𝑒𝑒1,⋯ , 𝑒𝑒𝑚𝑚,⋯ , 𝑒𝑒𝑀𝑀}.  

2.3 Problem formulation 
Our goal is to maximize the HetNet EE by the energy sharing among BSs and the 
resource allocation of each BS in terms of subcarrier assignment and power allocation. 
This optimization problem can be formulated as  

maxk,p,e  ∑ ∑ 𝜔𝜔𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛
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N
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Subject to     𝑘𝑘𝑚𝑚𝑛𝑛 ∈ 𝒦𝒦𝑚𝑚,∀𝑛𝑛 ∈ 𝒩𝒩,𝑚𝑚 ∈ ℳ                                  (5b) 
𝑝𝑝𝑚𝑚𝑛𝑛 ≥ 0,∀𝑛𝑛 ∈ 𝒩𝒩,𝑚𝑚 ∈ ℳ                                               (5c) 
∑ �𝑝𝑝𝑚𝑚𝑛𝑛 + 𝑃𝑃𝐶𝐶,𝑚𝑚

𝑛𝑛 �𝑁𝑁
𝑛𝑛=1 ≤ 𝑃𝑃�𝑚𝑚 − 𝑒𝑒𝑚𝑚,∀𝑚𝑚 ∈ ℳ                                   (5d) 

where Eq. (5(a)) is the problem of maximizing the weighted sum EE of the HetNet, Eq. 
(5(b)) constrains the subcarrier assignment that within one cell one subcarrier can be 
exclusively assigned to one UE, Eq. (5(c)) is the requirement on the transmit power on 
each subcarrier, and Eq. (5(d)) limits the energy consumption of each BS.  

3 Proposed solution 
In this section, we present the proposed solutions for problem Eq. (5) from centralized 
and distributed points of view.  

3.1 Centralized approach 
In this subsection, we analyze the property of problem (5) and propose a centralized resource 
allocation algorithm based on iterative subcarrier assignment and power allocation.  
For any given feasible power allocation p, the optimal subcarrier assignment k only 
affects the numerator of 𝜂𝜂𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛

𝑛𝑛  in Eq. (5(a)). For any fixed p and (𝑚𝑚, 𝑛𝑛), based on Eq. 
(1) we see that 𝛾𝛾𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛

𝑛𝑛  is totally determined by 𝑘𝑘𝑚𝑚𝑛𝑛 , the chosen UE by BS m on 
subcarrier n, and not by the UEs other BSs assign on subcarrier n and the subcarrier 
assignment and power allocation of other subcarriers. Hence, for a given feasible power 
allocation p, the optimal subcarrier assignment can be obtained by  

𝑘𝑘𝑚𝑚𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎 maxka∈𝒦𝒦𝑚𝑚log2 �1 + 𝛾𝛾𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛
𝑛𝑛 (𝒑𝒑𝑛𝑛)� ,∀𝑛𝑛 ∈ 𝒩𝒩,𝑚𝑚 ∈ℳ                  (6) 

Based on the above subcarrier assignment, Eq. (5) is reduced into a power allocation 
problem as follows:  

maxp,e  ∑ ∑ 𝜔𝜔𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛
𝑛𝑛𝑀𝑀

𝑚𝑚=1
N
n=1

𝐵𝐵𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙2�1+𝛾𝛾𝑚𝑚,𝑘𝑘𝑚𝑚
𝑛𝑛

𝑛𝑛 (𝒑𝒑𝑛𝑛)�

𝑝𝑝𝑚𝑚𝑛𝑛 +𝑃𝑃𝐶𝐶,𝑚𝑚
𝑛𝑛                                (7a) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡     𝑝𝑝𝑚𝑚𝑛𝑛 ≥ 0,∀𝑛𝑛 ∈ 𝒩𝒩,𝑚𝑚 ∈ℳ                                    (7b) 
∑ ∑ �𝑝𝑝𝑚𝑚𝑛𝑛 + 𝑃𝑃𝐶𝐶,𝑚𝑚

𝑛𝑛 �𝑀𝑀
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𝑚𝑚=1                                        (7c) 
where Eq. (7(c)) is the total power constraint. Problem Eq. (7) is a nonlinear fractional 
programming problem and the unconvexity of the numerator introduced by the 
interferences makes it extremely hard to find the optimal solution with limited complexity. 
An effective algorithm was proposed in Yu [Yu (2007)] for a similar nonconvex 
optimization problem to find at least a local optimal solution by iteratively solving the KKT 
conditions of the problem. Following the above problem solving methodology, first we 
analytically solve the KKT conditions of Eq. (7) and obtain a power allocation 𝐩𝐩�, and then 
use 𝐩𝐩� to update subcarrier assignment Eq. (6). By iteratively solving Eqs. (7) and (6) we 
can achieve at least a local optimal solution for Eq. (5).  
Proposition 1. The power allocation solution for Eq. (7), denoted by 𝐩𝐩�, is the solution to 
the following water-filling problem: 
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Proof. See Appendix 1 
Finally, the energy sharing policy e is the solution to the following problem  

maxe  ∑ ∑ 𝜔𝜔𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛
𝑛𝑛𝑀𝑀
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡  ∑ �𝑝𝑝𝑚𝑚𝑛𝑛� + 𝑃𝑃𝐶𝐶,𝑚𝑚
𝑛𝑛 �𝑁𝑁

𝑛𝑛=1 ≤ 𝑃𝑃�𝑚𝑚 − 𝑒𝑒𝑚𝑚,∀𝑚𝑚 ∈ ℳ                         (8b) 
which can be solved effectively by linear programming techniques.  
The procedure form of the proposed centralized resource allocation approach is 
summarized in Tab. 1. The general condition under which Tab. 1 will converge is 
difficult to establish yet the convergence can be observed in simulation experiments.  

Table 1: The proposed centralized resource allocation algorithm 

0: repeat (for each iteration): 
0:  Initialize p; 

0:  Calculate: 𝑘𝑘𝑚𝑚𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎 maxka∈𝒦𝒦𝑚𝑚log2 �1 + 𝛾𝛾𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛
𝑛𝑛 (𝒑𝒑𝑛𝑛)� ,∀𝑛𝑛 ∈ 𝒩𝒩,𝑚𝑚 ∈ ℳ; 

0:  Calculate: 

� � �0，
𝜔𝜔𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛
𝑛𝑛

𝜆𝜆𝑋𝑋𝑚𝑚𝑛𝑛 + 𝑌𝑌𝑚𝑚𝑛𝑛 + 𝑍𝑍𝑚𝑚𝑛𝑛
−
𝐵𝐵𝑠𝑠𝑁𝑁0 + ∑ 𝑝𝑝𝑚𝑚′

𝑛𝑛 �ℎ𝑚𝑚′,𝑘𝑘𝑚𝑚𝑛𝑛
𝑛𝑛 �2𝑚𝑚′

�ℎ𝑚𝑚,𝑘𝑘𝑚𝑚𝑛𝑛
𝑛𝑛 �

2 �

+𝑀𝑀

𝑚𝑚=1

𝑁𝑁

𝑛𝑛=1

≤ � 𝑃𝑃�𝑚𝑚

𝑀𝑀

𝑚𝑚=1

−� � 𝑃𝑃𝐶𝐶,𝑚𝑚
𝑛𝑛

𝑀𝑀

𝑚𝑚=1

𝑁𝑁

𝑛𝑛=1

 

and obtain 𝐩𝐩�; 
0: until Convergence. 
0: Achieve optimal resource allocation policy {𝑘𝑘∗,𝑝𝑝∗}; 
0: Achieve resource sharing policy 𝑒𝑒∗ by solving (8). = 0 

3.2 Distributed approach 
In this subsection, we propose a distributed resource allocation approach based on RL.  
Unlike the centralized resource allocation approach which has a central controller to 
collect the network information and to execute resource allocation algorithm, in a 
distributed approach each BS autonomously decides its resource sharing and allocation 
policy based on its own optimization goal and its local observation of the network 
environment. In the context of our system scenario, BSs, which are RL agents learning 
their own resource allocation and sharing policies by interacting with the surrounding 
environment, constitute a multi-agent RL (MARL) system. The resource allocation 



Energy Efficient Resource Allocation Approach for Renewable Energy         507 

decision of agent m (i.e., BS m) on subcarrier n in terms of the scheduled UE 𝑘𝑘𝑚𝑚𝑛𝑛  and the 
allocated power 𝑝𝑝𝑚𝑚𝑛𝑛  affects other agents’ resource allocation decisions on subcarrier n 
due to the co-channel interference. Hence, the MARL system is characterized by N 
learning processes for all subcarriers. Among many RL algorithms, Q-Learning (QL) is 
suitable for our resource allocation task because it finds optimal decision policies without 
any prior knowledge of the environment which is the case in our system scenario.  
For each agent m and subcarrier n, the learning process for the resource allocation policy is as 
follows. Let 𝑆𝑆𝑚𝑚,𝑛𝑛 be the set of S possible states 𝑆𝑆𝑚𝑚,𝑛𝑛 = �𝑠𝑠𝑚𝑚,𝑛𝑛

1 , 𝑠𝑠𝑚𝑚,𝑛𝑛
2 ,⋯ , 𝑠𝑠𝑚𝑚,𝑛𝑛

𝑆𝑆 �, and 𝐴𝐴𝑚𝑚,𝑛𝑛 
be the set of A possible actions 𝐴𝐴𝑚𝑚,𝑛𝑛 = �𝑎𝑎𝑚𝑚,𝑛𝑛

1 ,𝑎𝑎𝑚𝑚,𝑛𝑛
2 ,⋯ ,𝑎𝑎𝑚𝑚,𝑛𝑛

𝐴𝐴 �. At each time step t agent m: 
1) observes its state 𝑠𝑠𝑚𝑚,𝑛𝑛

𝑡𝑡 = 𝑠𝑠𝑚𝑚,𝑛𝑛
𝑠𝑠 ∈ 𝑆𝑆𝑚𝑚,𝑛𝑛;  

2) selects an action 𝑎𝑎𝑚𝑚,𝑛𝑛
𝑡𝑡 = 𝑎𝑎𝑚𝑚,𝑛𝑛

𝑎𝑎 ∈ 𝐴𝐴𝑚𝑚,𝑛𝑛 based on 𝑠𝑠𝑚𝑚,𝑛𝑛
𝑠𝑠 ;  

3) makes the state transition into the next state 𝑠𝑠𝑚𝑚,𝑛𝑛
𝑡𝑡+1 ∈ 𝑆𝑆𝑚𝑚,𝑛𝑛 and as a result receives an 

immediate reward 𝑟𝑟𝑚𝑚,𝑛𝑛
𝑡𝑡 ; 

4) the reward 𝑟𝑟𝑚𝑚,𝑛𝑛
𝑡𝑡  is feedback to agent m and the process repeats. The goal of the 

learning process is to find the optimal action 𝜋𝜋∗�𝑠𝑠𝑚𝑚,𝑛𝑛
𝑠𝑠 � ∈ 𝒜𝒜 for each state 𝑠𝑠𝑚𝑚,𝑛𝑛

𝑠𝑠  to 
maximize a long term value of the reward 𝑟𝑟𝑚𝑚,𝑛𝑛

𝑡𝑡 = 𝑟𝑟�𝑠𝑠𝑚𝑚,𝑛𝑛
𝑠𝑠 ,𝑎𝑎𝑚𝑚,𝑛𝑛

𝑎𝑎 � , denoted by 
𝑄𝑄𝑚𝑚,𝑛𝑛�𝑠𝑠𝑚𝑚,𝑛𝑛

𝑠𝑠 ,𝑎𝑎𝑚𝑚,𝑛𝑛
𝑎𝑎 �, named Q value. Over time the above repeated processes keep updating 

the Q value for each state-action pair (𝑠𝑠,𝑎𝑎), 𝑄𝑄(𝑠𝑠,𝑎𝑎), based on the following rule,  
𝑄𝑄(𝑠𝑠,𝑎𝑎) ← 𝑄𝑄(𝑠𝑠,𝑎𝑎) + 𝛼𝛼[𝑟𝑟 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′𝑄𝑄(𝑠𝑠′, 𝑎𝑎′) − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)]                         (9) 
where 𝛼𝛼 is the learning rate and 𝛽𝛽 is discount parameter that determines how much 
effect future reward has on the decisions of the current time step; 𝑠𝑠′ is the next state 
transited from state 𝑠𝑠 and 𝑎𝑎′ is the action selected for 𝑠𝑠′. For more details about RL 
and QL, the readers are referred to Sutton et al. [Sutton and Barto (2015); Watkins and 
Dayan (1992)].  
The state, action and reward for the learning process of agent m on subcarrier n at time 
step t are defined in detail as follows.  
State: 𝑠𝑠𝑚𝑚,𝑛𝑛

𝑡𝑡 = {𝑃𝑃𝑚𝑚𝑡𝑡 }, where 𝑃𝑃𝑚𝑚𝑡𝑡 = {1, 0,−1} indicates the state of renewable energy 
budget of BS m and is determined by the total amount of power allocated by BS m on all 
subcarriers at time step t:  

𝑃𝑃𝑚𝑚𝑡𝑡 = �
1, ∑ 𝑝𝑝𝑚𝑚𝑛𝑛𝑁𝑁

𝑛𝑛=1 < 𝑃𝑃�𝑚𝑚 − ∑ 𝑃𝑃𝐶𝐶,𝑚𝑚
𝑛𝑛𝑁𝑁

𝑛𝑛=1

0, ∑ 𝑝𝑝𝑚𝑚𝑛𝑛𝑁𝑁
𝑛𝑛=1 = 𝑃𝑃�𝑚𝑚 − ∑ 𝑃𝑃𝐶𝐶,𝑚𝑚

𝑛𝑛𝑁𝑁
𝑛𝑛=1

−1, ∑ 𝑝𝑝𝑚𝑚𝑛𝑛𝑁𝑁
𝑛𝑛=1 > 𝑃𝑃�𝑚𝑚 − ∑ 𝑃𝑃𝐶𝐶,𝑚𝑚

𝑛𝑛𝑁𝑁
𝑛𝑛=1

                                    (10) 

Action: 𝑎𝑎𝑚𝑚,𝑛𝑛
𝑡𝑡 = ��𝑘𝑘𝑚𝑚,𝑛𝑛

𝑡𝑡 ,𝑝𝑝𝑚𝑚,𝑛𝑛
𝑡𝑡 �� where 𝑘𝑘𝑚𝑚,𝑛𝑛

𝑡𝑡 ∈ ∅ ∪ {𝑘𝑘𝑚𝑚𝑛𝑛 } is the UE scheduled by BS m on 
subcarrier n, which can be no UE, i.e., ∅ or any UE 𝑘𝑘𝑚𝑚𝑛𝑛  associated with BS m. 𝑝𝑝𝑚𝑚,𝑛𝑛

𝑡𝑡  is 
the allocated power on subcarrier n which is chosen in a range from 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 to 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 with 
step ∆𝑝𝑝.  
Reward: 
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𝑟𝑟𝑚𝑚,𝑛𝑛
𝑡𝑡 = �

0, 𝑖𝑖𝑖𝑖 ∑ �𝑃𝑃�𝑚𝑚 − ∑ 𝑃𝑃𝐶𝐶,𝑚𝑚
𝑛𝑛𝑁𝑁

𝑛𝑛=1 − ∑ 𝑝𝑝𝑚𝑚,𝑛𝑛
𝑡𝑡𝑁𝑁

𝑛𝑛=1 � < 0𝑀𝑀
𝑚𝑚=1

∑ 𝜔𝜔𝑚𝑚,𝑘𝑘𝑚𝑚,𝑛𝑛
𝑡𝑡

𝑛𝑛𝑁𝑁
𝑛𝑛=1 𝜂𝜂𝑚𝑚,𝑘𝑘𝑚𝑚,𝑛𝑛

𝑡𝑡
𝑛𝑛 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                         (11) 

The rationale behind the reward function is that agent m aims to maximize the EE of BS 
m while keeping the energy consumption under the limit of the renewable energy budget 
of the network because of the energy cooperation between BSs in the HetNet. The reward 
function indirectly combines the MARL system together with the total energy 
consumption limitation.  
At each time step t, agent m needs to obtain the resource allocation information of other 
agents to calculate its immediate reward and update Q value based on:  
𝑄𝑄�𝑠𝑠𝑚𝑚,𝑛𝑛

𝑡𝑡 ,𝑎𝑎𝑚𝑚,𝑛𝑛
𝑡𝑡 � ← 𝑄𝑄�𝑠𝑠𝑚𝑚,𝑛𝑛

𝑡𝑡 ,𝑎𝑎𝑚𝑚,𝑛𝑛
𝑡𝑡 � + 𝛼𝛼�𝑟𝑟𝑚𝑚,𝑛𝑛

𝑡𝑡 �𝑠𝑠𝑚𝑚,𝑛𝑛
𝑡𝑡 ,𝒂𝒂� + 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡+1,𝑎𝑎𝑚𝑚,𝑛𝑛𝑄𝑄�𝑠𝑠𝑚𝑚,𝑛𝑛

𝑡𝑡+1,𝑎𝑎𝑚𝑚,𝑛𝑛
𝑡𝑡+1� −

𝑄𝑄�𝑠𝑠𝑚𝑚,𝑛𝑛
𝑡𝑡 ,𝑎𝑎𝑚𝑚,𝑛𝑛

𝑡𝑡 ��                                                         (12) 
where a represents the actions taken by all agents at time step t. Hence, BSs need to 
exchange their learning knowledge in terms of the subcarrier assignment and power 
allocation policy during each step of the learning process. In practice, BSs can exchange 
information through intercell interface, e.g., the X2 interface. The procedure form of the 
QL based distributed resource allocation approach is summarized in Tab. 2. For each 
agent in the MARL system, the convergence can be proved by approximating other 
agents as environment and applying Bellman’s criterion, although the proof does not hold 
as strictly as it does in single agent scenario it has been shown to correctly converge in 
many applications [Panait and Luke (2005)].  

Table 2: The proposed distributed MARL algorithm 

0: Initialize: 𝒕𝒕 = 𝟎𝟎;𝑄𝑄𝑚𝑚,𝑛𝑛�𝑠𝑠𝑚𝑚,𝑛𝑛
𝑠𝑠 ,𝑎𝑎𝑚𝑚,𝑛𝑛

𝑎𝑎 � = 0,∀𝑠𝑠𝑚𝑚,𝑛𝑛
𝑠𝑠 ∈ 𝑆𝑆𝑚𝑚,𝑛𝑛,𝑎𝑎𝑚𝑚,𝑛𝑛

𝑎𝑎 ∈ 𝐴𝐴𝑚𝑚,𝑛𝑛; 𝑠𝑠𝑚𝑚,𝑛𝑛
0 = {𝑃𝑃𝑚𝑚0} =

1,∀𝑛𝑛 ∈ 𝒩𝒩,𝑚𝑚 ∈ℳ 
0: For all subcarrier 𝑛𝑛 ∈ 𝒩𝒩, M agents execute the following learning process in 
parallel: 
0: repeat (for each time step t of this episode): 
0:  prepare: Agent m sends its current state-action information to other M-1 agents 

and. receives the state-action information of other M-1 agents. 
0:  Agent m chooses action 𝑎𝑎𝑚𝑚,𝑛𝑛

𝑡𝑡 = ��𝑘𝑘𝑚𝑚,𝑛𝑛
𝑡𝑡 ,𝑝𝑝𝑚𝑚,𝑛𝑛

𝑡𝑡 �� for state 𝑠𝑠𝑚𝑚,𝑛𝑛
𝑡𝑡  based on greedy 

policy; 
0:  Agent m takes action 𝑎𝑎𝑚𝑚,𝑛𝑛

𝑡𝑡  updates the Q value of state-action pair �𝑠𝑠𝑚𝑚,𝑛𝑛
𝑡𝑡 ,𝑎𝑎𝑚𝑚,𝑛𝑛

𝑡𝑡 � 
based on the rule (12), and transits into the next state 𝑠𝑠𝑚𝑚,𝑛𝑛

𝑡𝑡+1 
0: until Convergence or Maximal number of iterations. 
0: Achieve the optimal resource allocation and sharing policy by checking the Q-table 

and choosing the state-action pair which has the highest Q value. =0 

4 Numerical results 
4.1 Simulation settings 
Assume one macro cell is overlaid with two small cells, where five and two 
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uniformly-distributed UEs are served by MBS and SBS, respectively. The radius of the 
macro cell and small cell is set to 300 m and 50 m respectively. The path loss between 
BS and UE is modeled as 𝐾𝐾 �𝑑𝑑0

𝑑𝑑
�
𝑣𝑣
, where 𝐾𝐾 is path-loss factor, 𝑣𝑣 is the path-loss 

exponent and 𝑑𝑑 is the distance between a BS and a UE. All UEs are with identical and 
independent Rayleigh fading channels and Log-Normal shadowing with standard 
deviation of 8 dB [Tang, So, Alsusa et al. (2018)]. AWGN noise density is-174 dBm/Hz. 
The constant circuit power consumed by a MBS and a SBS for the transmission on 
subcarrier n are 25 𝑚𝑚𝑚𝑚 and 0.1 𝑚𝑚𝑚𝑚. Central frequency of HetNet is 1 GHz. The 
number and bandwidth of subcarriers are 5 and 15 kHz. The weight 𝜔𝜔𝑚𝑚,𝑘𝑘𝑚𝑚,𝑛𝑛

𝑡𝑡
𝑛𝑛  for each 

UE is chosen from [0, 1] based on the priority of the UE with a larger value of 𝜔𝜔𝑚𝑚,𝑘𝑘𝑚𝑚,𝑛𝑛
𝑡𝑡

𝑛𝑛  
indicating a higher priority of the UE. Learning rate of QL is 𝛼𝛼 = 0.5 and the discount 
parameter is 𝛽𝛽 = 0.9 . Set 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 0  and ∆𝑝𝑝 = 4 𝑑𝑑𝑑𝑑𝑑𝑑  for both MBS and SBS. 
Separately set 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 44 𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 20 𝑑𝑑𝑑𝑑𝑑𝑑 for MBS and SBS.  

4.2 Simulation results 
First, we verify the convergence of the proposed centralized resource allocation algorithm. 
The renewable energy budget of MBS 1, SBS 2 and SBS 3, and thereafter the total 
energy budget of the HetNet, denoted by 𝑃𝑃 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, are respectively set (1) 𝑃𝑃�1 = 1𝑊𝑊, 
𝑃𝑃�2 = 0.5𝑊𝑊 , 𝑃𝑃�3 = 0.5𝑊𝑊 , and 𝑃𝑃 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 2𝑊𝑊 ; (2)  𝑃𝑃�1 = 2𝑊𝑊 , 𝑃𝑃�2 = 0.5𝑊𝑊 , 𝑃𝑃�3 =
0.5𝑊𝑊 , and 𝑃𝑃 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 3𝑊𝑊 ; (3)  𝑃𝑃�1 = 3𝑊𝑊 , 𝑃𝑃�2 = 0.5𝑊𝑊 , 𝑃𝑃�3 = 0.5𝑊𝑊 , and 𝑃𝑃 −
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 4𝑊𝑊 W;(4) 𝑃𝑃�1 = 3.5𝑊𝑊, 𝑃𝑃�2 = 1𝑊𝑊, 𝑃𝑃�3 = 0.5𝑊𝑊, and 𝑃𝑃 −𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 5𝑊𝑊.  

 
Figure 1: The convergence of the centralized resource allocation algorithm 

As shown in Fig. 1, the centralized resource algorithm converges within 9 iterations for 
all level of energy budget of the HetNet. Furthermore, a higher EE of the HetNet can be 
achieved after the convergence of the resource allocation algorithm by a higher 
renewable energy budget of the HetNet. This is because the relatively lower amount of 
the renewable energy. Any increase of the transmit power can increase both the link EE 
and network EE when the total energy supply is limited.  
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We verify the convergence of the proposed distributed resource allocation algorithm in 
the second simulation. The renewable energy budget of MBS and SBS increase from 0.5 
to 2.5 with step size 0.5. As shown in Fig. 2, the number of iterations for convergence for 
both MBS and SBS increase with the energy budget in exponential manner. This is 
because a higher energy budget leads to more valid actions in terms of power allocation 
which is constrained by the total energy budget. Hence, with more valid resource 
allocation actions, agent needs more iterations to find the optimal state-action decision 
policy. In addition, the number of iterations for MBS is much higher than that for SBS. It 
is because the MBS serves more UEs and has a larger action space produced by the 
subcarrier assignment of UEs.  

 
Figure 2: Number of iterations for convergence vs. renewable energy budget 

The comparison of EE performance of the proposed centralized and distributed resource 
allocation algorithms and the reference resource allocation algorithms without energy 
sharing is illustrated in Fig. 3. Both the proposed centralized and distributed resource 
allocation algorithms outperform the reference resource allocation algorithms without 
energy sharing in terms of network EE when the energy supply is limited, i.e., when HetNet 
energy budget is lower than 9 W as shown in the figure. The EE performance gain is 
achieved by the energy sharing between those BSs with extra energy and energy 
deficiency. When the renewable energy supply is unstable and limited, energy sharing is 
promising for improving network EE. When the amount of renewable energy of the HetNet 
reaches a high level, i.e., 10 W or more, all resource allocation algorithms achieve the same 
performance of network EE. It can be explained by the definition of EE, when transmit 
power reached a certain level, the growth rate of the data rate starts decreasing with the 
increase of transmit power due to the interference between UEs. In addition, the proposed 
centralized resource allocation algorithm outperforms the proposed distributed resource 
allocation algorithms at the price of adding a central controller to execute the algorithm. 
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Figure 3: EE performance comparison  

5 Conclusion 
In this paper, we studied the resource allocation schemes aiming at maximizing network 
EE in renewable energy powered two-tier HetNet with energy sharing. We defined the 
problem as a mixed combinatorial and non-convex optimization problem and proposed 
both centralized and distributed algorithms to solve the resource allocation and sharing 
problem. The centralized algorithm consisted of three stages, i.e., subcarrier assignment, 
power allocation and energy sharing, and is implemented by iteratively computing each 
stage in order. In particular, the power allocation problem was solved by analytically 
solving the KKT conditions of the problem and then solving the subsequent water-filling 
problem. The distributed algorithm was based on the MARL with each BS acting as a QL 
agent to autonomously and dynamically learn its optimal resource allocation and sharing 
policies. Numerical results showed that both the centralized and distributed algorithms 
can converge with a few times of iterations. The distributed resource allocation algorithm 
achieved lower network EE than centralized one due to its partial knowledge of the 
network during making resource allocation decisions. Both centralized and distributed 
resource allocation algorithms achieved higher network EE than those reference 
algorithms that do not share energy.  
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Appendix A.  
The proof of Proposition 1 is given in this section. Since interferences only occur among 
co-channel UEs, (7a) can be decoupled from subcarriers. The KKT conditions of (7) are 
expressed as follows  
−𝑝𝑝𝑚𝑚𝑛𝑛 ≤ 0,∀𝑛𝑛 ∈ 𝒩𝒩,𝑚𝑚 ∈ℳ                                              (13a) 
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𝜆𝜆 ≥ 0                                                               (13d) 
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where 𝜆𝜆𝑚𝑚𝑛𝑛  and 𝜆𝜆 are the Lagrange multipliers associated with the inequality constraint 
(7b) and (7c). Using (13g), we can obtain 
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According to (13e), if 𝜆𝜆𝑚𝑚𝑛𝑛 > 0,𝑝𝑝𝑚𝑚𝑛𝑛 = 0; otherwise, 𝜆𝜆𝑚𝑚𝑛𝑛 = 0,𝑝𝑝𝑚𝑚𝑛𝑛 > 0. Hence the  
power allocation for problem (7) is as follows  

∑ ∑ �0，
𝜔𝜔𝑚𝑚,𝑘𝑘𝑚𝑚

𝑛𝑛
𝑛𝑛

𝜆𝜆𝑋𝑋mn+Ymn +Zmn
−

𝐵𝐵𝑠𝑠𝑁𝑁0+∑ 𝑝𝑝𝑚𝑚′
𝑛𝑛 �ℎ𝑚𝑚′,𝑘𝑘𝑚𝑚

𝑛𝑛
𝑛𝑛 �

2
𝑚𝑚′

�ℎ𝑚𝑚,𝑘𝑘𝑚𝑚
𝑛𝑛

𝑛𝑛 �
2 �

+

𝑀𝑀
𝑚𝑚=1

𝑁𝑁
𝑛𝑛=1 ≤ ∑ P�m𝑀𝑀

𝑚𝑚=1 − ∑ ∑ 𝑃𝑃𝐶𝐶,𝑚𝑚
𝑛𝑛𝑀𝑀

𝑚𝑚=1
𝑁𝑁
𝑛𝑛=1                      

(15) 
which is a water-filling problem that can be solved by bisection search.  
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