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Abstract: The Convolutional Neural Network (CNN) is a widely used deep neural network. 
Compared with the shallow neural network, the CNN network has better performance and 
faster computing in some image recognition tasks. It can effectively avoid the problem that 
network training falls into local extremes. At present, CNN has been applied in many 
different fields, including fault diagnosis, and it has improved the level and efficiency of 
fault diagnosis. In this paper, a two-streams convolutional neural network (TCNN) model is 
proposed. Based on the short-time Fourier transform (STFT) spectral and Mel Frequency 
Cepstrum Coefficient (MFCC) input characteristics of two-streams acoustic emission (AE) 
signals, an AE signal processing and classification system is constructed and compared 
with the traditional recognition methods of AE signals and traditional CNN networks. The 
experimental results illustrate the effectiveness of the proposed model. Compared with 
single-stream convolutional neural network and a simple Long Short-Term Memory 
(LSTM) network, the performance of TCNN which combines spatial and temporal features 
is greatly improved, and the accuracy rate can reach 100% on the current database, which is 
12% higher than that of single-stream neural network. 
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1 Introduction 
The effective classification and identification of the AE signal of the rotor are of great 
significance for the early diagnosis of mechanical faults, the analysis of the degree of 
rubbing state and the warning of fault development trends. Many scholars have proposed 
a number of methods to extract the robust features of the rotor’s rubbing acoustic 
emission signal. Modal Acoustic Emission (MAE) technology derived from traditional 
propagation theory is an effective method for representing AE signals. It uses multi-
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modal suppression to decompose AE signals into basic modal acoustic waves, and then 
extracts the characteristic parameters of the AE signal. For example, in 2010, Deng et al. 
[Deng, Cao, Tong et al. (2014)] proposed a Gaussian mixture model (GMM) rubbing 
fault classification method, which uses the cepstral coefficient of AE signal as input 
feature. On the other hand, some traditional machine learning methods are also applied in 
this field such as K-NN algorithm [Wang (2016)], Bayesian classifier [Baraldi, 
Podofillini, Mkrtchyan et al. (2015)], and support vector machine (SVM) [Vapnik 
(2013)]. Meanwhile, with the rapid development of deep learning, CNN is also applied in 
fault diagnosis [Lei, Jia, Lin et al. (2016)]. 
The CNN was proposed by LeCun et al. of New York University in 1989 [LeCun, Bottou, 
Bengio et al. (1998)]. It is a neural network mainly used to process high-dimensional mesh 
data. In 2012, the AlexNet won the ImageNet classification competition with 
overwhelming advantages, reflecting the powerful ability in image recognition and the 
great potential of deep learning [Krizhevsky, Sutskever and Hinton (2012)]. 
In recent years, a large number of excellent CNN models have been applied in many 
fields. Not only do they perform well on visual tasks, they also perform well on some 
voice tasks, such as, sound source localization [Zhou, Wang, Chen et al. (2019)]. 
Similarly, we can also use the CNN model to deal with the task of AE. 
At present, CNN has been initially applied in fault diagnosis and has improved the level 
and efficiency of fault diagnosis. For instance, Prosvirin et al. propose a method using 
CNN and AE signal to extract discriminative to detect bearing faults [Prosvirin, Kim and 
Kim (2017)]. At present, multi-streams neural networks are also frequently used, 
compared with a single-stream neural network, a multi-streams neural network can 
extract more features and has a better performance in aspects such as facial expression 
recognition [Khor, See, Phan et al. (2018)], fault detection [Li, Li, Qu et al. (2019)]. 
In this paper, an improved neural network is used to effectively identify the AE signal. 
Firstly, the time-frequency analysis of the AE signal is calculated, which reflects the 
frequency of AE signals as a function of time. Secondly, the STFT and MFCC are 
calculated to construct two-streams input data. Then, a two-streams neural network is 
proposed, in which one stream is used to extract spatial features through CNN and the 
other stream is used to extract temporal features through CNN-LSTM. Finally, the 
effectiveness of this TCNN network proposed in this paper is verified by experiments.  

2 Main principle 
2.1 CNN  
CNN are improvements to traditional common neural networks. For neural networks that 
take images as input, each pixel of the image can be viewed as a feature value. There will 
be too many parameters when a fully connected network connection is used. The CNN 
implements the functions of local feature extraction and hierarchical feature extraction by 
introducing the convolutional layer and the pooling layer, and reduces the number of 
parameters of the entire network by using the network weight parameter sharing 
mechanism. The CNN is mainly composed of an input layer, a convolution layer, a pooling 
layer, a fully connected layer and an output layer, which are shown in Fig. 1. 
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Figure 1: The structure of CNN 
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Figure 2: The structure of LSTM 
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Figure 3: STFT spectra and MFCC of rubbing, cracking, and normal AE signals. (a) 
rubbing. (b) Cracking. (c) Normal 
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2.2 LSTM 
LSTM is a kind of time circulation neural network, which is specially designed to solve 
the long-term dependence problem existing in general RNN. Here, we use LSTM to 
extract time features. The structure of LSTM is shown in Fig. 2. 

2.3 Two-streams input 
Rotating machine rotor AE signal is a kind of acoustic signal, which acoustic signal 
characteristics is similar to natural speech [Kundu, Kishore and Sinha (2009)], so that it 
can be analyzed and identified with reference to the processing method of a speech 
signal. Here, the rubbing AE signal can be regarded as short-term stationery, that is, for 
any time t, the signal can be spectrally analyzed in a small range of time near the 
moment. A two-dimensional spectrogram of the AE signal can be obtained by performing 
a continuous spectrum analysis on a series of t values. Fig. 3 shows the STFT spectra and 
MFCC spectra of three AE signals for normal, cracking, and rubbing. 
In STFT, each column represents a 512 points FFT of one frame of signal, each frame has 
a duration of 1.024 ms and a frame overlap rate of 0.5. Considering the relatively stable 
and unitary frequency distribution of the AE signal STFT and MFCC spectrum and 
CNN's powerful image learning classification ability, two-streams input is designed for 
the convolutional neural network to improve the model accuracy. Compared with single-
stream input, two-streams inputs are sufficient to preserve more valid features of the 
output. The two-streams inputs are: 
(1) STFT amplitude spectrum 
(2) MFCC amplitude spectrum 
Here, the STFT and MFCC amplitude spectrum are used to extract the variation 
characteristics of the AE signal spectrogram, such as some image edge features. 

2.4 Two-streams CNN  
Due to the poor performance of the small database on the deep network, compared with the 
deep network like ResNets [He, Zhang, Ren et al. (2016)] and VGGNet [Szegedy, Liu, Jia 
et al. (2015)], we chose the CNN network with few layers. Meanwhile, in order to prevent 
over-fitting, we added dropout behind each max-pooling layer. The CNN structure used in 
this paper is shown in Fig. 4. And the details of this structure are shown in Tab. 1. At the 
same time, in order to obtain the time features, we add LSTM [Hochreiter and 
Schmidhuber (1997)] structure after the CNN of the stream which input is MFCC. 

3x3  
Convolution

2x1  Pooling 3x3  
Convolution

2x1  
Pooling Faltten Softmax

 
Figure 4: The CNN structure 
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Table 1: The model parameter setting of the CNN 

No.   Layer Dropout Kernel Channel Activation 

1     Convolution - (3, 3) 32 Rectified Linear 
Unit (ReLu) 

2     MaxPooling - (2, 2) - - 
3     Dropout 0.5 - - - 
4     Convolution - (3, 3) 32 ReLu 
5     MaxPooling - (2, 2) - - 
6     Dropout 0.5 - - - 
7     Dense - - - Softmax 

Raw AE 
signal

STFT Spectrum

MFCC Spectrum

CNN

LSTM Dense layer

Dense layer

Concatenate

Softmax

CNN

 
Figure 5: The overall framework 

The input data of the network is the images of a rubbing AE signal STFT spectrum and 
MFCC spectrum with a frame overlap ratio of 50%, the size of the STFT spectrum is 
257×200×1, while the size of the MFCC spectrum is 128×100×1. 
The whole TCNN framework is shown in Fig. 5. 
The STFT spectrum and MFCC spectrum of the raw AE signal are obtained by 
preprocessing. These spectrums are used to represent the feature of AE signals. Then the 
two spectrums were input into two CNN networks of the same structure. The next step is 
to input the output of the MFCC stream into the LSTM model. After that, we concatenate 
the last dense layer of the two streams, and connect the result with a softmax layer. 

3 Experiments 
3.1 Database 
The AE signal database adopted in this paper is a database of normal signals, rotor cracks 
and rotor rubbing AE signals composed of the AE signals of rotating machinery 
independently collected by our research group of the laboratory in the past two years. In 
total, the database contains AE signals under three different rotational speed conditions 
(600 rad/s, 700 rad/s, 800 rad/s). 
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Tab. 2 shows the whole picture of the AE database used in this paper. The sampling rates 
used here are all 500 KHz. Here, the sampling time of each piece of data lasts 102.294 ms. 
Under the condition that the rotation speed is 600 rad/s, the total point length of each AE 
discrete signal is 51147, and about 9.8 rotor cycles are continuously collected. Fig. 6 
shows the image of these three signals in time domain. 

Table 2: The quantity distribution of three AE signals at different rotational speeds 
(unit: Sample) 

 
The machine speed 

600 rad/s 700 rad/s 800 rad/s 

State of 
the rotor 

Normal 118 121 123 
Cracking 494 728 270 
Rubbing 592 518 396 

 
                          
   
 
 
                                                                                                    (b) 
 
 
 
 
   

(a)                                                                (c) 

Figure 6: The samples of our database. (a) Cracking. (b) Rubbing. (c) Normal 

3.2 Experiment setup 
In this chapter, the AE signal with a rotation speed of 600 rad/s is used for the main 
experiment. The AE signal with the rotation speed of 700 rad/s and 800 rad/s is used as 
the reference experiment. The distribution of various types of data is shown in Tab. 2. 
The Hanning window is used to window framing the discrete AE signal. The choice of 
frame length depends mainly on the validity of the FFT point representation. Experiments 
were performed on the 256 points, 512 points, 1024 points and 2048 points FFTs 
respectively, and finally, a 512 points FFT was taken. This experiment uses the 
TensorFlow deep learning framework to build and train the network. And the ratio of the 
training set to the test set is 10:1. 
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The network uses the ReLu [Nair and Hinton (2010)] activation function, which 
represents a ‘corrected linear unit’ that can avoid gradient disappearance to some extent. 
The function expression of ReLu is: 
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥( 0, 𝑥𝑥)                                                          (1) 
This experiment uses the Adam optimization algorithm for training. More details of the 
training are shown in Tab. 3. 

Table 3: The details of the training 
No. Network Input Epoch Batch Size Loss 
1     CNN STFT 5 64 Categorical cross-entropy 
2     CNN-2 MFCC 50 64 Categorical cross-entropy 
3     LSTM The output of CNN-2 10 64 - 
4     Combine net Concatenated result 10 64 Categorical cross-entropy 

3.3 Result analysis 
3.3.1 Recognition result 
Fig. 7 shows the comparison before and after two streams plus the LSTM module. It can 
be seen from the figure that the accuracy rate of streams with MFCC as input is improved, 
so our final model chooses to add the LSTM module after this stream. Fig. 8 shows the 
confusion matrix proposed by the two single-stream convolutional neural networks for the 
classification of 600 rad/s rotating rubbing AE signals. It can be seen from the confusion 
matrix that CNN whose input is STFT spectrums, its accuracy is 94.12%, while the 
accuracy of the other single-stream CNN-LSTM is 88.03%. However, according to Fig. 9, 
we can see that the accuracy of our proposed TCNN can reach 100%, which is improved by 
12% and 6% respectively compared with the two single-stream networks. 

 

Figure 7: The comparison before and after two streams plus LSTM module 
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Figure 8: The confusion matrix of the single-stream CNN and CNN-LSTM 

   
Figure 9: The confusion matrix of the TCNN and the accuracy of different networks 

3.3.2 Model comparison experiment 
In addition, in order to further explore the effectiveness of the proposed model, the 
conventional methods for the recognition of AE signals are compared. Tab. 4 shows the 
performance of different classifiers on the AE signal classification. The results are also 
shown in Fig. 10. 

Table 4: The recognition rates of AE signals by different models at 600 rad/s (%) 

Algorithm 
AE signal 

Average 
Normal Cracking Rubbing 

KNN 60.11 56.78 55.04 57.23 

DNN 69.16 72.68 67.23 69.70 

Sparse representation  59.97 66.35 60.04 62.18 

SVM 69.98 76.49 70.54 72.40 

CNN - Inception 78.29 84.53 81.24 81.44 

Single-stream CNN 100.00 96.60 54.54 94.12 

TCNN 100.00 100.00 100.00 100.00 
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It can be seen from the table that the recognition accuracy of the improved CNN is the 
highest for all of normal, cracking and rubbing AE signals, reaching 100% respectively, 
and the overall average recognition rate is 18% higher than SVM. The performance of 
SVM in the traditional AE signal identification method is the best, reaching 72.40%, which 
is 15.17% and 10.22% higher than KNN and sparse representation respectively. The 
classifier KNN has a poor recognition effect in the rubbing AE signal, and the recognition 
rate is only 57.23%. Although the recognition rate of sparse representation has increased to 
62.18%, the classification effect is not satisfactory and the training time is longer. 
Compared with DNN, which is also a neural network, since TCNN’s inputs are STFT and 
MFCC, the more features of AE signals can be effectively captured, so the overall 
recognition effect is better, and average recognition rate has reached 100%. In addition, 
compared with the deep CNN, the shallow CNN proposed by us is more suitable for the 
training of small data sets. 

3.4 Speed comparison experiment 
Finally, this paper investigates the effect of machine speed on the recognition 
performance of AE signals by comparing the AE signals at different speeds. 

 
Figure 10: Recognition rates of different models at four speeds 

The data shows that the improved CNN network proposed in this paper achieves the best 
recognition performance under different speed conditions. Compared with the traditional 
KNN, sparse representation and SVM, the effect of TCNN is obviously improved. The 
performance of each classifier is relatively stable on the AE signal at different speeds. The 
recognition rate of CNN under the three speed conditions is maintained 100%. The SVM 
has achieved the best recognition effect in the traditional classifier, and it has reached more 
than 70% under the three kinds of speed conditions. The sparse representation algorithm is 
inferior, and the effect of KNN is the worst, which recognition accuracy under the three 
speed conditions is maintained between 54.96% and 59.72%. 
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In addition, it can be found that as the AE signal speed increases, the recognition 
performance of each classifier is improved, indicating that the higher speed provides 
sufficient load for triggering the AE signal, which indicates that increasing the speed of 
the machine within a reasonable range facilitates the classification of the AE signal.  

4 Conclusion 
This paper proposes a TCNN and applies it to the detection of rotor rubbing AE faults. 
Firstly, the STFT and MFCC spectrum of the rubbing AE signals are constructed as 
network inputs. Secondly, in the network structure, the shallow CNN and CNN-LSTM 
structures are introduced to extract temporal and spatial features, which improve the 
generalization ability of the network while they don’t require a lot of computing power. 
Finally, the performance of the TCNN network is verified by comparison experiments. 
The experimental results show that the TCNN network has a much higher recognition 
accuracy for AE signals than the traditional identification method, and good results can 
be obtained even in the case of small data set training. 
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