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Abstract: With the development of science and technology, the status of the water 
environment has received more and more attention. In this paper, we propose a deep 
learning model, named a Joint Auto-Encoder network, to solve the problem of outlier 
detection in water supply data. The Joint Auto-Encoder network first expands the size of 
training data and extracts the useful features from the input data, and then reconstructs 
the input data effectively into an output. The outliers are detected based on the network’s 
reconstruction errors, with a larger reconstruction error indicating a higher rate to be an 
outlier. For water supply data, there are mainly two types of outliers: outliers with large 
values and those with values closed to zero. We set two separate thresholds, 1τ  and 2τ , 
for the reconstruction errors to detect the two types of outliers respectively. The data 
samples with reconstruction errors exceeding the thresholds are voted to be outliers. The 
two thresholds can be calculated by the classification confusion matrix and the receiver 
operating characteristic (ROC) curve. We have also performed comparisons between the 
Joint Auto-Encoder and the vanilla Auto-Encoder in this paper on both the synthesis data 
set and the MNIST data set. As a result, our model has proved to outperform the vanilla 
Auto-Encoder and some other outlier detection approaches with the recall rate of 98.94 
percent in water supply data.  
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1 Introduction 
The rapid development and widespread application of science has contributed to the 
outbreak of the era of big data. The massive and highly complex nature of big data 
presents many challenges and new opportunities for existing machine processing and 
computing power. The process of water supply data or the water resource consumption 
data is becoming more and more important, because these data reflect the water 
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consumption status and trends of different companies and/or regions of a country, and the 
data mining result of such data might seriously affect the policy decision. Therefore, 
achieving high-precision prediction of water consumption becomes very important for the 
insurance of science and rationality of water resource comprehensive planning, water 
resource management and other policy-making. In order to achieve this goal, a complete 
and high-quality historical time series data is required. 
Water resources management system [Raciti, Cucurull and Nadjm-Tehrani (2012)] and 
water resource data processing [Haddad, Afshar and Marino (2009)] have attracted lots of 
attention, and the collection and processing technology of water supply data has 
improved greatly with the development of remote sensing, telemetry, network, database 
and other technologies. However, due to the constraints of existing monitoring devices 
and methods, there are inevitably data abnormalities in the collection of historical data. 
Usually, outliers have a very large impact on data analysis [Alameddine, Kenney, 
Gosnell et al. (2010)] and information processing, and thus the methods for detecting 
these abnormalities of water supply data [Bakker, Lapikas, Tangena et al. (2012); Milln-
Roures, Epifanio and Martinez (2018)] becomes very important. Generally speaking, data 
anomalies can be divided into two categories: actual mutation anomalies and anomalies 
to be corrected. The former is the actual change of indicator data due to actual 
consumption which needs to be retained, while the latter is the “abnormality” of data due 
to influence of human operation, equipment use, statistical caliber difference and/or other 
factors. In this article, we will focus on the outlier detection, or authenticity problem of 
water supply data. Note that for actual mutation anomalies, they are also required to be 
detected and further confirmed by human beings, therefore, the classification of the two 
kinds of anomalies is not important and thus not tackled here. 
The intuitive definition of an outlier would be an observation that deviates so much from 
other observations [Hawkins (1980)]. Usually, the outliers in water supply data refer to 
some unusual large or small data that deviates from the most of the data pieces. The water 
supply data is collected under different perspectives, which is, from different sites, with 
different parameters relating to monitoring, collected by different individuals from multiple 
agencies, and in different time frames. Therefore, the form of anomalies might vary. To 
overcome this problem and obtain the real and effective information from the outliers in 
water resource data, many outlier detection methods have been proposed on water 
resources data and water resources management [Cho, Oh, Kim et al. (2013); Ayadi, 
Ghorbel, BenSaleh et al. (2017); Wright and Booth (2001)]. Among all these methods, the 
deep neural network methods are most widely used. Deep learning or deep neural network 
is very popular in various fields and applications [Deng and Yu (2014); Xu, Zhang, Xin et 
al. (2019); Huang, Sun and Huang (2020)], such as speech recognition [Sak, Senior, Rao et 
al. (2015); Taherian (2016); Qian, Bi, Tan et al. (2016)], information retrieval [Hang and 
Lu (2016)], medical data processing [Mamoshina, Vieira, Putin et al. (2016)] and computer 
vision [Vincent, Larochelle, Lajoie et al. (2010); Shrivastava, Pfister, Tuzel et al. (2017); 
Huang, Liu, Maaten et al. (2017)], and fraud detection [Webb, Pazzani and Billsus (2001)]. 
In this paper, we will propose a method named as Joint Auto-Encoder, to detect the outliers 
in water supply data. It is a variant of Auto-Encoder and is consists of two weight-sharing 
Auto-Encoders. Auto-Encoder extracts useful features from training data and then go on for 
the reconstruction [Hinton and Salakhutdinov (2006)], and the outliers can then be found by 
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sorting the reconstruction errors. 
The reminder structure of this article is organized as follows. Section II reviews the state-
of-the-art water supply outlier detection and some other applications of outlier detection. 
In Section III, the Joint Auto-Encoder network structure are introduced in detail. The 
outlier detection approach that employing two thresholds 1τ  and 2τ  is also explained. 
Section IV presents experiments by comparing the Joint Auto-Encoder with different 
types of Auto-Encoder, and evaluate the proposed model on three different datasets. In 
the end, conclusion is given in Section V. 

2 Related work 
In order to detect outliers of water supply data, various works have been proposed. 
Mounce et al. [Mounce, Boxall and Machell (2009)] presented a method that trains a 
mixture density network by a continually updated historic database for detection of leaks 
or bursts at district meter area (DMA). Christodoulou et al. [Christodoulou, Kourti and 
Agathokleous (2017)], on the other hand, addressed the automatic detection of water 
losses in water distribution networks (WDN) by using a wavelet change-point detection 
classifier to identify anomalies. To void the critical infrastructure, Zohrevand et al. 
[Zohrevand, Glasser, Shahir et al. (2016)] proposed a method based on supervisory 
control and data acquisition (SCADA) for water supply system anomaly detection. 
The problem of outlier detection is also widely seem in many other fields such as fraud 
detection [Dal, Boracchi, Caelen et al. (2018)], video surveillance [Kiran, Thomas and 
Parakkal (2018)], intrusion detection [Jabez and Muthukumar (2015)], face detection 
[Cheng, Ratha and Pankanti (2016)] and online social media analysis [Liu and Chawla 
(2017); Yu, He and Liu (2015)]. The outlier detection models can be roughly divided into 
three categories, namely, supervised models, semi-supervised models and unsupervised 
models. The supervised models are proved to be effective on drug name recognition 
[Chalapathy, Borzeshi and Piccardi (2016)] and health-care transaction applications 
[Chalapathy, Borzeshi and Piccardi (2016)]. However, they require a labelling of all the 
data manually, which is of high cost and sometimes might not be applicable. In addition, 
in order to achieve a good classification performance, it is assumed that the size of 
normal data has a same order of magnitude as the number of outliers, which is unusual 
because outliers are usually hard to be observed. Moreover, label costs too much. 
Therefore, they are not commonly used in real world data sets. To overcome these 
problems, the unsupervised outlier detection approaches are proposed, however, this kind 
of model might fail to give satisfying performance. Combining the advantages of these 
two, the semi-supervised outlier detection methods are proposed and they are proved to 
be suitable for detecting abnormal clinical electroencephalography [Wulsin, Blanco and 
Mani (2010)]. These methods employ the assumption that there are some non-trivial 
relationship between the labels and the unlabeled distributions [Lu (2009)], and thus is 
more efficient than the unsupervised ones. The model of Auto-Encoder [Hinton and 
Salakhutdinov (2006)] is one of the most widely used semi-supervised learning model on 
outlier detection. These kind of methods are of high computationally efficient in the 
testing stage and do not require too much label information of the data, thus are suitable 
for many applications. 
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Siamese network, which measures similarity, is widely used in object tracking [Tao, 
Gavves and Smeulders (2016)] and image matching [Zagoruyko and Komodakis (2015)]. 
Siamese networks are typically used in data sets that contain a large number of categories, 
with only a few training samples per category [Appalaraju and Chaoji (2017)]. It maps 
the input data to a target space through a function or a network, and uses a distance (e.g., 
European distance, etc.) in the target space for the comparison of the similarities. This 
kind of network has a good scalability and can be trained under a small dataset. In the 
water supply data, outliers can be regarded as an unknown category, and the number of 
this category is particularly small. In this work, we will employ the Siamese network 
together with the Auto-Encoder model to propose a new outlier detection model and 
solve the authenticity problem of water supply data. 

3 Outlier detection method 
3.1 Basic network structure 
Auto-Encoder is a feed-forward neural network widely used in data mining, data 
compression and dimension reduction, and proved to be effective in outlier detection 
[Williams, Baxter, He et al. (2002)]. It mainly includes two subsections, namely, encoder 
and decoder. The encoder part conducts a dimension reduction to capture meaningful 
features, while the decoder part reconstructs the data from the reduced feature vectors. 
The structure of the network is shown in Fig. 1. 

 

Figure 1: Vanilla auto-encoder network architecture 

The purpose of this network is to generate an output that is as similar as possible to the 
input. The residual error between input and output, which is commonly used to detect 
outliers, can be expressed as follows: 

-=r x y                                                                                                                            (1) 
where x is the raw input data and y  is the prediction value. We detect the outliers by 
sorting the r  for the input data in descending order, as the sample with a bigger r  is 
more likely to be an outlier. However, there are still some problems to be addressed: 
although part of the outliers in the training data can be first removed or deleted before the 
training process, in real world applications, there will be many other unknown outliers 
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that are not easy to be removed or observed by human beings, which may cause 
unexpected errors in the encoder. In addition, when the training data set is small, the 
Auto-Encoder network model will become overfitting quickly. Furthermore, the positive 
and negative residual error of water supply data usually play different roles and thus 
some necessary changes are to be made for the Auto-Encoder model. 

3.2 Improved network structure and outlier detection method 
In this part, we will introduce a joint network, named as Joint Auto-Encoder (JAE) 
network, for the problem of outlier detection. This proposed network employs the 
technique of the Siamese network, and is constructed by two weight sharing Auto-
Encoders as shown in Fig. 2. During training, the weights of the JAE network are 
adjusted to minimize the joint loss function:  

2 1 1c c c o c ol x y x y z zα β= − + ⋅ − + ⋅ −                                                                         (2) 

where cx  and cy  are the input and output of the clean data, respectively. We take the 2  
norm of their difference as one part of loss function. Note that although there might be 
some unknown outliers in the original training data, we still define them as clean data 
because the outliers are unknown and cannot be removed. The oy , on the other hand, is the 
output of the clean data with outliers (named as outlier data). These outlier data can be 
generated by adding some synthetic outliers, such as some random noise with large values 
or 0, to the clean data. We take the 1  norm of cx  and oy  as one part of loss function. 
Furthermore, the cz  and oz  are the feature vector of the network that are extracted from the 
encoder. Here we aim to minimize this loss function to ensure that the output of the 
network is as close as possible to the input data. The α  and β  are the hyper-parameters. 

 

Figure 2: Proposed joint auto-encoder architecture 

Generally speaking, the outlier detection problem can be considered as a two-class 
classification problem, where the outliers belong to one class and the normal values 
belong to the other. The two-class problem employs precision and recall as performance 
metrics, and uses the Receiver Operating Characteristic (ROC) curve to evaluate the 
outlier detection capability of the network model. Here we follow the idea in An et al. 
[An and Cho (2015)] and use the residual probability as the threshold for anomaly 
detection. Furthermore, the classification confusion matrix is employed for calculating 
the ROC curve, from which the threshold can be determined. The ROC curve is defined 
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by plotting the False Positive Rates (FPR) against the True Positive Rates (TPR) or recall 
rates, where the TPR and FPR are defined as follows: 

TPTPR
TP FN

=
+

                                                                                                                (3) 

FPFPR
TN FP

=
+

                                                                                                               (4) 

Here the outlier samples are considered as the positive data and the normal data samples 
are considered as the negative data. True Positive (TP) number is the number of the true 
outliers detected as outliers, and False Positive (FP) number is the number of the normal 
item detected as outliers. The True Negative (TN) number, on the other hand, refers to 
the number of normal items detected as normal items, while the False Negative (FN) 
number is the number of outliers detected as normal items. 
It is worth noting that there are at lease two types of outliers, which are, outliers with 
large values and those with values closed to zero. Therefore, two thresholds are employed 
in the proposed model. We conduct research by setting different values for positive and 
negative thresholds in experiments. All residual errors can be divided into two parts, the 
positive residual, which is used for detecting the large values, and the negative residual, 
which is used to detect small outliers, such as inappropriate 0 s. It is worth noting that 
some 0s are not outliers and thus this negative threshold is necessary. By drawing two 
ROC curves, the best thresholds can be found at locations where the true positive rate 
(TPR) is the highest and the false positive rate (FPR) is the lowest, and then the outliers 
in the water supply data can then be detected using the two thresholds as follows: 

1 21 ,    or 
0 ,  

if pr nr
label

else
τ τ> <

= 


                                                                                       (5) 

where 1label =  means x  being detected as an outlier, pr  denotes the positive residual, 
and nr  denotes the negative residual. By setting the best positive threshold 1τ  for big 
outliers and the best negative threshold 2τ  for outliers referring to inappropriate small 
value, the authenticity problem of water supply data can be solved. 

4 Experiment results 
In this section, experiments are carried out to verify the performance of the proposed 
method on synthesis data, the MNIST data set and the water supply data set. 

4.1 Synthesis data 
In this sub-section, synthesis data is generated to verify the effectiveness of JAE network 
for outlier detection. The synthetic data is generated as: 

{ }( ) ( ),0cx t max x t=                                                                                                           (6) 

where 
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3

1
( ) ( ) ( ) sin( ) ( )n n n

n
x t s t n t A t b n tω θ

=

= + = + + +∑                                                                (7) 

for 1,2,...,t T= , and =738T  is the length of one piece of data, 1nA =  is the amplitude, 
=2 /738nω π , and nθ  is the random phase uniformly distributed in [0, 2π]. The 6b =  is 

the offset, and ( )n t  is an additive Gaussian noise with mean 0 and standard deviation 1. 
Note that the operation in Eq. (6) is to make sure that all the ( )x t , t=1,2,··· ,T are positive 
values for the simulation of real water supply data, whose elements are all non-negative 
values. A number of 1000 sample pieces are generated, and 700 of them are used for 
training while the remaining 300 samples are used for testing. We denote the ( )cx t  in Eq. 
(6) as clean data cx  in Fig. 2. During the training process, the ox  in Fig. 2 is generated by 
replacing 4% of the data points in cx  by 0 or ( )on t , where the outlier data ( )on t  is a 
large value uniformly distributed in [10, 20]. Note that the positions of outlier data points 
are recorded for verification purpose. 
In the experiment, we build a two layers JAE with =0.9α  and =0.5β . The number of 
units of the hidden layer is set to 20. The network model is trained by the 700 pieces of 
data and then used to detect the outliers in the testing data set, and 4% of the elements of 
the test data pieces are replaced by outliers zeros or large values uniformly distributed in 
{10, 20}. The resulting ROC curves is plotted in Fig. 3, and it is shown that the propose 
JAE model is very efficient in outlier detection for the synthesis data. 

 
Figure 3: ROC curve of the JAE model. (Left: the ROC of positive residual, namely, 1τ ; 
Right: the ROC of negative residual, namely, 2τ ) 

4.2 MNIST dataset 
In this sub-section, the outlier detection methods are tested using the MNIST data set, and 
the proposed method is compared to One-Class Support Vector Machine (OC SVM) 
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[Scholkopf and Williamson (2000)] and One-Class Deep Support Vector Domain 
Description (OC Deep SVDD) [Ruff and Vandermeulen (2018)] approaches. The MNIST 
data set has 10 different classes, with 5500 and 1000 images of each class for training and 
testing, respectively. Therefore, the outlier detection methods will be trained and tested 
for 10 times, namely, one time for one class only. 
In each time, one of the ten classes are selected as the normal class and the others are all 
outliers. During the training, the clean data cx  in Fig. 2 refers to the 5500 figures belong 
to the normal class, while the outlier ox  in Fig. 2 is generated by adding salt and pepper 
noise to 20% of the pixels in cx . The network structure of the proposed method and the 
parameter settings are the same as those in the previous test. For testing, the data to be 
test, denoted as x′ , is fed into the network and the residual is now calculated as 

2
/r x x m′ ′= −  where x′  is the output of the network. Note that only one ROC curve 

will be obtained this time, and the Area Under the ROC curve (AUC) is also calculated. 
As long as the test set contains 1000 normal images (the normal class) and 9000 
abnormal images (the 9 other classes), we test the model for 9 times, with 1000 normal 
data and 1000 abnormal data in each time. The average results of AUC and its standard 
deviation of all the methods are shown in Tab. 1, which shows that in 7 out of 10 normal 
classes, the JAE approach outperforms the state-of-the-art methods. It is worth noting that 
the structure of outliers for training and testing data sets are different, showing the 
robustness of the proposed method. 

Table 1: The AUCs results (mean±std) of different methods 

NORMAL CLASS OC-SVM OC Deep SVDD JAE 
0 98.6±0.0 98.0±0.7 99.2±0.0 
1 99.5±0.0 99.7±0.7 99.8±0.0 
2 82.5±0.1 91.7±0.8 91.9±0.1 
3 88.1±0.0 91.7±0.8 94.3+0.0 
4 94.9±0.0 94.9±0.8 93.9±0.1 
5 77.1±0.0 88.5±0.9 95.4±0.0 
6 96.5±0.0 98.3±0.9 98.5±0.0 
7 93.7±0.0 94.6±0.9 96.8±0.1 
8 88.9±0.0 93.9±0.9 83.1±0.2 
9 93.1±0.0 96.5±0.3 96.1±0.1 

4.3 Water supply data 
In this sub-section, the proposed approach is employed to solve the problem of outlier 
detection of the water supply data set. 
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4.3.1 Data and preprocessing 
The raw water supply data set contains data from 204 different companies with 738 
days/data points for each company. Since the water consumption of different company 
varies, we normalize the median of the 738 data points of each company to 1. The 
training, validation and testing data sets contain 153, 35 and 16 companies, respectively. 
It is assumed that the training and validation sets contains only clean data, or says, the 
obvious outliers are replaced by the median 1 in the data preprocessing stage. The testing 
set, on the other hand, contains only the raw data without any preprocessing, which 
means that the actual position of the outliers are unknown. 

4.3.2 Training 
For JAE network, the 153 pieces of training data are referred to as the clean data cx  and 
the ox  in Fig. 2 is generated by randomly replacing 2% and 2% of the elements of the 
data by zeros and large values uniformly distributed in [5, 15], respectively. The network 
structure of the proposed method and the parameter settings are the same as those in the 
previous test. For comparison, the situation of JAE with =0β  and the AE model  [Hinton 
and Salakhutdinov (2006)]  using 1  and 2  norm as loss functions are also included. 

4.3.3 Outlier detection for validation data 
Similarly, 2% and 2% of the elements of the validation data are replaced by zeros and 
large values uniformly distributed in [5, 15], respectively. Note that the positions of 
outlier data points are recorded for verification purpose. In this time, we separate the 
residual errors into positive parts and negative parts to discover the two separate 
thresholds 1τ  and 2τ  for outliers with large value and the outliers with zero value, 
respectively. The ROC curves are shown in Fig. 4. According to the ROC results, we set 
the positive threshold 1=2.8τ  and the negative threshold 2 =-0.7τ , and obtain a final AUC 
of 99.99% and 99.10% for 1τ  and 2τ . A similar procedure is performed for the JAE 
model with =0β , which gives a corresponding AUC 99.03% and 98.33% and its ROC 
curves are shown in Fig. 5. It is shown that by a proper selected β , the JAE model can 
achieve a better performance, indicating the effectiveness of the loss term 

1c oz z−  in Eq. 
(2). The confusion matrices, TPRs and FPRs of AE and JAE methods are now shown in 
Tab. 2. It is shown that the JAE model performs the best among all the methods with a 
TPR and FPR of 98.94% and 1.45%, respectively. To visualize the result, we select six 
typical pieces of data from the validation set and feed them into the JAE model to display 
the detected outliers, and the results are shown in Fig. 6. The green curves, black lines 
and red dots are the clean data elements, outliers and detection results, respectively. It is 
shown that most outliers can be correctly detected, showing the usefulness of the 
proposed method. 
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Figure 4: ROC curve of the JAE model on water supply data. (Left: the ROC of positive 
residual, namely, 1τ ; Right: the ROC of negative residual, namely, 2τ ) 

 
Figure 5: ROC curve of the JAE model under =0β  on water supply data. (Left: the 
ROC of positive residual, namely, 1τ ; Right: the ROC of negative residual, namely, 2τ ) 
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Table 2: The confusion matrices, TPRs and FPRs of JAE and AE network 

Network model TP number FN number FP number TN number TPR FPR 

JAE 1022 11 360 24437 98.94% 1.45% 

JAE ( =0β ) 1008 25 364 24433 97.58% 1.47% 

AE ( 1 ) 868 602 602 24195 84.03% 2.43% 

AE ( 2 ) 889 11 763 24034 86.04% 3.08% 

 

 
Figure 6: Outlier detection results of six typical companies from the validation set 

4.3.4 Apply to testing set 
Finally, we apply the proposed model to the testing set. Note that the outliers are not labeled, 
therefore, we can only show the detection result of six typical companies of the set. We 
follow the 1τ  and 2τ  values from the validation set, and the results are shown in Fig. 7. The 
green curves and red dots are the clean data elements and detection results, respectively. It is 
clearly shown that some large values and zero values are labeled as outliers by the proposed 
method, while some others are not, showing that the proposed method can separate the large 
and zero values into two classes, which are, those are detected as outliers and those are not. 
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According to the results from the above three experiments, the outliers detected by the JAE 
model should be noticed and checked carefully. 

 
Figure 7: Outlier detection results of six typical companies from the testing set 

5 Conclusion 
In this paper, a Joint Auto-Encoder network that combines both the advantages of Auto-
Encoder and Siamese network is proposed for outlier detection in water supply data. This 
network first encode the data pieces and then encode the encoded result for the data 
reconstruction. The outliers, can then be determined by the residual between the original 
data pieces and the reconstructed one. A mixture loss function is proposed, together with 
a dual thresholding outlier decision criteria. Experiments are carried out on three data 
sets, namely, synthesis data, the MNIST data set and the water supply dataset, and 
experimental results show the feasibility and effectiveness of the proposed model 
comparing to the state-of-the-art methods. 
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