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Abstract: Stochastic resonance can use noise to enhance weak signals, effectively 
reducing the effect of noise signals on feature extraction. In order to improve the early fault 
recognition rate of rolling bearings, and to overcome the shortcomings of lack of 
interaction in the selection of SR (Stochastic Resonance) method parameters and the lack 
of validation of the extracted features, an adaptive genetic random resonance early fault 
diagnosis method for rolling bearings was proposed. compared with the existing methods, 
the AGSR (Adaptive Genetic Stochastic Resonance) method uses genetic algorithms to 
optimize the system parameters, and further optimizes the parameters while considering 
the interaction between the parameters. This method can effectively extract the weak fault 
features of the bearing. In order to verify the effect of feature extraction, the feature signal 
extracted by AGSR method was input into the Fully connected neural network for fault 
diagnosis. the practicality of the algorithm is verified by simulation data and rolling bearing 
experimental data. the results show that the proposed method can effectively detect the 
early weak features of rolling bearings, and the fault diagnosis effect is better than the 
existing methods. 
 
Keywords: Rolling bearing, weak fault, stochastic resonance, genetic algorithm, neural 
network. 

1 Introduction 
With the rapid development of industrial mechanization, the power and efficiency of 
mechanical equipment have also been continuously improved, and the working status of 
equipment has also become complicated and changeable, which has caused many 
difficulties in fault diagnosis. Rolling bearings are widely used in machinery industry and 
other fields due to their advantages of strong bearing capacity and small friction coefficient, 
and they are also one of the most easily damaged components in rotating machinery. 
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However, the features of early bearing fault signals are weak and susceptible to noise and 
human interference. If bearing failures can be diagnosed and repaired as soon as possible, 
safety hazards and economic losses can be effectively reduced. Therefore, early weak 
feature extraction has always been one of the research hotspots in mechanical fault 
diagnosis. Traditional weak signal detection methods mostly suppress and eliminate noise 
to improve signal-to-noise ratio, such as empirical mode decomposition [Lei (2001)], 
Wavelet transform [Wang, Tao and Zhang (2017); Purushotham, Narayanan and Prasad 
(2005)], and so on. Hu et al. [Hu, Ma and Tang (2012)]. Used the integrated empirical 
mode decomposition and kurtosis criterion to extract the fault feature information of rolling 
bearings, and effectively suppressed the mod-al aliasing problem during the empirical 
mode decomposition. It also avoids the errors caused by improper selection of the 
frequency and filter band of the resonance de-modulation method. Pan et al. [Pan, Liang, 
Li et al. (2015)] proposed a bearing fault feature extraction method based on Complex 
wavelet multiscale envelope analysis, which overcomes the shortcomings of classical 
envelope analysis methods that need to predict the fault frequency band. 
Although the above method exhibits good features in fault diagnosis, the feature signal that 
is unavoidably weakened while reducing noise will affect the diagnosing effect of a weak 
fault. The Stochastic Resonance (SR) theory is proposed by the Italian scholar Benzi et al. 
[Benzi, Sutera and Vulpiana (1981)]. Compared with the traditional method, SR can transfer 
the energy of some noise signals to the weak feature signals, and reduce the noise while 
enhancing the feature of weak signals. It can realize the early weak signal detection in the 
noise background. 
Due to the limitation of adiabatic approximation theory [Li, Chen and He (2013)], when 
the driving signal frequency is gradually increased, the peaks of the driving signal will be 
far away from the low-frequency region where the noise energy is concentrated, so that the 
noise energy cannot support the particles when they jump between the potential wells, and 
eventually the noise energy cannot be transferred to the signal through the random 
resonance. SR theory can usually only detect signals with lower frequencies, which 
seriously affects the popularity of SR methods in industrial applications. 
In recent years, some scholars have improved the stochastic resonance method, Chen et al. 
[Chen, Hu, Qin et al. (2009)] proposed using signal-to-noise ratio gain as a measure of 
signal enhancement by the SR method, and proposed a new weak signal detection method 
with adaptive parameter adjustment. Tan et al. [Tan, Chen, Lei et al. (2009)] used two kinds 
of trans-formation of frequency shift and variable metric method for signal preprocessing, 
and combined with stochastic resonance to detect high-frequency signals. However, the 
existing SR method only optimizes a single parameter and ignores the interaction between 
the parameters, failing to fully exploit the ability of the stochastic resonance method to 
extract weak signals. In addition, weak fault signals extracted by stochastic resonances are 
also lacking validation in actual engineering diagnostics. 
Based on this analysis, a new method of adaptive stochastic resonance (AGSR) based on 
genetic algorithm (GA) was proposed. In this paper, the genetic algorithm is used to select 
and optimize multiple parameters of the stochastic resonance system in parallel, adaptively 
achieving the best match with the input signal and overcoming the disadvantages of the 
existing method parameter selection. Then, the pre-processed bearing signals are classified 
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using a fully connected neural network achieve fault diagnosis. In order to verify the 
experimental results, Western Reserve University bearing vibration failure data was used 
as a research object, the fault diagnosis performance of the extracted feature [Zhao, Wu, 
Zhang et al. (2018); Wang, Zhao, Wu et al. (2017)] of the AGSR method is verified, and the 
effectiveness and practicability of the AGSR method are proved. 
This paper is organized as follows: SR and AGSR methods are introduced in Section 2. In 
Section 3, a description of data preprocessing and model design is provided. In Section 4, 
the actual effects of the SR and AGSR preprocessing on the classification of weak faults 
are compared through experiments. The specific performance of AGSR on the time and 
frequency domain signals is given in detail. In Section 5, the paper is concluded. 

2 Signal preprocessing based on stochastic resonance 
2.1 Stochastic resonance theory 
Stochastic resonance systems are usually composed of three elements: non-linear bistable 
systems, input signals and noise. The system output can be described by Langevin 
equation: 

( )+s( ) ( )x U x t n t= − +                                                                                                             (1) 
( )U x  is nonlinear bistable system. s( )t  is Periodic signal. ( )n t  is Zero-mean Gaussian 

white noise. The potential function of the bistable system is: 
2 4( )

2 4
a bU x x x= − +                                                                                                          (2) 

where a and b are the structural parameters of the bistable system, satisfying a>0, b>0. 
This paper uses the fourth-order Runge-Kutta to solve the Langevin equation in (1). The 
equation is as follows: 
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n is the input signal length. 
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Figure 1: Potential well of bistable function 

As shown in Fig. 1, the potential traps on both sides of the bistable system represent its two 
steady states /x a b= ± .The height of the barrier is. 2( ) / 4∆ =U x a b . When the signal 
is input, the system is blocked by the barrier wall U∆ and can only perform periodic motion 
in a potential well. 
At this point, noise is added to the system. Under the combined action of the input signal 
and noise, the system moves through the barrier wall and makes a transition between the 
two steady states. this is the phenomenon of stochastic resonance. 
Noise motivates the transition movement. When the three-state system, signal and noise 
reach the best matching state, the effect of stochastic resonance on signal amplification 
[Mendezbalbuena, Manjarrez, Schultemönting et al. (2012)] is also most obvious. 

2.2 Adaptive genetic stochastic resonance 
The barrier height ∆U  in the stochastic resonance system is the main factor that limits 
the signal transition. ∆U  too high stochastic resonance is difficult to generate, ∆U  too 
low will make the random resonance effect not obvious, and the system parameters a and 
b determine the barrier height 2( ) / 4∆ =U x a b . Therefore, this paper proposes to optimize 
the system parameters by genetic algorithm. Limited by the adiabatic approximation 
theory, the SR theory only applies to low-frequency signals, and the bearing signal 
frequency far exceeds this range. 
In order to improve the applicable range of stochastic resonance theory, the scale 
transformation stochastic resonance [Leng, Wang and Li (2003)] method is used to process 
the fault signal under large-parameter conditions. By defining the frequency compression 
ratio R, the signal is sub-sampled to satisfy the low frequency condition, and then the 
feature of weak signal is enhanced by the SR method. 
The AGSR method uses genetic algorithm to optimize the system parameters a and b. The 
signal-to-noise ratio (SNR) after stochastic resonance is used as the fitness function of the 
genetic algorithm. The stochastic resonance steps of the genetic algorithm are briefly 
described as follows: 
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1) Population parameter initialization. Set the population size G, the chromosome length 
L, and the evolution number K, and use the binary coding method to map the range of 
values for variables aϵ min max[ , ]a a and bϵ min max[ , ]b b . 
2) Calculation of fitness of parents’ population. The decoded a and b values of the parental 
individual are assigned to the stochastic resonance system, and the output signal after the 
stochastic resonance of the compressed signal is calculated, and the signal to SNR of the 
output signal is taken as a fitness function. The SNR is calculated as follows: 

10lg(S/N)=SNR                                                                                                                 (4) 
where S is the signal energy and N is the noise energy. When the parameters of the 
stochastic resonance system are optimal, the signal-to-noise ratio is maximized. 
3) Screening offspring individuals. Using roulette selection method to select parents, the 
greater the probability that individuals with higher fitness are selected. Then select the 
individual to do crossover and mutation operations to obtain offspring individuals. 
4) Finding optimized populations. Take the offspring individuals as the parent of the next 
generation and repeat Steps (2) through (3) until the fitness function converges or reaches 
the maximum number of iterations to obtain the optimal parameters ka  and kb . 
5) Substituting the optimal parameters ka  and kb  into a stochastic resonance system to 
realize the enhancement and extraction of early weak signal of rolling bearing. 

2.3 Simulation signal analysis 
The SR method can effectively extract low-frequency signals. In actual industrial 
production, the signals often exceed the limitations of the SR method. In order to prove the 
shortcomings of the SR method, we also test the effectiveness of the AGSR method. the 
simulated high-frequency input signal is 

( ) 0.1 cos(2 50 )S t tπ= × × ×                                                                                                   (5) 
The sampling frequency is 500 Hz, the number of sampling points is 6000, and adding zero 
mean Gaussian white noise with noise intensity D=1.2. The time domain waveform and 
frequency domain waveform of the simulated signal are shown in Fig. 2. 

 
(a) 
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(b) 

Figure 2: Simulated simulation signal 

As can be seen from Fig. 2, the feature frequency of 50 Hz affected by the background 
noise has been submerged by noise, and it is difficult to clearly identify from the spectrum 
diagram. The output of the SR system is analyzed and the results are shown in Fig. 3. It 
can be seen that the output time domain waveform can no longer see obvious periodic 
fluctuations; while the spectrum signal shows a monotonous decreasing trend and does not 
show any spectral peak features. this shows that when the SR method processes high 
frequency signals, it will deviate greatly due to adiabatic approximation theory. Therefore, 
it is not appropriate to directly use the SR method to process high-frequency signals. 

 
(a) 

 
(b) 

Figure 3: SR output time frequency diagram 

The simulated signal is analyzed using the AGSR. First, set the frequency compression 
ratio to R=50 and linearly compress the signal. then use the genetic algorithm to find the 
optimal combination of variables a and b in the range [0, 10]. After 50 iterations, the 
optimization result is a=0.31, b=2.73, SNR=-2.306.  
As can be seen from Fig. 4(b), 1Hz frequency is very prominent in the spectrum diagram, 
because the signal is pre-processed using the variable-scale method, the corresponding 
frequency is 50 Hz, which is the original signal's feature frequency. Therefore, the AGSR 
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can detect weak signals in strong noise background, and overcome the shortcomings of 
traditional stochastic resonance methods that can only extract low frequency signals. 

  
(a) 

 
(b) 

Figure 4: AGSR output time frequency diagram 

3 Bearing fault diagnosis based on AGSR pretreatment 
The early failure signal of the rolling bearing has the features of complexity, non-stationarity 
and similarity between different fault signals. Therefore, this paper proposes the use of the 
fully connected neural network for fault diagnosis of pre-processed bearing signals [Hinton, 
Osindero and THE (2006); Lei, Jia and Zhou (2015); Gan, Wang and Zhu (2016)]. In order to 
meet the needs of rolling bearing fault diagnosis, a five-layer neural network structure is 
adopted. The last layer is a Softmax classifier. the network is trained by inputting the signal 
X. Fully connected neural network trains network layer by layer through the gradient descent 
method, so that the output low-dimensional signal includes the fault essence features while 
removing the interference part of the high-dimensional signal. 
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Figure 5: Fully connected neural network structure 
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Then, the extracted feature signals are used in the classification of Softmax classifiers. 
According to the classification results, the original signal labels are used to fine-tune and 
optimize the network and finally used for fault diagnosis of rolling bearings. In summary, 
fully connected neural network can extract the feature factors of high-dimensional data, 
enhance the robustness of the algorithm, and improve the linear separability of features to 
achieve accurate fault diagnosis. 
Fig. 6 shows the bearing fault diagnosis based on improved stochastic resonance 
preprocessing. The specific steps are as follows: 
Step 1: Set the input signal to s(t), and use the variable-scale method to preprocess the 
input signal. 
Step 2: Initialize the parameters of the genetic algorithm and select SNR as the evaluation 
function of the improved stochastic resonance system. 
Step 3: The parental individual was randomly generated and decoded to obtain a and b. 
Substituting it into the stochastic resonance system, according to the fitness function, the 
parent individuals are screened, crossed and mutated to generate offspring individuals. As 
the genetic algorithm optimizes parameters a and b, the fitness function gradually 
converges, and the output is the optimal combination of parameters. 
Step 4: The optimal parameters a and b were substituted into the stochastic resonance system. 
The optimized stochastic resonance system was used to extract the weak signal features. 
Step 5: Set the Fully connected neural network structure and set parameters such as 
network depth, number of neurons at each layer, and learning rate. Then set the appropriate 
cost function and optimization strategy based on different task requirements. 
Step 6: Layer-by-layer training Fully connected neural network, the upper network output 
as lower network input to extract feature information; Then, the output of the last layer 
network is used as the input of the Softmax classifier to calculate the diagnosis result; 
Finally, the diagnosis results are compared with the sample tags, and the parameters such 
as weights and offsets of the networks are fine tuned by the back propagation algorithm. 
Step 7: Test Fully connected neural network diagnostic accuracy. Input test data to 
calculate whether the diagnostic results meet the actual expected diagnostic accuracy 
(above 96%). If the diagnostic accuracy is too low, correct the Fully connected neural 
network structure and repeat Steps 5 and 6 until the desired accuracy is achieved. 
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Figure 6: Process of rolling bearing weak fault diagnosis  

4 Experimental verification 
The simulation results show that the signal characteristics are effectively enhanced after 
AGSR processing. For the original signal, although the signal solved by Langevin equation 
retains the frequency characteristics of the original signal, it is uncertain whether the new 
signal has the ability to identify different fault. Therefore, in order to verify the actual effect 
of the AGSR method on the early fault diagnosis of rolling bearings, this paper uses the 
bearing fault data of the Case Western Reserve University Bearing Data Center for 
analysis. As shown in Fig. 7, the experimental platform consists of a motor, a torque sensor, 
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a power tester, and an electrical control device. The sensor is mounted above the drive-end 
bearing seat. 

 

Figure 7: Rolling bearing experimental platform 

The type of drive end bearing is SKF6205, and the bearing uses electric spark technology 
to process single point damage. A pitting of 0.178 mm diameter is set on the bearing inner 
ring, outer ring and rolling body, and the sampling frequency is 48 kHz. The 4 bearing 
states used in the test are shown in Tab. 1. 

Table 1: 4 states of rolling bearing 

Bearing state Sample number State label Fault category 

Normal 2000 1000 1 
Innerring fault 2000 0100 2 
Outerring fault 2000 0010 3 

Ball fault 2000 0001 4 

4.1 Processing of experimental data  
Divide the data obtained from the experimental platform, randomly select 20% of the total 
sample data of each type as test data, and use the remaining 80% as training data. Therefore, 
each type of data has 1600 training samples and 400 test samples. Each sample contains 
2000 continuous data sampling points. The time domain signal waveforms of the four states 
of the bearing [Jiang, Chen and Dong (2013); Shen and Yang (2006)] are shown in Fig. 8. 
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(a) Normal 

 

(b) Inner ring fault 

 

(c) Outer ring fault 

 

(d) Ball failure 
Figure 8: Rolling bearing weak fault vibration waveform 

4.2 Improved random resonance signal preprocessing 
Considering the influence of background noise in practical working conditions, Gauss 
white noise with D=0.3 noise intensity is added to the normalized vibration signal. the 
time-domain waveform and spectrum of the noisy signal are shown in Fig. 9. From the 
time domain waveform, it can be seen that the bearing fault features are completely 
submerged by the noise, and there is no obvious feature spectrum peak in the spectrum 
diagram, so it is impossible to judge whether the bearing has a fault. 
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(a) 

 
(b) 

Figure 9: Rolling bearing outer ring fault signal 
This paper uses AGSR method to preprocess the signal. Firstly, linearly compress the 
signal and set the frequency compression ratio to R=50. Then, in the genetic algorithm, let 
the population size G=100, the chromosome length L=17 and the Evolution times K=50, 
and the parameters a and b to be optimized range from [0-1000]. Fig. 10 shows that the 
fitness function of the improved stochastic resonance system converges after 50 iterations, 
and the optimization result is a=73.85, b=273.29, and SNR=-1.21. 

 
Figure 10: Fitness function optimization 

The optimized parameters are substituted into the stochastic resonance system. The 
resulting signal waveforms and spectrum are shown in Fig. 11. The signal processed by the 
AGSR method is seen in the figure, and its time domain signal (Fig. 11(a)) is more regular. 
In addition, from Fig. 11(b), it is found that there are two frequency band amplitudes greater 
than the remaining components, which can be used as an extracted outer ring fault feature 
for pre-processing fault diagnosis [Wang, He and Kong (2014)]. 
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(a) 

 
(b) 

Figure 11: AGSR output time frequency diagram 

Similarly, in order to prove once again that the AGSR method is superior to the stochastic 
resonance method, this paper adopts the traditional stochastic resonance method to process 
the fault signal, and the output waveform is shown in Fig. 12. As can be seen from the figure, 
the conventional stochastic resonance method is limited by the adiabatic approximation 
theory and cannot handle high-frequency signals, and the output signal is severely distorted, 
making it difficult to determine the bearing failure based on the output waveform. 

 
Figure 12: The output of stochastic resonance system 

4.3 Bearing weak fault diagnosis 
The time-frequency and frequency-domain of the vibration signal contain rich feature 
information. The experimental data is preprocessed using the SR method and the  AGSR 
method. Three kinds of samples are selected for the training of fully connected neural 
network, and the diagnosis results are analyzed by selecting the time domain signal 
extracted by the traditional method and the signals (the time domain and frequency domain 
signals) extracted by the improved method (the Fourier transform of the time domain 
signal). And analyze the diagnosis results. 
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Five-layer fully connected neural network was constructed. The network model was 2000-
300-100-50-4. the model indicates that each sample contains 2000 points in the network 
input, the number of nodes in the middle three hidden layers is 300, 100 and 50, and the 
last 4 types of fault labels are output. The training methods of the fully connected neural 
network are as follows: 
1) Initialize the network parameters and enter training samples. The input format of the 
sample is 6400×2000, and the number of training samples is M=6400. The number of 
neurons in the second layer of the model is 300, so the corresponding weight matrix is 
2000×300, Afterwards, the weight of each layer is similarly derived. 
2) The samples are normalized and input into the fully connected neural network to start 
training. With the objective of minimizing the loss function, the weights are adjusted by 
gradient descent and back propagation algorithm step by step. 
3) Fully connected neural network model training is completed and tested. Enter the test 
set to test the diagnostic accuracy of the network, and adjust the network structure and 
parameters again according to the diagnostic accuracy rate until the actual requirements 
are met. 
Tab. 2 is the result of fault diagnosis of rolling bearing with fully connected neural network 
under different pretreatment methods. From Tab. 2, it can be seen that the fault recognition 
rate of the time domain signal extracted by the traditional random resonance method is 
only 45.32%, which verifies the conclusion that the traditional method is difficult to extract 
the high frequency signal. When the time domain signal extracted from the improved 
stochastic resonance method is used as a sample, the ability to identify weak faults is higher 
than that of traditional methods. But even if we constantly adjust the network structure and 
dropout parameters, its classification accuracy is still less than 70%. 

Table 2: Performance comparison between SR and AGSR algorithm 

Preprocessing method Input signal Total sample size Accuracy rate 
SR method Time domain signal 8000 45.32% 

AGSR method Time domain signal 8000 64.31% 
AGSR method Frequency domain signal 8000 98.36% 

 

Figure 13: Fitness function optimization 
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Figure 14: Fitness function optimization 

As shown in Fig. 13, the results show that the time domain signal contains some fault 
information, but because of its time-varying features, the fault information contained in 
each sample is not the same. It is difficult to meet the actual demand for the weak fault 
diagnosis. When the frequency domain signal extracted from the AGSR method is taken 
as a sample, it can be seen from Fig. 14 that the fault recognition rate reaches 98.36% on 
the test set. The loss of the training set and the test set decreased synchronously, and there 
was no over-fitting phenomenon. 

5 Conclusions 
In this paper, an early fault diagnosis method for rolling bearings based on improved 
stochastic resonance preconditioning is studied. Using SR to process weak signals and 
using signal-to-noise ratio as a measure of system parameter optimization, the time- and 
frequency-domain feature-input fully connected neural networks of bearing experimental 
data were extracted to enable early fault diagnosis and analysis. In addition, the feature set 
of the improved stochastic resonance extraction has better classification performance and 
higher classification accuracy than traditional methods, which provides a new method for 
fault diagnosis and early failure. 
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