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Abstract: Arranging multiple identical sub-arrays in a special way can enhance degrees 
of freedom (DOFs) and obtain a hole-free difference co-array (DCA). In this paper, by 
adjusting the interval of adjacent sub-arrays, a kind of generalized array architecture with 
larger aperture is proposed. Although some holes may exist in the DCA of the proposed 
array, they are distributed uniformly. Utilizing the partial continuity of the DCA, an 
extended covariance matrix can be constructed. Singular value decomposition (SVD) is 
used to obtain an extended signal sub-space, by which the direction-of-arrival (DOA) 
estimation algorithm for quasi-stationary signals is given. In order to eliminating angle 
ambiguity caused by the holes of DCA, the estimation of signal parameters via rotational 
invariance techniques (ESPRIT) is used to construct a matrix that includes all angle 
information. Utilizing this matrix, a secondary extended signal sub-space can be obtained. 
This signal sub-space is corresponding to a hole-free DCA. Then, dealing with the further 
extended signal sub-space by multiple signal classification (MUSIC) algorithm, the 
unambiguous DOAs of all incident signals can be estimated. Some simulation results are 
shown to prove the improved performance of proposed generalized array architecture in 
DOA estimation and the effectiveness of corresponding hole-repair algorithm in 
eliminating angle ambiguity.  
 
Keywords: Multiple sub-arrays, DOA estimation, difference co-array, hole-repair. 

1 Introduction 
Direction-of-arrival (DOA) estimation of spatial signals by using sensor array 
receives more and more attention because of its important application in the related fields  
such as wireless communication [Huang, Su, Wen et al. (2019); Su, Sheng, Leung et al. 
(2019)], radar system [Shi, Hu and Zhang (2018); Yang, Sun, Yuan et al. (2018); Liu, 
Wang, Li et al. (2018)] and electronic warfare. Aperture and DOFs of an array 
are two important factors to be considered, and they are related to the accuracy and angle 
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resolution in DOA estimation.  
Due to the limit of half-wavelength element spacing, the aperture and the DOFs of 
conventional uniform array are far less than the sparse array under the same number of 
sensors. For the sparse array, the element spacing of adjacent sensors can be different, 
and also can be larger than half-wavelength of received signal. Just for the different 
element spacing, many virtual sensors can be got by using the position difference of two 
sensors. The virtual array consisting of all virtual sensors is called as DCA. However, not 
all kinds of sparse array have the hole-free DCAs, i. e., the DCA can be seen as a uniform 
linear array (ULA) with consecutive virtual sensors. The existence of holes may affect 
the construction of extended covariance matrix, and cause direction ambiguity.       
Minimum-redundancy array (MRA) [Moffet (1968)] is one of the classical sparse arrays 
with hole-free DCA. Under the same number of sensors, MRA can provide more 
consecutive virtual sensors than any other sparse arrays. Nevertheless, the irregularity of 
sensor positions makes us difficult to give the closed array configuration of MRA, 
particularly for larger number of sensors. Co-prime array [Vaidyanathan and Pal (2011); 
Pal and Vaidyanathan (2011)] consists of two uniform linear arrays, and two co-prime 
integers are used to determine the element intervals and the sensor number of the array. Co-
prime array has regular array structure, and is effective in reducing the mutual couplings 
between two sensors. However, some co-prime arrays have not hole-free DCAs, and can 
cause angle ambiguity for DOA estimation. In literatures [Weng and Petar (2017); Zheng, 
Zhang and Gong (2017)], two effective methods have been presented to eliminate the angle 
ambiguity caused by the co-prime array. In addition, there are many other kinds of co-
prime array constructions including generalized co-prime array [Qin, Zhang and Amin 
(2015)], co-prime L-shaped arrays [Ren, Wang and Chen (2016)], multi-period co-prime 
array [Gong, Zhang and Zheng (2018)], co-prime planar array [Zheng, Zhang and Xu 
(2018)] and co-prime MIMO radar [Shi, Hu and Zhang (2018)]. 
Nested array [Pal and Vaidyanathan (2010)] comprised by two uniform sub-arrays is 
another widely used sparse array with hole-free DCA. Many modified nested arrays were 
proposed to improve DOFs [Iizuka and Ichige (2017); Yang, Sun, Yuan et al. (2016); 
Liu, Zhang, Lu et al. (2017); Huang, Liao, Wang et al. (2017); Liu, Zhao, Wu et al. 
(2018)] and reducing mutual coupling [Liu, Zhang, Lu et al. (2017); Shi, Hu, Zhang et al. 
(2018)]. Particularly, nested arrays [Huang, Liao, Wang et al. (2017); Liu, Zhao, Wu et 
al. (2018)] can provider more DOFs than the other nested arrays. However, there are 
many irregular holes in the DCAs of the two nested arrays, which may lead to angle 
ambiguity in DOA estimation. Meanwhile, some other array constructions like nested L-
shaped array [Liu, Yang, Li et al. (2017)], nested MIMO radar [Yang, Sun, Yuan et al. 
(2018); Liu, Wang, Li et al. (2018)] also were proposed based on the nested arrays [Pal 
and Vaidyanathan (2010); Yang, Sun, Yuan et al. (2016)].    
In literature [Yang, Haimovich and Yuan (2018)], authors presented a unified sparse 
array construction which consists of multiple identical sub-arrays and has hole-free DCA. 
For this sparse array, all sub-arrays are arranged according to their DOFs and another 
given array geometry. Subsequently, a triple two-level nested array geometry [Liu, Liu, 
Zhao (2019)] was proposed, and it can propose more DOFs than the double two-level 
nested array in Yang et al. [Yang, Haimovich and Yuan (2018)].   
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In this paper, on basic of the array architecture Yang et al. [Yang, Haimovich and Yuan 
(2018)], we proposed a generalized array construction which consists of multiple sub-
arrays with variable interval. Compared with the array Yang et al. [Yang, Haimovich and 
Yuan (2018)], the proposed generalized multiple-array construction has changeable and 
larger array aperture, and shows improved estimation accuracy in DOA. But the number 
of holes in DCA increases as the growth of the interval between adjacent sub-arrays. The 
appearance of holes will lead to direction ambiguity. In order to remedy the drawback of 
the generalized array architecture, a hole-repair algorithm also is proposed to eliminate 
angle ambiguity. 
Notation: [ ]T• , [ ]H• , [ ]E •  and ⊗  indicate transpose, conjugate transpose, statistical 
expectation and Kronecker product, respectively. ( : ,:)i jM  represents a matrix consisting 
of the ith row to the jth row of matrix M . 

2 Data model 
Suppose that K narrowband uncorrelated quasi-stationary signals are received by an L-
element linear array. Denote kθ , 1,2,3, ,= k K  as the DOA of the kth source and wd , 

2,3, ,w W=   as the distance between the wth sensor and the reference sensor. The 
received vector 1

1 2( ) [ ( ), ( ), , ( )]T W
Wt t t t ×= ∈x x x Cx  can be expressed as 

( ) ( ) ( )t t t= +x As n                                                                                                        (1)                          

where = [ ( ), ( ) ( )]1 2 , , W K
Kθ θ θ ×∈A a a a C  is array manifold matrix with 

) = [1, , ]2
2 2sin( ) sin( ) 1k W k
π πi θ i θ T Wλ λ

kθ
− − ×∈a( 

d d
e e C , 1

1 2( ) [ ( ), ( ), , ( )]T K
Kt C ×= ∈s s t s t s t  is 

signal vector and 1( ) Wt ×∈n C  represents Gaussian noise vector. 

Assume that noise is uncorrelated from the signals and the covariance matrix of the fth 
frame can be written as Huang et al. [Huang, Liao, Wang et al. (2017); Liu, Zhao, Wu et 
al. (2018); Ma, Hsieh and Chi (2010)] 

{ ( ) ( )}H
f E t t=R x x   

H L L
sq n C ×= + ∈AR A R , [( 1) , 1]t T T∈ − −f f , 1,2, ,f F=                               (2)                                          

where T is the number of snapshots in each frame, F is the number of frames, 
{ ( ) ( )}H

n E t t=R n n  is noise covariance matrix and { ( ) ( )}H
sf f fE t t=R s s  is signal 

covariance matrix with the form as 
2 2 2

1 2diag{ , , , }sf f f fK=R p p p                                                                                          (3) 

3 Generalized array architecture with multiple sub-arrays 
Consider a ML-element generalized array construction which consists of M L-element 
fundamental linear arrays (FAs). M header sensors of the M FAs constitute a large-

http://www.youdao.com/w/interval/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/expression/#keyfrom=E2Ctranslation
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spacing array (LA). We denote the D(L) as the number of DOFs of the L-element FA and 
D(M) be the number of DOFs of the M-element LA, respectively. Let the unit interval of 

the LA be (D(L)+q)d with 0q ≥ ,
2
λd = , and the number of DOFs of the ML-element 

generalized array with multiple sub-arrays can be expressed as D(L)D(M) [Yang, 
Haimovich and Yuan (2018)]. For convenience, when both the FA and LA are uniform 
linear arrays, we call the array construction as generalized double uniform array 
(GDUA). When both the FA and LA are nested arrays, we call the array construction as 
generalized double nested array (GDNA). We also call the two kinds of array 
construction as double uniform array (DUA) and double nested array (DNA) for =0q . 

0 1 2 3 14 151617 21 2223247 8 9 10

Positions of 
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Sensors 
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Virtual 
Sensors  

(a)  q=0 

0 1 2 3 18 192021 27 2829309 101112
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Physical 
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Positions of 
Virtual 
Sensors  

(b)  q=2 
Figure 1: Construction of GDUA for q=0 and q=2, where hollow positions are “holes” 
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Figure 2: Construction of GDNA based on nested array [Pal and Vaidyanathan (2010)] 
for q=0 and q=2 

We only take the GDUA and GDNA as example to introduce the proposed array 
construction. Fig. 1 shows two 16-element generalized GDUAs for q=0 and q=2. Fig. 2 
and 3 show the 16-element generalized GDNAs based on nested array [Pal and 
Vaidyanathan (2010)] and improved nested array [Yang, Sun, Yuan et al. (2016)], 
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respectively. In the three groups of figures, the negative positions of virtual sensors are 
not listed. Adding the negative positions of virtual sensors, we can know that when 0q > ,  
there are many holes in the DCAs. But we also can find that these holes are distributed 
uniformly. Hence, the virtual sensors can be divided into D(M) groups, where each group 
consists of D(L) successive virtual sensors, and q holes exist between two groups of 
successive virtual sensors.   

13 14 19170 1 64 78 79 848252 53 5856
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Sensors 

                                                                     (a)  q=0  

15 16 21190 1 64 90 91 969460 61 6664
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Virtual 
sensors 

                                                                             (b)  q=2 

Figure 3: Construction of GDNA based on nested array [Yang, Sun, Yuan et al. (2016)] 
for q=0 and q=2 

4 DOA estimation algorithm 
As Pal et al. [Pal and Vaidyanathan (2011); Liu, Liu, Zhao (2019)], we can construct a 
covariance vector ( ) ( ) 1D L D M

f C ×∈c   in the fth frame. We should note that when q>0, fc  

doesn’t consist of the covariance with continuous sampling laps as co-prime [Pal and 
Vaidyanathan (2011)] and nested [Pal and Vaidyanathan (2010)]. Vector fc  can be 

expressed as        

( ) 1,
2

0,

( ) 1,
2

0

1

0

D M f

ff n

D M f

δ

−
−

−

 
  
  
  
  = +
  
  
      

c

cc

c









                                                                                               (4) 

where ( ) 1 ( ) 1 ( ) 1 ( ) 1, 1, ,0, , 1,
2 2 2 2

D M D M D M D Mj − − − −
= − − + −  , nδ  is the 

power of noise, and ( ) 1
,

D L
j f C ×∈c  can be expressed as  
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{ }

{ }

( ) 1[( ) ( ( ) )]sin( )
2

1

,
( ) 1[( ) ( ( ) ) ( ) 1]sin( )

2

1

k

k

D LK iπ j D L q θH
kf kf

k

j f
D LK iπ j D L q D L θH

kf kf
k

−
− +

=

−
− + − +

=

 
 
 
 =
 
 
  

∑

∑

s s

c

s s



E e

E e
     

                                                       (5) 

According to (5), we can know that though fc  may not consist of the covariance with 

continuous sampling laps, ,j fc  consists of the covariance with continuous sampling laps. 

Substituting (5) into (4), we have  

{ }

{ }

E

E

−
−

−

 
  
    
    
 = +   
    
     
      

 



 

( ) 1
2

*
1 1

0
*

( ) 1
2

0

1

0

D M

f f

f n

Kf Kf

D M

δ

A

s s
c A

s s
A

                                                                           

(6)

                                                       

                                        

where ( )D L K
j C ×∈A has the form as 

1

1

( ) 1 ( ) 1[( ) ( ( ) )]sin( ) [( ) ( ( ) )]sin( )
2 2

( ) 1 ( ) 1[( ) ( ( ) ) ( ) 1]sin( ) [( ) ( ( ) ) ( ) 1]sin( )
2 2

K

K

D L D Liπ j D L q θ iπ j D L q θ

j
D L D Liπ j D L q D L θ iπ j D L q D L θ

− −
− + − +

− −
− + − + − + − +

 
 
 =  
 
  

A


  



e e

e e

                              (7) 

Using fc , we can construct a partitioned matrix as   

1 2 F =  C c c c  

{ } { }

{ } { }

( ) 1
2

* *
11 11 1 1

0
* *

1 1

( ) 1
2

0 0

1 1

0 0

D M

F F

n

K K KF KF

D M

δ

−
−

−

 
  
           = +             
      

A

s s s s
A

s s s s
A



   

   

   



E E

E E
                                        (8) 

Denote two matrices A  and Φ  as 
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( ) 1
2

0

( ) 1
2

D M

D M

−
−

−

 
 
 
 

=  
 
 
 
  

A

A A

A







                                                                                                              (9) 

{ } { }

{ } { }

* *
11 11 1 1

* *
1 1

F F

K K KF KF

 
 

Φ =  
 
 

s s s s

s s s s



  



E E

E E
                                                                               (10)  

Then, formula (8) can be rewritten as  
0

0

Fnδ

 
 
 
 = Φ +
 
 
  

C A 1






                                                                                                             (11) 

where 1 F
F C ×∈1  is a matrix with all the elements being one.  

As Ma et al. [Ma, Hsieh and Chi (2010)], we denote a matrix ( ) /T
F F F F F⊥ = −P I 1 1 . 

Multiplying C  with F
⊥P  yields 

( ) 1
2

0

( ) 1
2

D M

F F

D M

−
−

⊥ ⊥

−

 
 
 
 

= Φ 
 
 
 
  

A

CP PA

A





                                                                                                   (12)  

Performing singular value decomposition (SVD) of F
⊥CP , we can get  

0
0 0

H
s

F H
⊥   Σ

 =    
   

U
CP U V

V
                                                                                    (13)  

where U  is the signal subspace consisting of the singular value vectors of K maximum 
singular values.                         
Denote the kth column of A  as 
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( ) 1
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0
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θ θ

θ

−
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                                                                                               (14)  

where the concrete expression of ( )j kθa  is 

( ) 1[( ) ( ( ) )]sin( )
2

( ) 1[( ) ( ( ) ) ( ) 1]sin( )
2

( )

k

k

D Liπ j D L q θ

j k
D Liπ j D L q D L θ
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−
− +

−
− + − +

 
 
 =  
 
  

a 

e

e

                                                                        (15) 

Denote oU  as the Smith normalization vector of  oU  . As MUSIC algorithm [Schmidt 
(1986)], maximizing the function  

1( )
( )( )) ( )H H

o o

g θ
θ θ

=
−a I U U a 

                                                                                        (16) 

we can get the DOA estimation of all signals. 
It is all known that holes of DCA can lead to angle ambiguity when the number of signals 
is larger. For remedying the drawback of the proposed generalized array construction, a 
hole-repair algorithm will be proposed on the basis of the conventional MUSIC algorithm 
in the following text. 

5 DOA estimation with hole-repair 
Angle ambiguity is due to the un-continuity of DCA, namely the existence of hole. In fact, 
the existence of hole also can be seen as the element absence of manifold matrix A  
which leads to the element absence of signal subspace U . If we can reconstruct a new 
subspace which corresponds to a new manifold matrix without missing elements, angle 
ambiguity can be eliminated.  

Firstly, we denote three matrices ( ( ) 1)
,1

D L K
j C − ×∈A , ( ( ) 1)

,2
D L K

j C − ×∈A  and ,3
q K

j C ×∈A as  

,1

,2

,3

(1 : ( ) 1,:)
(2 : ( ),:)

( ( ) 1 : ( ),:)

j j

j j

j j

D L
D L

D L q D L

 = −
 =
 = − +

A A
A A

A A
                                                                                (17)                                             

Then, we construct three block matrices ( )( ( ) 1)
1

D D L KC − ×∈A M , ( )( ( ) 1)
2

D D L KC − ×∈A M  

and ( ( ) 1)
3

q D M KC − ×∈A  as 
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( ) 1 ( ) 1,1 ,1
2 2
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                                                           (18)                        

According to Eqs. (17) and (18), we have 

2 1= ΨA A                                                                                                                      (19) 

where 1 2sin( ) sin( ) sin( ){ , , , }Kiπ θ iπ θ iπ θdiag − − −Ψ = e e e . 

According to the construction of A , we rewrite the signal subspace U  as  

( ) 1
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2
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−
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 
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U U
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                                                                                                                 (20)                                                                                     

As (17-19), we denote three matrices ( ( ) 1)
1

D L K
j C − ×∈U , ( ( ) 1)

2
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j C − ×∈U and 3
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 =
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Then, we construct three block matrices ( )( ( ) 1)
1

D D L KC − ×∈U M , ( )( ( ) 1)
2

D D L KC − ×∈U M  and 
( ( ) 1)

3
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T
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D M D M

T
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                                                   (22) 

According to ESPRIT algorithm [Richard and Kailath (1989)], we can know that there is 
an invertible matrix T meeting 
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1 1

2 2

3 3

 =
 =
 =

U T A
U T A
U T A

                                                                                                                  (23) 

According to (23), we have  
1

1 2
+ −= ΨU U T T                                                                                                         (24) 

From (24), it’s easy to drive  
1

1 2( )+ −= Ψq qU U T T                                                                                                          (25) 

Multiplying 1 2( )q+U U  by 3U  and T ,  we have 

3 1 2 3 3( )+ = Ψ = Ψq q qU U U T U T A                                                                                   (26)                                   

Suppose that s r×0  represents a s r× null matrix and sI  represents an s-order unit matrix. 
Then we construct two matrices as 

( )
( ) 1 [( ( ) 1)( ( ) )] ( )

( )1

( ) [ ( )( ( ) 1)] ( )

D L
D M D M D L q D L

q D L

D L D L D M D L

− − + ×
×

× −

  
 ⊗  

=    
 
  

I
I 0

0G

0 I

                                                          (27) 

( )
( ) 1

2

( ) [( ( ) 1) ]

D L q
D M

q q

D L D M q

×

−
×

× −

  
 ⊗  

=    
 
  

0
I

IG

0

                                                                                            (28)                                                                                   

Denoting a new matrix as  and rewriting 

the A in the form [ ( ) ( ) ( )]1 2= , , , Kθ θ θA a a a , we can get that 

( ) = [ 1 ]
[ ( ) ( ) ( ( ) 1) 1] [ ( ) ( ) ( ( ) 1) 1]

sin( ) sin( )sin( ) sin( )2 2

[ ( ) ( ) ( ( ) 1)] 1

, , , , , ,k kk k

D L D M q D M D L D M q D M
iπ θ iπ θiπ θ iπ θ T

k
D L D M q D M

θ
+ − − + − −

−−

+ − ×∈

a  e e e e
C

According to (28), we have 

                                                                    (29) 

Denote newoU  as the Smith normalization vector of newU . Maximizing the new function  

1( )
( )( ) ( )new H H

newo newo

g θ
θ θ

=
−a I U U a

                                                                         (30) 

we can get the DOA estimation without angle ambiguity. Obviously, matrix A  can be 
seen as a manifold matrix of a hole-free DCA. Hence, we call the above-mentioned 
process as hole-repair algorithm. 
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6 Simulation 
In this section, we present several groups of simulation experiments to test the 
performance of the proposed general generalized array construction in DOA estimation. 
All simulation experiments are performed by Matlab2017b on the computer with 
Windows 2010 system, 8 GB RAM and 1.8 GHz CPU. We only take the 16-element 
GDUA and GDNA as example. Suppose that the search range is from -90° to 90° and the 
search interval is 0.1° in each DOA estimation process. The formula for calculating the 
root mean square error (RMSE) is given as 

2

1 1

1 ˆRMSE ( )
J K

kj k
j k

θ θ
KJ = =

= −∑∑                                                         (31) 

where ˆ
kjθ  is the estimation of kθ  in the jth experiment, and j=500.  

6.1 Comparison of music spectra 

    
(a) q=3                                                       (b) q=4 

 
(c) q=5                                                           (d) q=6 

Figure 4: Comparison of MUSIC spectra for GDUA and GDUA with hole-repair 
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(a) q=4                                                             (b) q=5 

      
(c) q=6                                                       (d) q=7 

Figure 5: Comparison of MUSIC spectra for GDNA and GDNA with hole-repair 

In this subsection, we test the validity of the hole-repair algorithm in eliminating angle 
ambiguity. Suppose that the DOAs of 10 signals are -15°, -5°, 0°, 10°,15°, 25°, 30°, 40°, 
50°, 60°, respectively. The number of snapshots in one frame is 200, the number of frame 
is 40 and SNR is fixed at 5 dB. The nested array [Pal and Vaidyanathan (2010)] is used 
as FA and LA to construct the GDNA. Fig. 4 shows the comparison of MUSIC spectra 
for GDUA and GDUA with hole-repair algorithm. Fig. 5 shows the comparison of 
MUSIC spectra for GDNA and GDNA with hole-repair algorithm. Observing the 
difference in every comparative figure, for the GDUA and GDNA, we can find that both 
the number and amplitude of false spectrum peaks increase with q. But, we also can see 
that there is almost no obvious false spectrum peaks after the hole-repair algorithm is 
used. The results shown in these figures can prove the effectiveness of proposed hole-
repair algorithm in eliminating angle ambiguity. 

6.2 Comparison of RMSE 
Firstly, we compare the RMSE of DOA estimation by DUA and GDUA. Suppose that the 
direct angles of 8 signals are -30°, -20°, -10° 0°, 10°, 20°, 30°, 40°, respectively. Fig. 6 
depicts the comparison of RMSE versus the SNR for different q under the condition that 

http://www.youdao.com/w/obvious/#keyfrom=E2Ctranslation
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T=400 and F=60. Fig.7 depicts the RMSE versus the snapshots for different q under the 
condition that F=60 and SRN=0 dB. Fig. 8 depicts the RMSE versus the number of 
frames for different q under the condition that T=400 and SNR=0 dB. DUA [Yang, 
Haimovich and Yuan (2018)] also can be seen as the case that q=0. Observing the 
comparative results shown in Fig. 6, Fig. 7 and Fig. 8, we can find that the RMSE of 
DOA estimation based on GDUA is lower than the DUA. 

 
Figure 6: RMSE against SNR for DUA and GDUA 

 
Figure 7: RMSE against snapshots for DUA and GDUA  
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Figure 8: RMSE against the number of frames for DUA and GDUA 

 
Figure 9: RMSE against SNR for DNA and GDNA 

Then, we compare the RMSE of DOA estimation by DNA and GDNA. Suppose that the 
direct angles of 10 signals are -40°, -30°, -20°, -10°, 0°, 10°, 20°, 30°, 40°, 50°, 
respectively. Here the GDNA is based on the nested array [Yang, Sun, Yuan et al. 
(2016)]. Fig. 9 depicts the comparison of RMSE vs. the SNR for different q under the 
condition that T=200 and F=40. Fig. 10 depicts the RMSE vs. the number of frames for 
different q under the condition that with T=200 and SNR=0 dB. Observe the comparative 
results shown in Figs. 9 and 10, we can find that the RMSE of DOA estimation based on 
GDUA is lower than the DUA as q>2. Because 16-element DNA already has larger 
aperture, smaller q only has little effect in extending array aperture. From Figs. 1 and 3, 
we find that the DOFs of 16-element DUA are far smaller than the DNA. In this case, 
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smaller q also has effect in extending aperture and improving the DOA estimation 
precision. 

 
Figure 10: RMSE against the number of frames for DNA and GDNA 

7 Conclusion 
In this paper, the generalized array architecture with multiple sub-arrays is presented. By 
changing the interval of adjacent sub-arrays, we can get many kinds of generalized array 
architecture with larger aperture than the original array. Meanwhile, a hole-repair 
algorithm is also proposed to remove the false spectrum peaks caused by the holes of 
corresponding DCA. In simulation experiments, GDUA based on uniform liner array and 
GDNA based on nested array are taken as example to test the performance of generalized 
array architecture in DOA estimation. Simulation results also prove that the hole-repair 
algorithm is effective in removing false spectrum peaks and eliminating angle ambiguity. 
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