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Abstract: In actual exploration, the demand for 3D seismic data collection is increasing, 

and the requirements for data are becoming higher and higher. Accordingly, the collection 

cost and data volume also increase. Aiming at this problem, we make use of the nature of 

data sparse expression, based on the theory of compressed sensing, to carry out the research 

on the efficient collection method of seismic data. It combines the collection of seismic 

data and the compression in data processing in practical work, breaking through the 

limitation of the traditional sampling frequency, and the sparse characteristics of the 

seismic signal are utilized to reconstruct the missing data. We focus on the key elements 

of the sampling matrix in the theory of compressed sensing, and study the methods of 

seismic data acquisition. According to the conditions that the compressed sensing sampling 

matrix needs to meet, we introduce a new random acquisition scheme, which introduces 

the widely used Low-density Parity-check (LDPC) sampling matrix in image processing 

into seismic exploration acquisition. Firstly, its properties are discussed and its conditions 

for satisfying the sampling matrix in compressed sensing are verified. Then the LDPC 

sampling method and the conventional data acquisition method are used to synthesize 

seismic data reconstruction experiments. The reconstruction results, signal-to-noise ratio 

and reconstruction error are compared to verify the seismic data based on sparse 

constraints. The LDPC sampling method improves the current seismic data reconstruction 

efficiency, reduces the exploration cost and the effectiveness and feasibility of the method. 

 

Keywords: Sparsity constraint, high efficient acquisition, compressed sensing, sampling 

matrix. 

1 Introduction 

Seismic data acquisition is the basis of the entire seismic exploration process, and the 

improvement of acquisition technology level is of great significance to the development of 

the entire seismic exploration. Current seismic data acquisition is based on the Fourier 
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transform and the Nyquist sampling theorem [Marks (1991)]. However, the information 

acquisition, storage, fusion, processing and transmission under the guidance of this theory 

has become one of the main bottlenecks in the current information technology 

development, and its performance in seismic data acquisition is also obvious. 

In actual exploration, the demand for 3D seismic data acquisition is increasing, and the 

requirements for data are becoming higher and higher. Accordingly, the acquisition cost 

and data volume also increases. Therefore, under the premise of meeting the data 

acquisition requirements, how to collect data economically and efficiently is a very urgent 

problem. In recent years, the theory of compressed sensing has received wide attention due 

to its unique advantages. It exploits the properties of data sparsely expressed, using sparse 

random sampling far below the traditional Nyquist sampling rate, and reconstructs the 

complete data signal through the sparse constrained optimization algorithm [Donoh (2006); 

Candes and Wakin (2008)]. The sparsity of the signal is the basis for sampling. The 

sampling interval of the signal depends on the structure and distribution of the information 

in the signal. On the one hand, the method breaks through the limitation of the Nyquist 

sampling theorem, breaks up the distribution of sampling aliases, and establishes a 

theoretical basis for widening the frequency of the signal; on the other hand, it uses less 

sampling and reduces the signal data human and material input in collection, transmission, 

storage, etc. It provides a theoretical basis for solving the problem of information 

redundancy and low sampling efficiency caused by the conventional sampling method. 

Since the compressed sensing utilizes the sparsity of the signal, it is also referred to, herein, 

as the signal sampling theory based on sparse constraints. 

Based on the seismic sensing technology of compressed sensing, more applied research 

and experiments have been carried out at home and abroad. However, there are relatively 

few literatures on seismic acquisition data acquisition based on compressed sensing and on 

observation system design. Hennenfent et al. [Hennenfent and Herrmann (2008)] proposed 

an under-sampling method based on random jitter, which controls the maximum distance 

between adjacent measuring points. Moshe et al. [Mosher, Kaplan and Janiszewski (2012)] 

proposed and improved a non-uniform sampling method based on constraints in the design 

of the observation system to select the location of the excitation point and the receiving 

point. The non-uniform optimization sampling observation system was designed and 

carried out at sea and land. The data acquisition, through data reconstruction, achieved 

good results. The idea of applying compressed sensing to multi-source seismic data 

acquisition was proposed [Lin and Herrmann (2009)]. Moldoveanu [Moldoveanu (2010)] 

conducted a positive exploration of stochastic observation methods for maritime data 

acquisition. The Poisson disk sampling method [Tang (2010)] was introduced to control 

the separation distance between sampling seismic traces, which improved the shortcomings 

of the simple random sampling method used in current compressed sensing technology. 

Milton et al. [Milton, Trickett and Burroughs (2011)] proposed a data acquisition method 

for changing the conventional rule-intensive shots to random sparsely arranged shots; Ma 

et al. [Ma (2011); Su, Sheng, Xie et al. (2019)] proposed a viewpoint of sparse promotion 

of seismic exploration. As far as the concept of using compressed sensing to reduce the 

amount of data collected in the field, Cheng et al. [Cheng, Chen and Wang (2015)] reported 

the preliminary framework for applying the theory of compressed sensing to the efficient 

collection of seismic data. Mosher et al. [Mosher, Kaplan and Janiszewski (2012)] 
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proposed a non-uniformity based on the theory of compressed sensing. The optimized 

sampling seismic data observation system design shows that the same number of 

instruments can be used to achieve higher spatial resolution or to complete larger 

acquisition tasks. The above research has made a useful exploration for efficient acquisition 

based on compressed sensing, which provides a basic idea for the efficient collection of 

seismic data by using the sparseness of seismic wavefields. 

An acquisition method based on the theory of compressed sensing is to realize data 

acquisition according to the position of the detector array in the measurement matrix, and 

reduce the collection point. Because the theory of compressed sensing is a process of 

reconstructing high-dimensional data by using low-dimensional data, the process of 

dimensionality reduction is accomplished by using the sampling matrix as a key factor. 

Therefore, we can achieve efficient data collection from the compressed sensing sampling 

matrix method. 

2 Compressed sampling theory and method 

Compressed sensing, also known as compression sensing or compressed sampling, is a 

technique for signal reconstruction using sparse or compressible signals [Candes and 

Wakin (2008)]. Or it can be said that the signal is compressed while sampling, which 

greatly reduces the sampling rate. Compressed sensing skips the step of acquiring samples 

and directly obtains a representation of the compressed signal. The CS theory utilizes many 

natural signals with a compact representation on a particular basis. That is, these signals 

are “sparse” or “compressible”. Due to this characteristic, the signal encoding and decoding 

framework of the compressed sensing theory is quite different from the traditional 

compression process, which mainly includes three aspects: signal sparse representation, 

coding measurement and reconstruction algorithm. 

For a real-valued finite-length one-dimensional discrete-time signal, it can be seen as a 

column vector of a space ×1 dimension, the elements are (=1, 2, …). Any signal in space 

can be represented by a linear combination of ×1 dimensional base vectors. To simplify 

the problem, assume that these bases are normative orthogonal. Using the vector as the 

base matrix formed by the column vector, then any signal can be expressed as Eq. (1). 

X =                                                                                                                                         (1) 

where  is the projection coefficient, and  =  ,i iX =      is formed by the N ×1 

column vector. Obviously, the equivalent representation of the same signal X and , and 

the representation of the signal X in the time domain,  is the representation of the signal 

in the domain . If the non-zero number of   is much smaller, it indicates that the signal 

is compressible. In general, a compressible signal is a signal that can be approximated well 

by K large coefficients, that is, its coefficients developed under a certain orthogonal basis 

exhibit exponential decay in a certain order, with very few large coefficients and many 

small coefficients. This method of implementing compression by transformation is called 

transform coding. In the data sampling system, the sampling rate is high but the signal is 

compressible, and the N point sampling signal X is obtained by sampling; the complete 

transform coefficient  i  is calculated by 
T X =   transformation; the positions of K 
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large coefficients are determined, and then N-K are discarded. Small coefficient encodes 

the values and positions of K large coefficients to achieve the purpose of compression. 

Compressed sensing theory shows that the signal can be sampled with a minimum number 

of observations without losing the information needed to approximate the original signal, 

so that the signal is reduced in size, that is, the signal is directly sampled to obtain a 

compressed representation of the signal. Without the intermediate stage of N sampling, the 

purpose of compression while sampling is achieved under the condition of saving sampling 

and transmission cost [Su, Sheng, Liu et al. (2019)]. Candes [Candes (2008)] demonstrates 

that as long as the signal is sparse in an orthogonal space, the signal can be sampled at a 

lower frequency, and the signal (M<< N) can be reconstructed with high probability. That 

is, the transform coefficient of the signal X of length N on an orthogonal basis or frame is 

sparse. Then the original solution signal X can be reconstructed accurately or with high 

probability from the observation set by using the optimization solution method [Su, Chen, 

Sheng et al. (2020)]. Fig. 1 is a block diagram of the signal reconstruction process based 

on the theory of compressed sensing.  

 

 

 

Figure 1: Signal reconstruction process of compressed sensing theory 

The theory of compressed sampling states that when the signal satisfies the sparse condition 

or is sparse in a mathematical transformation domain, the signal can be sampled with a 

measurement matrix that is not related to the sparse basis, and the algorithm is used with 

high precision by using fewer sampling points. By continuously optimizing the 

reconstruction, the original signal can be recovered with high precision from fewer 

sampling points. The choice of sampling matrix in compressed sensing directly affects the 

complexity of signal sampling and reconstruction and the quality of signal recovery [Su, 

Sheng, Liu et al. (2020); Anandakumar and Umamaheswari (2018)]. 

In compressed sensing, the sampling process is non-adaptive, that is, the sampling matrix 

cannot change according to the change of the signal, so how to project a high-dimensional 

signal into a low-dimensional space without losing useful information is our research. 

Candes [Candes (2008)] proposed the basic standard for the sampling matrix, Restricted 

Isometry Property (RIP), which is defined as follows: 

A is a matrix of dimension NM  , if there is a constant ),( 10s , so that any signal with 

less than s non-zero elements satisfies: 

2
2

2

2

2
2 11 xxAx sss )()(  +−                                                                                           (2) 

Then the matrix A is said to satisfy the s-order finite equidistant property with a finite 

equidistant constant s . 

In practical applications, it is easier to determine whether the sampling matrix satisfies the 

RIP property by correlation. The correlation refers to the maximum degree of correlation 

between the sampling matrix A and the sparse basis  . The correlation ),(  A between A 

and , which can be expressed by: 

X    
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where n is the column of the sampling matrix, i and j are the corresponding columns. 

The smaller the correlation coefficient  nA ,),( 1 , the higher the incoherence between 

A  and  , and the smaller the correlation, the better the effect of the sample matrix 

reconstruction data. Judging by the cross-correlation parameter )(  becomes more 

intuitive, which is represented by the following formula: 
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                                                                                      (4) 

where i  is the i-th column of   in the matrix. It is clear that the correlation is easier to 

calculate by Eq. (3) than RIP. If we normalize the columns of the matrix, we get the Gram 

matrix = HG , and the cross-correlation parameters are transformed into the largest non-

diagonal elements in G . Therefore, the cross-correlation parameter is the maximum value 

of the normalized inner product of the different columns in  . 

In practical applications, for the sampling matrix we want it to have as few samples as possible, 

have higher sparsity, facilitate hardware implementation, and optimal recovery performance. 

2.1 Seismic data regular sampling 

Regular sampling (Fig. 2(a)) divides the data into different groups in equal numbers, 

sampling at the same position within each group, and the spacing of each sampling point 

is equal. If the sampling frequency is lower than the Nyquist frequency of the signal, there 

will be an interference frequency component phenomenon that confuses the true frequency 

of the signal. Therefore, one of the preconditions for compressed sampling is the random 

undersampling method, which converts the coherent random noise into low amplitude 

uncorrelated noise that is easily filtered out. 

The random sampling method can overcome the aliasing caused by the conventional rule 

undersampling (Fig. 2(b)), which is also the inherent reason why random sampling can be 

used for the reconstruction of the sampled signal. Among the several sampling methods 

listed in Fig. 1, Gaussian random sampling tends to cause the sampling points to be too 

concentrated or scattered (Fig. 2(c)), causing redundancy or loss of sampling information 

in some areas, which brings difficulties to subsequent data recovery processing. 

In order to solve the above problems, a variety of random and uniform sampling methods 

have been developed, and the following are commonly used: 

(1) Poisson disk random sampling: Tang [Tang (2010)] control the sampling interval by 

setting some disks with a certain radius around adjacent sampling points (disk area cannot 

overlap, as shown in Fig. 2(d)). 

(2) Jittered random undersampling: Firstly, all the samples are uniformly segmented, and 

then random “jitter” is used to select the sampling points in each segment based on the 

central sample points (Fig. 2(e)). This method which requires each segment to be the 

number of samples is odd. Compared with random sampling and regular sampling, jitter 

sampling takes into account the advantages of both, and ensures random sampling while 
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ensuring sampling spacing, avoiding the problem that adjacent sampling points are too 

sparse or dense [Hennenfent and Herrmann (2008)]. 

(3) Piecewise-random underdamping: Segment all the samples first, and then randomly 

select one in each sub-segment as the sampling point (Fig. 2(f)). 

As a key factor of the theory of compressed sensing, the sampling matrix needs to satisfy 

two properties: (1) RIP property; (2) incoherence. 

Candes et al. [Candes, Romberg and Tao (2006); Donoho (2006)] proposed a commonly 

used random sampling matrix which mainly includes the most widely used Gaussian 

random sampling matrix, Bernoulli sampling matrix and partial Hadamard matrix. These 

matrices have been proved to satisfy RIP properties, and their construction is simple. It 

requires less measurement to reconstruct the signal under the same conditions, but due to 

the uncertainty of its elements, it takes up a large memory space, which is not conducive 

to hardware implementation. 

(a)

(b)

(c)

(d)

(e)

(f)
 

Figure 2: Schematic diagram of sampling method (5 points are sampled from 15 points) 

(a) All points; (b) Regular undersampling; (c) Random undersampling; (d) Poisson disk 

under-sampling; (e) Jittered random undersampling; (f) Piecewise-random undersampling.  

Solid points represent sampled points. Hollow circles represent total samples 

2.2 Low-density Parity-check (LDPC) sampling matrix 

2.2.1 LDPC code 

It is a linear sparse code that plays a big role in the communication system and it is a code 

that is very close to the Shannon limit. The LDPC code has good performance in 

communication and image processing. It is called low density parity check code because 

the check matrix of the code has strong sparsity. Here we use H to represent its check 

Matrix. The sparsity of the code can be represented by the matrix H. 

A regular LDPC code with a code length of N can be expressed as (N, λ, ρ), and λ represents 

the column weight in the matrix, that is, the number of non-zero elements in each column 

which is the number of “1”. And ρ represents the row weight of the matrix, that is, the 

number of non-zero elements in each row. The matrix H is usually defined by (λ, ρ), and 

the check matrix H must satisfy the following three conditions: (1) the row weight of each 

row must be ρ; (2) the column weight of each column must be λ; (3) The number of 1s in 

the same position in any two columns in the matrix cannot exceed “1”. The matrix 
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satisfying these three conditions is the regular LDPC code. According to the above content, 

the following H is the LDPC rule code of the form (6, 2, 3): 

                                                                                                             (5) 

According to the above description, we can understand that the regular LDPC code can be 

represented by the check matrix H whose row weight is equal to each column and the 

column weight is equal. In some cases, the column weight and the row weight in the check 

matrix are not necessarily equal. The matrix in this case is called an irregular LDPC code. 

Through a lot of researches, the performance of the irregular code is better than the rule 

code, but the structure is much more complicated, so we only study the rule code here. 

2.2.2 Tanner graph representation of LDPC codes  

Just as the check matrix represents the LDPC code, the LDPC code can also be represented 

by the graph model [Yang, Zhang and Zhong (2013); Su, Sheng, Leung et al. (2019)], and 

the same effect as the check matrix is used to analyze the LDPC code. The rule LDPC code 

in the above Eq. (5) is represented by the Tanner bipartite graph as shown in the Fig. 3. 

Check node

Bit node

C1 C3 C4C2

X1 X3X2 X4 X5 X6

 

Figure 3: The Tanner bipartite graph 

In the Fig. 3, Ci is called a check node and represents four row vectors of the check matrix 

H. Each row in the matrix is represented by a check node. Since there are 4 rows in the Eq. 

(5), there are 4 schools here. Similarly, each column in the check matrix H is represented by 

a variable node Xj, and the 6 variable nodes represent the 6 column vectors of the matrix H, 

so there are 6 variable nodes. When the check node is connected to the variable node, each 

line represents the element at the position of the ith row and the jth column of the matrix H, 

and the number of the wires represents the number of elements 1 in the matrix. 

As can be seen from the Tanner graph, starting from a node in the graph, the check node 

and the variable node finally return to the original node, and a closed loop is formed 

through the connection. This loop is called the ring of the Tanner graph. The total number 

of wires constituting the ring is called the ring length of the Tanner graph, and the loop 

shown in Fig. 3 is a loop of 6 lengths (bold portion). In a Tanner graph, a total of many 

rings are generated. In all loops, the smallest loop length is the girth, and the performance 

of the LDPC code can be expressed by the girth. In the design process, in order to ensure 

LDPC for good performance of the code, we try to avoid loops with a loop length of 4, 
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which will destroy the performance of the matrix, so the check matrix H needs to meet the 

principle of minimum loop length and the conditions of row and column (RC) constraints 

[Eldar, Ozols and Thompson (2020)]. In theory, when selecting the check matrix, the 

matrix with a longer loop length should be preferred, which also shows that each node in 

the matrix has higher independence. That is to say, the larger the length of the inner ring 

of the matrix, the higher the non-correlation between the columns in the matrix, which is 

also the requirement of the RIP property, indicating that the check matrix of the LDPC 

code conforms to the condition of the sampling matrix in the theory of compressed sensing.  

2.2.3 Nature of LDPC codes 

Sparsity. The LDPC code has good sparsity, and only two elements “0” and “1” are 

contained in the parity check matrix H of the code (N, λ, ρ). According to the above, we 

can see that the non-zero elements in the check matrix H are particularly small, that is, the 

low density of LDPC, which is what we often call sparsity. 

Irrelevance. It can be seen from the bipartite graph of the LDPC code that the length of the 

ring in the LDPC code determines the nature of the LDPC code. When the loop length is 

longer, the independence between the nodes is stronger, and the incoherence of the rows 

and columns in the check matrix H is stronger where the incoherence also reflects the 

nature of RIP. In addition, the check matrix H has strong orthogonality, all of which satisfy 

the properties of the sampling matrix in the compressed sensing theory [Zhang and Li 

(2018)]. Therefore, the check matrix of the LDPC matrix can be used as a sampling matrix 

for compressed sampling. 

3 Efficient acquisition of seismic data reconstruction experiment 

In this section, we use the simulation data to perform the missing reconstruction on the 

above different sampling methods, and compare the results. Here we use the signal-to-

noise ratio (SNR) as the criterion for judging the data recovery effect: 

















−
=

2

2

2

210
xx

x
SNR

~

~
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where x~  is the original seismic data and x  is the reconstructed seismic data. 

We simulate seismic signals through the Ricker wavelet. The signal frequency is 15 Hz 

and the sampling frequency is 10 Hz, the signal length is 256. The signal is sparsely 

represented by Fourier transform, and reconstructed by the orthogonal matching pursuit 

algorithm (OMP) [Wang and Geng (2020)]. Here we compare the LDPC matrix sampling 

method with random sampling. The Fig. 4 shows the signal simulation at different sampling 

rates. 
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(a)                                                               (b) 

 
(c)                                                                 (d) 

 

 
(e)                                                                   (f) 

Figure 4: Ricker wavelet simulation reconstruction test under different sampling matrices 

(a), (c), (e) are reconstructed signals with a sampling rate of 25%, 50%, and 75% random 

sampling, respectively. (b), (d), (f) are reconstructed signals of sampling rate 25%, 50%, 

75% LDPC sampling matrix, respectively 

Table 1: SNR and Reconstruction error of three kinds of sampling simulation data under 

25% of the sampling rate 

Sampling method Random sampling Jittered sampling LDPC sampling 

Reconstruction error 0.0536 0.0487 0.0412 

Reconstructed SRN 25.421 26.736 27.563 

In order to reduce the error of the experiment, we performed 50 calculations for each result 

and averaged them. From Fig. 4 and Tab. 1, we can see that the two sampling matrices do 
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not have much difference in signal recovery at the same sampling rate. The original signal 

is basically consistent with the reconstructed signal, and the two curves are basically 

visually viewed from the image. The data is consistent, and the data shows that the SNR 

difference does not exceed 0.l db. As the sampling rate increases, the SNR gradually 

increases, but it is not greatly affected, so even when low the sampling matrix can also 

reconstruct the signal well under the sampling rate. Moreover, it can be seen from the 

experimental results that the LDPC matrix is feasible to reconstruct the seismic data. 

Subsequently, we performed the missing sampling and reconstruction of the single-shot 3D 

simulation data according to three different acquisition methods, and selected the same record 

for specific analysis. K-Singular Value Decomposition (K-SVD) was used as the sparse 

transformation method, and Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) was 

used as the reconstruction algorithm [Liu, Wu, Mo et al. (2018)]. The sparse dictionary D is 

obtained by training the complete original record, the number of seismic traces is 90, the 

number of sampling points is 900, and the time sampling interval is 0.001 s. A dictionary is 

trained on the extracted records to obtain a corresponding representation. 

 

Figure 5: (a) Seismic records of one line in 3D simulation data; (b) K-SVD dictionary 

According to the above three different sampling methods, we perform the missing 

simulation of the data. When the number of tracks is more than that of the LDPC matrix 

method, we can use the block method. This design is simpler than the whole region. 

Moreover, the randomness of the matrix design is guaranteed, and the workload required 

for designing a small number of lines is also reduced. In order to avoid the contingency of 

the results, 50 calculations are performed for each sampling method, and then averaged. 
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(a)                                                                     (b) 

 

(c)                                                                     (d) 

 

(e)                                                                      (f) 

Figure 6: The comparison between the simulation results of three sampling methods under the 

sampling rate 25%. (a) Random undersampling. (b) Reconstruction result of random 

undersampling. (c) Jittered undersampling. (d) Reconstruction result of jittered undersampling. 

(e) LDPC matrix sampling. (f) Reconstruction result of LDPC matrix sampling 
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Table 2: SNR of three kinds of sampling simulation data under 25% of the sampling rate 

Sampling method Random sampling Jittered sampling LDPC sampling 

Original signal 1. 536 1.587 1.632 

Reconstructed SRN 3.021 4.236 4.563 

We use the dictionary trained in the complete seismic record in Fig. 5(b) to sparsely 

represent the missing data and reconstruct it with FISAT. It can be seen from the Fig. 6 and 

Tab. 2 that the SNR obtained after reconstruction in the three sampling modes is not much 

lower, even if the low sampling rate is only 25% and the data SNR is about 1.5 db. The 

random sampling result is not much improved, and the sampling interval is easy to occur 

at low sampling rate. In the big case, the collection points are gathered in one place, which 

directly leads to the lack of large-scale data and which is difficult to reconstruct completely. 

The jitter method and the LDPC matrix improve this problem. The jitter sampling method 

has a significant improvement over the random sampling. The result of the LDPC method 

reconstruction and the jitter are almost slightly improved. 

 

 

 

 

 

 

 

 

Figure 7: The SNR of reconstructed data with 25%, 50%, 75% sampling 

Fig. 7 is a line graph of 25%, 50%, 75% sampling, and reconstructed data SNR for the 

whole data. In order to ensure the accuracy of the results and eliminate random interference, 

we still perform 50 times of data. The experiment was then averaged. It can be seen from 

the Fig. 7 that the SNR of the three methods increases correspondingly with the increase 

of the sampling rate. Whether it is low sampling rate or high sampling rate, the SNR of the 

LDPC matrix sample proposed in this paper is the highest, and the reconstruction result is 

the best. 

4 Conclusion 

This paper first analyzes the requirements of the applicable sampling matrix in seismic 

exploration, and shows the limitations of matrix usage in this field. Then, the existing 

acquisition methods are classified and described, because LDPC has as a compressed sensing 

sampling matrix. Due to its nature and in line with the requirements of seismic exploration, 

it is introduced into the three-dimensional exploration environment. We routinely propose a 

one-dimensional sampling method. The two-dimensional sampling is more in line with the 

actual exploration and has higher efficiency, eliminating the need for multiple measurements. 

The offline design steps have an advantage in the overall reconstruction of the data. In order 
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to verify the effectiveness of our proposed method, we reconstruct the 3D simulation single-

shot data in different acquisition modes, and then extract the same records from the 3D data 

for specific analysis, and sequentially increase the sampling rate to prove the validity of the 

results. Multiple experiments were performed in each case to avoid random errors. Then we 

use the actual data to perform the same operation in different ways. It can be seen from the 

experimental results that the proposed method has a relatively good effect. Generally, the 

method has certain practical application value. 
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