

Computers, Materials & Continua CMC, vol.64, no.1, pp.665-679, 2020

CMC.doi:10.32604/cmc.2020.09912 www.techscience.com/journal/cmc

Single Failure Routing Protection Algorithm in the Hybrid SDN
Network

Haijun Geng1, Jiangyuan Yao2, * and Yangyang Zhang3

Abstract: Loop free alternate (LFA) is a routing protection scheme that is currently
deployed in commercial routers. However, LFA cannot handle all single network
component failure scenarios in traditional networks. As Internet service providers have
begun to deploy software defined network (SDN) technology, the Internet will be in a
hybrid SDN network where traditional and SDN devices coexist for a long time.
Therefore, this study aims to deploy the LFA scheme in hybrid SDN network architecture
to handle all possible single network component failure scenarios. First, the deployment
of LFA scheme in a hybrid SDN network is described as a 0-1 integer linear
programming (ILP) problem. Then, two greedy algorithms, namely, greedy algorithm for
LFA based on hybrid SDN (GALFAHSDN) and improved greedy algorithm for LFA
based on hybrid SDN (IGALFAHSDN), are proposed to solve the proposed problem.
Finally, both algorithms are tested in the simulation environment and the real platform.
Experiment results show that GALFAHSDN and IGALFAHSDN can cope with all single
network component failure scenarios when only a small number of nodes are upgraded to
SDN nodes. The path stretch of the two algorithms is less than 1.36.

Keywords: Multipath routing, network availability, routing protection algorithm,
network failure, hybrid SDN network.

1 Introduction
SDN is a newly emerging network architecture, which is characterized by decoupling the
functions of control and forwarding planes [Wang, Deng, Ren et al. (2020); Qiu, Zhao,
Wang et al. (2019)]. The former consists of one or more SDN centralized controllers
responsible for path selection and routing decision [Das, Sridharan and Gurusamy (2020);
Zhang, Cui and Wang (2018)]. The latter is composed of SDN switches responsible for
forwarding the packets in the network. SDN refers to the idea of software programming.
The centralized SDN controller communicates with the SDN switches through the
standardized OpenFlow protocol [Astuto, Mendonca, Nguyen et al. (2014); Shi, Li, Xie et

1 School of Software Engineering, Shanxi University, Taiyuan, 030006, China.
2 School of Computer Science and Cyberspace Security, Hainan University, Haikou, 570228, China.
3 College of Engineering Northeastern University, Boston, 02115, USA.
* Corresponding Author: Jiangyuan Yao. Email: yaojy@hainanu.edu.cn.
Received: 27 January 2020; Accepted: 13 April 2020.

666 CMC, vol.64, no.1, pp.665-679, 2020

al. (2020)]. The SDN centralized controller has a logical view of the whole network
controlling the forwarding path of all packets in the network [Zhang, Cheng and Lin (2017)].
The controller sends the routing decision information to the SDN switches through
OpenFlow protocol [Rubio, Galis, Astorga et al. (2011); Zheng, Xu, Zhu et al. (2019)].
Compared with the traditional network architecture, the SDN network has many advantages,
such as flexible control of network traffic and easy to implement network management and
security policies [Scott-Hayward, Natarajan and Sezer (2016)]. Therefore, the performance
of the network can be greatly improved when the SDN technology is deployed in the
existing traditional network [Sezer, Scott-Hayward, Chouhan et al. (2013)]. However,
upgrading all current network devices to SDN devices is impossible. On the one hand,
deploying SDN devices needs considerable economic costs, such as human and material
resources. On the other hand, deploying SDN devices may lead to network interruption and
further seriously affect the user’s experience. In academia and industry, SDN technology is
widely used to upgrade the traditional network and gradually replace the traditional
equipment in the network. The network where traditional and SDN devices coexist is
regarded as the hybrid SDN network [Vissicchio, Vanbever, Cittadini et al. (2017)]. A
hybrid SDN network mainly includes SDN controller, SDN switch, and traditional router
[Xu, Li, Huang et al. (2017)], as shown in Fig. 1. The SDN controller exchanges information
with SDN switch through the OpenFlow protocol. SDN switch can work in two modes; one
is to interact with the traditional router through traditional routing protocols, and the other is
to interact with SDN switch and controller through SDN protocols [Xu, Huang, Chen et al.
(2018)]. However, the traditional router only supports the traditional routing protocol and
cannot communicate with the SDN controller. Existing studies on a hybrid SDN network are
mainly focused on network performance and management. However, studies on fast re-
routing in a hybrid SDN network [Salsano, Ventre, Lombardo et al. (2016)]. Routing
availability and energy efficient routing are two key problems in the network. This paper
mainly studies routing availability. Therefore, this study concentrates on how to implement
fast re-routing technology in a hybrid SDN network. This technology can immediately
respond to network failures and reduce the packet loss caused by such failures.

Router A Router B

SDN Controller

SDN Switch B SDN Switch A

OpenflowOpenflow

Figure 1: Hybrid SDN network architecture

The structure of the paper is organized as follows: Section 2 describes the related works.
Section 3 introduces the network model and describes the problem which will be solved
in this study. Section 4 proposes two algorithms showing how to deploy LFA scheme in a

Single Failure Routing Protection Algorithm in the Hybrid SDN Network 667

hybrid SDN network. Section 5 carries out experiment simulation in different network
topologies and summarizes the experiment results. Finally, Section 6 concludes.

2 Related works
A considerable number of studies have shown that 70% of the failures in the network are
single-link failures, and the remaining 30% are single-node and concurrent failures
[Amin, Amin and Shah (2016); Foerster, Pignolet, Schmid et al. (2018); Zheng, Xu, Zhu
et al. (2019)]. Hence, this study focuses on how to deal with the single-link failure in the
network. Routing protection scheme is widely employed in academia and industry to deal
with frequently occurring network failures [Geng, Shi, Wang et al. (2018)]. Equal cost
multipath routing (ECMP) is the earliest and simplest route protection scheme employed
in the industry. However, numerous studies have shown that ECMP cannot provide a
high network failure protection ratio [Geng, Shi, Wang et al. (2017); Yang, Xu and Li
(2018)]. To overcome this, the internet engineering task force (IETF) puts forward the
framework of fast re-routing. From this framework, studies have proposed LFA, Not-via,
backup tunnel, and so on. Among all routing protection schemes, LFA has been paid
close attention to the industry because of its simplicity and has been deployed and
supported by router manufacturers, such as Cisco, Juniper, and Huawei. LFA is simple
and easy to deploy. However, LFA has a fatal disadvantage, that is, it cannot protect all
possible single network failure scenarios in the network. To overcome this, this study
analyzes the problem of LFA failure coverage by using the theoretical knowledge of
graph theory in the literature. In addition, this study increases the LFA failure protection
ratio by adjusting the link weight in the network. However, the proposed method still
cannot guarantee to deal with all single failure scenarios. Therefore, the relationship
between LFA’s failure protection ration and network topology is theoretically analyzed in
detail, and LFA can cope with all single failure scenarios by adding links to the network.
Braun et al. [Braun and Menth (2016)] studied how to deploy LFA in SDN network, so as
to deal with all possible single failure scenarios. However, all schemes are based on the
traditional network architecture or SDN network, which cannot be directly applied to the
hybrid SDN network.
Therefore, this study analyzes how to deploy LFA in a hybrid SDN network and ensures
that LFA can deal with all possible single failure scenarios in the network. This study
proposes the following: First, all source-destination pairs that are not protected by the
LFA are calculated and protected by deploying SDN nodes in the network, so that the
solution can cope with all single network failure scenarios.
Fig. 2 depicts the key idea of this study. As shown in the figure, the shortest path from
source 𝑠𝑠 to destination 𝑑𝑑 is (𝑠𝑠,𝑎𝑎, … ,𝑑𝑑), and the SDN node is 𝑐𝑐. If no failure in the
network occurs and a packet is forwarded from the source 𝑠𝑠 to the destination 𝑑𝑑, then
the forwarding path of the packet is (𝑠𝑠,𝑎𝑎, … ,𝑑𝑑). When the link (𝑠𝑠,𝑎𝑎) fails, the source 𝑠𝑠
will first forward the packet to the SDN node 𝑐𝑐, and then, the SDN node 𝑐𝑐 forwards the
packet to the destination node 𝑑𝑑.

668 CMC, vol.64, no.1, pp.665-679, 2020

 SDN Controller

b

a

c e

ds

Figure 2: Key idea of the study

3 Network model and problem description
3.1 Network model
A network can be modeled as a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 and 𝐸𝐸 are respectively the
set of nodes and edges in the network. For any node ∀𝑣𝑣 ∈ 𝑉𝑉 in the network, 𝑁𝑁(𝑣𝑣)
represents all the neighboring nodes of the node 𝑣𝑣, 𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣) is the shortest path tree (SPT)
rooted at node 𝑣𝑣. For ∀𝑥𝑥,𝑦𝑦 ∈ 𝑉𝑉(𝑥𝑥 ≠ 𝑦𝑦), 𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦) is the collection of nodes on the
shortest path from node 𝑥𝑥 to 𝑦𝑦, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) represents the shortest cost from node 𝑥𝑥 to
𝑦𝑦 in the network, and 𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦) is the best next hop from node 𝑥𝑥 to 𝑦𝑦.

3.2 Problem description
The intra-domain routing protocols deployed on the Internet are mainly link-state routing
protocols, such as intermediate system to intermediate system (IS-IS) and open shortest
path first (OSPF). In both routing protocols, all routers in the network have a complete
topology within the autonomous domain. When the network is in a stable state, the
topologies stored in all routers are consistent with one another. Each router in the
network employs the shortest path first algorithm to compute shortest path tree (SPT) on
the basis of network topology. Then, a routing table is constructed using the SPT. From
the above description, the intra-domain routing protocol uses the shortest path to forward
packets. When the network component fails, network interruption will occur, which
seriously affects the performance of the network. Therefore, the IETF proposes to use
LFA to deal with frequently occurring failures in the network to improve network
availability and improve the user’s experience. The three rules in the LFA are described
separately as follows:
Loop-free criterion (LFC): 𝑥𝑥 can be selected as a valid next hop from 𝑐𝑐 to 𝑑𝑑 in the
case of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑑𝑑) < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑐𝑐) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐,𝑑𝑑). When packets are routed from 𝑥𝑥 to 𝑑𝑑,
they are not routed back to 𝑐𝑐 because 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑐𝑐) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐,𝑑𝑑) is the lowest cost of any
path from 𝑥𝑥 to 𝑑𝑑 that passes 𝑐𝑐. Thus, the protection route bypasses 𝑐𝑐, thereby also
bypassing the link (𝑐𝑐, 𝑏𝑏).
Node-protecting criterion (NPC): 𝑥𝑥 can be selected as a valid next hop from 𝑐𝑐 to 𝑑𝑑
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑑𝑑) < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑓𝑓) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓, 𝑑𝑑) , which means that the protection route
bypasses 𝑓𝑓, thereby also bypassing the node 𝑏𝑏.

Single Failure Routing Protection Algorithm in the Hybrid SDN Network 669

Downstream path criterion (DC): 𝑥𝑥 can be selected as a valid next hop from 𝑐𝑐 to 𝑑𝑑
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑑𝑑) < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐,𝑑𝑑), which means that the protection route bypasses 𝑐𝑐 (and
link (𝑐𝑐, 𝑏𝑏)), and the remaining cost to the destination strictly decreases.
Studies have reported that not all source-destination node pairs have an optional LFA
next hop. Therefore, to overcome the inherent problem of LFA, this study mainly solves
how to deploy LFA scheme in a hybrid SDN network, so that it can protect all possible
single failure scenarios in the network. We can express the problem solved in this study
as follows: how to choose a group of nodes to deploy the SDN technology for a given
network so that LFA can cope with all possible single link failure scenarios in the
network. The above problem can be described as a 0–1 ILP model, namely:
Minimize:
∑ 𝑥𝑥(𝑖𝑖), 𝑖𝑖∈𝑉𝑉 (1)

Subject to:
𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) ∈ {0,1} 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ∈ 𝑉𝑉, (2)

𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 0 𝑖𝑖 ∉ 𝑆𝑆(𝑗𝑗,𝑘𝑘), (3)

𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 1 𝑖𝑖 ∈ 𝑆𝑆(𝑗𝑗,𝑘𝑘), (4)

𝑥𝑥(𝑖𝑖) ∈ {0,1} 𝑖𝑖 ∈ 𝑉𝑉, (5)

𝑥𝑥(𝑖𝑖) = 0 ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘) = 0, (𝑗𝑗,𝑘𝑘)∈𝑉𝑉 (6)

𝑥𝑥(𝑖𝑖) = 0 ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘) ≥ 1, (𝑗𝑗,𝑘𝑘)∈𝑉𝑉 (7)

𝑓𝑓(𝑖𝑖, 𝑗𝑗) ∈ {0,1} 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉, (8)

𝑓𝑓(𝑖𝑖, 𝑗𝑗) = 0 (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸, (9)

𝑓𝑓(𝑖𝑖, 𝑗𝑗) = 1 (𝑖𝑖, 𝑗𝑗) ∉ 𝐸𝐸, (10)

𝑧𝑧�(𝑖𝑖, 𝑗𝑗), 𝑖𝑖,𝑑𝑑� ∈ {0,1} 𝑖𝑖, 𝑗𝑗, 𝑑𝑑 ∈ 𝑉𝑉, (11)

𝑧𝑧�(𝑖𝑖, 𝑗𝑗), 𝑖𝑖,𝑑𝑑� = 0 (𝑖𝑖, 𝑗𝑗) ∉ 𝑠𝑠𝑠𝑠(𝑖𝑖,𝑑𝑑), (12)

𝑧𝑧�(𝑖𝑖, 𝑗𝑗), 𝑖𝑖,𝑑𝑑� = 1 (𝑖𝑖, 𝑗𝑗) ∈ 𝑠𝑠𝑠𝑠(𝑖𝑖,𝑑𝑑), (13)

∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘) ≤ 1𝑖𝑖∈𝑉𝑉 , (14)

𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) ≤ 𝑥𝑥(𝑖𝑖), (15)

𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 1 𝑥𝑥 ��𝑗𝑗,𝑑𝑑𝑑𝑑(𝑗𝑗,𝑘𝑘)�, 𝑗𝑗, 𝑖𝑖� +∏ 𝑥𝑥 ��𝑗𝑗,𝑑𝑑𝑑𝑑(𝑗𝑗,𝑘𝑘)�,𝑁𝑁(𝑖𝑖),𝑘𝑘� = 0,𝑖𝑖 (16)

In the next section, we will explain the above ILP model in detail. In the model, Eq. (1) is
the objective function, that is, the number of deployed SDN nodes is minimized. 𝑥𝑥(𝑖𝑖)

670 CMC, vol.64, no.1, pp.665-679, 2020

indicates that whether the node 𝑖𝑖 is an SDN node or not. If 𝑥𝑥(𝑖𝑖) = 1, then the node 𝑖𝑖 is
an SDN node; otherwise, the value is 0. The variable 𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) in Eqs. (2)-(4) indicates
that whether node 𝑖𝑖 is the SDN node of the source–destination pair of 𝑗𝑗 − 𝑘𝑘 or not. If
the node 𝑖𝑖 is the SDN node of the source-destination pair of 𝑗𝑗 − 𝑘𝑘, then the value of
𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) is 1; otherwise, the value is 0. Eq. (6) indicates that if the node 𝑖𝑖 is not an SDN
node of any source-destination pair of 𝑗𝑗 − 𝑘𝑘, then the value of 𝑥𝑥(𝑖𝑖) is 0; otherwise, Eq.
(7) is correct. The variable 𝑓𝑓(𝑖𝑖, 𝑗𝑗) in Eqs. (8)-(10) indicates whether the link (𝑖𝑖, 𝑗𝑗) is in
the network or not. If the link (𝑖𝑖, 𝑗𝑗) is in the network, then the value of 𝑓𝑓(𝑖𝑖, 𝑗𝑗) is 1;
otherwise, the value is 0. The variable 𝑧𝑧�(𝑖𝑖, 𝑗𝑗), 𝑖𝑖, 𝑑𝑑� in Eqs. (11)-(13) indicates whether
the link (𝑖𝑖, 𝑗𝑗) is on the shortest path from node 𝑖𝑖 to 𝑗𝑗 or not. If the link (𝑖𝑖, 𝑗𝑗) is on the
shortest path from node 𝑖𝑖 to 𝑗𝑗, then the value is 1; otherwise, the value is 0. Eq. (14)
means that only one SDN node is eventually selected for any source-destination pairs. Eq.
(15) indicates that the node 𝑖𝑖 will be upgraded to an SDN node if an arbitrary source-
destination pair selects the node 𝑖𝑖 as its SDN node. Eq. (16) indicates that node 𝑖𝑖 is the
SDN node of the source-destination pair of 𝑗𝑗 − 𝑘𝑘, and the following two conditions must
be satisfied: (1) the link �𝑗𝑗,𝑑𝑑𝑑𝑑(𝑗𝑗,𝑘𝑘)� is not on the shortest path from the node 𝑗𝑗 to 𝑖𝑖; (2)
the link �𝑗𝑗,𝑑𝑑𝑑𝑑(𝑗𝑗,𝑘𝑘)� is not on the shortest path from the node 𝑚𝑚,𝑚𝑚 ∈ 𝑁𝑁(𝑖𝑖) to 𝑘𝑘.

4 Algorithms
The problem that needs to be solved in this study has been proven to be a non-
deterministic polynomial (NP) problem. Hence, obtaining the optimal solution in a
reasonable time is impossible. For some small networks, we can use the linear
programming calculator, for example, CPLEX, to obtain the optimal solution. However,
for large networks, computing the optimal solution in a reasonable time by CPLEX is
difficult, which is not suitable for deploying in the real networks. Therefore, we usually
use heuristic algorithms to solve the above problem in practice. In the following section,
we will introduce two heuristic algorithms, namely, GALFAHSDN and IGALFAHSDN,
to solve the scientific problem. The former is a traditional greedy algorithm but has high
time complexity and is not suitable for actual deployment on the Internet. The latter has
improved the traditional greedy algorithm, which can greatly reduce the time complexity.
Therefore, IGALFAHSDN is easier to deploy than GALFAHSDN in the real network.
Considering the three rules in the LFA, the following algorithms are mainly designed for
the LFC rule. Once you want to implement the other two rules in the LFA, you only need
to do is to replace the LFC with NPC or DC and do not need to change the rest of the
algorithms.
Algorithm 1 GALFAHSDN
Input:
𝐺𝐺 = (𝑉𝑉,𝐸𝐸)
Output:
SDN node set 𝑀𝑀
1: 𝑀𝑀 = 𝜙𝜙
2: Compute the failure protection ratio of LFC 𝑅𝑅(𝐺𝐺,𝑀𝑀)
3: While 𝑅𝑅(𝐺𝐺,𝑀𝑀) < 1 and 𝑀𝑀 ≠ 𝑉𝑉, do

Single Failure Routing Protection Algorithm in the Hybrid SDN Network 671

4: 𝑘𝑘 = arg𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑣𝑣∈𝑛𝑛𝑛𝑛𝑛𝑛(𝑉𝑉)(𝐺𝐺,𝑀𝑀⋃𝑣𝑣)
5: 𝑀𝑀 = 𝑀𝑀⋃𝑘𝑘
6: Compute the failure protection ratio 𝑅𝑅(𝐺𝐺,𝑀𝑀)
7: EndWhile
8: Return 𝑀𝑀

4.1 Greedy algorithm
In this section, we will introduce how to solve the above problem with greedy algorithm.
Algorithm 1 describes how GALFAHSDN works. First, we set the initial value of
deployment SDN node set to NULL (𝑀𝑀 = 𝜙𝜙) and then compute the initial failure
protection ratio 𝑅𝑅(𝐺𝐺,𝑀𝑀) according to LFC rule (lines 1-2). To obtain the set of deployed
SDN node set M , the algorithm needs to perform a series of iterations until the failure
protection ratio 𝑅𝑅(𝐺𝐺,𝑀𝑀) = 1 or 𝑀𝑀 = 𝑉𝑉 is established. The function 𝑛𝑛𝑛𝑛𝑛𝑛(𝑉𝑉) is used to
randomly select a node in the set 𝑣𝑣 ∈ {𝑉𝑉/𝑀𝑀} to deploy the SDN technology. The
function arg𝑚𝑚𝑚𝑚𝑥𝑥𝑅𝑅𝑣𝑣∈𝑛𝑛𝑛𝑛𝑛𝑛(𝑉𝑉)(𝐺𝐺,𝑀𝑀⋃𝑣𝑣) returns the node 𝑘𝑘 with the maximum failure
protection ratio. Then, node 𝑘𝑘 is added to the set 𝑀𝑀, and the network failure protection
ratio is updated at the same time (lines 3-7). Finally, the deployed SDN node set 𝑀𝑀 is
returned (line 8).

4.2 IGALFAHSDN
Algorithm 2 IGALFAHSDN
Input:
𝐺𝐺 = (𝑉𝑉,𝐸𝐸)
Output:
SDN node set 𝑀𝑀
1: Calculate source-destination pairs 𝐿𝐿 = {(𝑠𝑠,𝑑𝑑), 𝑠𝑠,𝑑𝑑 ∈ 𝑉𝑉} that are not protected by LFC
2: Calculate SDN nodes 𝐷𝐷(𝑠𝑠,𝑑𝑑) for each source–destination pair (𝑠𝑠,𝑑𝑑) ∈ 𝐿𝐿
3: Calculate ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘) (𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉
4: 𝑀𝑀 = 𝜙𝜙
5：While 𝑅𝑅(𝐺𝐺,𝑀𝑀) < 1 and 𝑀𝑀 ≠ 𝑉𝑉 do
6: 𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘) (𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉
7: 𝑀𝑀 = 𝑀𝑀⋃𝑚𝑚
8: For (𝑠𝑠,𝑑𝑑) ∈ 𝐿𝐿
9: If 𝑚𝑚 ∈ 𝐷𝐷(𝑠𝑠,𝑑𝑑) then

10: Clear 𝐷𝐷(𝑠𝑠,𝑑𝑑)
11: 𝐿𝐿 = 𝐿𝐿 − {𝑠𝑠,𝑑𝑑}
12: EndIf

13: EndFor

14: Update ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘) (𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉,𝑖𝑖≠𝑚𝑚
15：Update 𝑅𝑅(𝐺𝐺,𝑀𝑀)

672 CMC, vol.64, no.1, pp.665-679, 2020

16: EndWhile
17: Return 𝑀𝑀

The above algorithm GALFAHSDN is a typical greedy algorithm. To select a node from
the network to deploy SDN technology, the algorithm needs to go through several
iterations, so that the time complexity of the algorithm is extremely high in large
networks. We propose an improved greedy algorithm, IGALFAHSDN, to reduce the
complexity of the algorithm GALFAHSDN, thus making the algorithm easy to deploy in
the real network. We will describe the algorithm IGALFAHSDN in detail. First, we
calculate all source-destination pairs in the network that are not protected by the LFC rule
and store them in the variable 𝐿𝐿 = {(𝑠𝑠,𝑑𝑑), 𝑠𝑠,𝑑𝑑 ∈ 𝑉𝑉} (line 1). Then, we calculate all SDN
nodes for each source-destination (𝑠𝑠,𝑑𝑑) ∈ 𝐿𝐿 according to Eq. (16) and stored them in the
variable 𝐷𝐷(𝑠𝑠,𝑑𝑑). The value of ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘)(𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉 is calculated, and the initial value of
deployment SDN node was set to NULL (𝑀𝑀 = 𝜙𝜙) (lines 2-4). To obtain the set of
deployed SDN node set 𝑀𝑀, the algorithm needs to go through several iterations until the
failure protection ratio 𝑅𝑅(𝐺𝐺,𝑀𝑀) = 1 or 𝑀𝑀 = 𝑉𝑉 is established. In each iteration, the
node 𝑚𝑚 with the largest ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘)(𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉 was selected to deploy SDN technology and
update the node set 𝑀𝑀 (lines 6-7). Each pair of source-destination node only selects a
unique SDN node. Thus, for any source-destination node pair, if 𝑚𝑚 ∈ 𝐷𝐷(𝑠𝑠,𝑑𝑑), then the
SDN node for this source-destination pair is determined, and computing SDN nodes for it
is not necessary. The value of 𝐷𝐷(𝑠𝑠,𝑑𝑑) , 𝐿𝐿 , ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘)(𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉,𝑖𝑖≠𝑚𝑚 and 𝑅𝑅(𝐺𝐺,𝑀𝑀) is
calculated (lines 8-16). Finally, the deployed SDN node set 𝑀𝑀 is returned (line 17).

4.3 Algorithm complexity
This section theoretically analyzes the time complexity of the algorithms GALFAHSDN
and IGALFAHSDN.
Theorem 1. The time complexity of the algorithm GALFAHSDN is 𝑂𝑂(|𝑉𝑉|5).
Proof. To obtain the node set that is needed to deploy SDN technology, the algorithm
must execute the function arg𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑣𝑣∈𝑛𝑛𝑛𝑛𝑛𝑛(𝑉𝑉)(𝐺𝐺,𝑀𝑀⋃𝑣𝑣) at most |𝑉𝑉| times. The function
needs to calculate the SDN nodes for all source-destination pairs in the network, and the
algorithm complexity is 𝑂𝑂(|𝑉𝑉|4). Therefore, the time complexity of GALFAHSDN is
𝑂𝑂(|𝑉𝑉|5).
Theorem 2. The time complexity of the algorithm IGALFAHSDN is 𝑂𝑂(|𝑉𝑉|3).
Proof. The time complexity of the second line of the IGALFAHSDN is 𝑂𝑂(|𝑉𝑉|3). The
time complexity of lines 5-15 of the IGALFAHSDN is 𝑂𝑂(|𝑉𝑉|2). Therefore, the time
complexity of the algorithm IGALFAHSDN is 𝑂𝑂(|𝑉𝑉|3).

5 Performance evaluations
LFA has three rules. However, the implementation methods of the three rules are
basically similar. The experiment results are basically the same, so this section only lists
the experiment results of LFC rule in LFA. We will not list the experiment results of the
other two rules in detail.
In this section, we will use experiments to test the performance of algorithms

Single Failure Routing Protection Algorithm in the Hybrid SDN Network 673

GALFAHSDN and IGALFAHSDN. The evaluation indicators include the number of
SDN nodes, failure protection ratio, computational overhead, and path stretch. As the
number of SDN nodes deployed in the network decreases, the deployment overhead also
decreases. In the experiment, we compare the failure protection ratio of LFC,
GALFAHSDN and IGALFAHSDN. If the corresponding failure protection ratio of an
algorithm is 100%, then the algorithm can deal with all possible single failure scenarios
in the network; otherwise, the algorithm cannot protect some of the failures. We have
theoretically analyzed the time complexity of algorithms GALFAHSDN and
IGALFAHSDN in Section 4. In this section, we will use the real computation time of the
algorithm to compare the overhead of algorithms GALFAHSDN and IGALFAHSDN. In
the experiment, we compared the path stretch of GALFAHSDN with that of
IGALFAHSDN. The path stretch directly affects the network delay and path overhead, so
we hope that the path stretch of the algorithm is as small as possible. We first describe the
network topology of the algorithm, then introduce the experiment results, and last analyze
the experiment results in detail.
To evaluate the performance of GALFAHSDN, IGALFAHSDN, and LFC, we run three
algorithms on a considerable number of topologies. The experiment topology of this
paper includes the following three types of topologies:
(1) Real network topology. In this type of network topology, we select three real network
topologies, that is, Abilene, TORONTO, and USLD.
(2) The topologies measured using Rocketfuel. In this type of network topology, we
select four measurement topologies, that is, AS1755, AS1239, AS3257, and AS3967.
(3) The topology generated by the simulation software Brite. The model used by Brite is
Waxman, the number of nodes in the topology ranges from 100 to 500, the parameter of
alpha and beta is set to 0.15 and 0.2 respectively, the average node degree parameter of
the network ranges from 2 to 4, and the distribution of nodes in the network is subject to
heavy tailed distribution. The bandwidth parameter of the link ranges from 10 to 1024.

5.1 Number of SDN nodes
In this study, SDN nodes are deployed in the traditional network to improve the failure
protection ratio of LFC, but the deployment of SDN nodes requires additional overhead.
If the number of deployed SDN nodes is less, then the additional overhead is also less.
Therefore, in this section, we will discuss the number of SDN nodes that need to be
deployed for LFC to cope with all possible single failure scenarios in a hybrid SDN
network.
Tab. 1 shows the number of SDN nodes deployed in different network topologies. In Tab. 1,
Brite (m, n) represents the topology generated by the Brite, the number of nodes is m, and
the average node degree of the network is n. In all networks, except for Abilene, only a few
SDN nodes need to be deployed to achieve a full failure protection ratio. From the above
results, we can draw a conclusion that many SDN nodes are deployed in a sparse graph. For
example, in the Abilene topology, the number of SDN nodes needs to be deployed is 5, and
nearly half of the nodes need to be upgraded to SDN nodes. This finding is because the
Abilene topology and the average node degree are relatively small. In the dense graph, the
number of SDN nodes deployed is relatively small. For example, the number of SDN

674 CMC, vol.64, no.1, pp.665-679, 2020

nodes that need to be deployed is 18 in Brite (500, 2), whereas the number of SDN nodes
that need to be deployed is only 4 in Brite (500, 4). This event has two reasons: (1) if the
network topology is dense, then the source-destination pairs are protected by LFA, so the
number of SDN nodes that need to be deployed is small. (2) If the network is dense, then
the re-routed path will less likely bypass the failure component.

Table 1: Number of SDN nodes
Network The number of SDN nodes
Abilene 5
USLD 4

TORONTO 2
AS1239 13
AS1755 9
AS3257 12
AS3967 8

Brite (100, 2) 6
Brite (100, 4) 2
Brite (200, 2) 9
Brite (200, 4) 2
Brite (300, 2) 14
Brite (300, 4) 3
Brite (400, 2) 17
Brite (400, 4) 3
Brite (500, 2) 18
Brite (500, 4) 4

5.2 Failure protection ratio
In this section, we will use the failure protection ratio to measure the ability of LFC,
GALFAHSDN, and IGALFAHSDN to cope with network failures. Tab. 2 shows the
corresponding failure protection ratio of the three algorithms in different network
topologies. Tab. 2 shows that the failure protection ratio of LFC is less than 100%.
Algorithms GALFAHSDN and IGALFAHSDN can greatly improve LFC in a hybrid
SDN network. The failure protection ratio of GALFAHSDN and IGALFAHSDN is much
higher than that of LFC. In this section, we will verify how much higher such ratio is than
that of LFC through experiments. From this experiment, the failure protection ratio of
algorithms GALFAHSDN and IGALFAHSDN are 100%, that is, they can cope with all
possible single failure scenarios in the network. However, the failure protection ratio of
LFC is not 100%. Even in the Abilene topology, the failure protection ratio of LFC is
only 65.45% because algorithms GALFAHSDN and IGALFAHSDN deploy a small
number of SDN nodes in the traditional network, making the packet forwarding more
flexible. When a packet encounters a failure element in the process of forwarding, the
node can forward the packet to a specific SDN node, and the SDN node will forward the
packet to the destination node eventually.

Single Failure Routing Protection Algorithm in the Hybrid SDN Network 675

Table 2: Failure protection ratio
Network GALFAHSDN/% IGALFAHSDN/% LFC/%
Abilene 100 100 65.45
USLD 100 100 85.58

TORONTO 100 100 98.83
AS1239 100 100 85
AS1755 100 100 70.76
AS3257 100 100 64.42
AS3967 100 100 80.07

Brite (100, 2) 100 100 90.13
Brite (200, 2) 100 100 91.45
Brite (300, 2) 100 100 90.54
Brite (400, 2) 100 100 92.13
Brite (500, 2) 100 100 92.67

5.3 Computation overhead
Table 3: Computation overhead

Network GALFAHSDN (ms) IGALFAHSDN (ms)
Abilene 0.003 0.0001
USLD 0.007 0.001

TORONTO 0.001 0.0001
AS1239 289.788 0.599
AS1755 5.956 0.158
AS3257 31.833 1.922
AS3967 1.53 0.046

This study proposes to deploy LFC scheme in hybrid SDN network by using algorithms
GALFAHSDN and IGALFAHSDN. In Section 4, we theoretically analyze the time
complexity of the above algorithms. In this section, we will use the real computation time
of different algorithms to measure their computation overhead. The experiment platform
is a PC with Inter(R) Core (TM) i7-5500U and 4 GB of memory running on a 64-bit
Windows 10 operating system. Tab. 3 shows computation overhead of IGALFAHSDN
and IGALFAHSDN in real network topologies and Rocketfuel measured topologies. Tab.
3 shows that the computation overhead of IGALFAHSDN is much lower than that of
GALFAHSDN. For example, in AS1239, the computation overhead of IGALFAHSDN is
1/100 times of GALFAHSDN. Therefore, IGALFAHSDN greatly reduces the
computation overhead of the algorithm and is easier to deploy in practice. This result is
because GALFAHSDN selects the best node to deploy SDN technology every time,
which requires a considerable computation overhead. However, IGALFAHSDN uses the
previously calculated results to decide which node to deploy SDN technology, instead of

676 CMC, vol.64, no.1, pp.665-679, 2020

calculating it from scratch.
Fig. 3 depicts the computation overhead results of algorithms GALFAHSDN and
IGALFAHSDN in the Brite topologies. Fig. 3 shows that as the network topology size
increases, the computation overhead of GALFAHSDN increases, and the computation
overhead of IGALFAHSDN does not change substantially. The computation overhead of
IGALFAHSDN is smaller than that of GALFAHSDN. To further verify the performance
of the two algorithms deployed in the real network, we first installed the router software
Quagga and Click on 28 computers to simulate the real router. Then, both were connected
in accordance with the Abilene, USLD, and TORONTO topologies. We then run the
algorithms GALFAHSDN and IGALFAHSDN on the real experiment environment.

Figure 3: Computation overhead in Brite topologies (ms)

Table 4: Computation overhead on real networks
Network GALFAHSDN (ms) IGALFAHSDN (ms)
Abilene 0.0035 0.00017
USLD 0.0073 0.0011

TORONTO 0.0016 0.00013

Tab. 4 shows the computation overhead of algorithms GALFAHSDN and
IGALFAHSDN. Tab. 4 shows that the computation overhead corresponding to the
experiment is basically the same as that on a PC. The above 28 computers are configured
with an Inter(R) Core (TM) i7-5500U and a 4 GB PC running the 64-bit Windows 10
operating system.

5.4 Path stretch
This section measures the path overhead of algorithms GALFAHSDN and
IGALFAHSDN by path stretch. In this experiment, we define the path stretch as the ratio
of the path cost calculated by the algorithm GALFAHSDN or IGALFAHSDN to the
shortest path cost calculated by OSPF when the network failure occurs. Tab. 5 lists the
path stretch of both algorithms in three simulation topologies, which is less than 1.36. For
example, in Abilene topology, the path stretch is only 1.034, which is nearly the same as
the cost of the shortest path calculated employing OSPF convergence method.

Single Failure Routing Protection Algorithm in the Hybrid SDN Network 677

Table 5: Path stretch
Network GALFAHSDN IGALFAHSDN
Abilene 1.034 1.034
USLD 1.234 1.234

TORONTO 1.145 1.145
AS1239 1.232 1.232
AS1755 1.256 1.256
AS3257 1.145 1.145
AS3967 1.231 1.231

Brite (100, 2) 1.232 1.232
Brite (200, 2) 1.321 1.321
Brite (300, 2) 1.352 1.352
Brite (400, 2) 1.143 1.143
Brite (500, 2) 1.245 1.245

6 Conclusion
In this study, the deployment of LFA in the hybrid SDN network is described as a 0-1
ILP problem. Then, algorithms GALFAHSDN and IGALFAHSDN are proposed to solve
this problem. However, the time complexity of GALFAHSDN is extremely high and not
suitable for deployment in the real network. The experiment results show that the
algorithm IGALFAHSDN proposed in this study not only has less computation overhead
but also has low path stretch and high failure routing protection ratio. IGALFAHSDN can
protect all possible single failure scenarios in the network without introducing excessive
computation overhead just by upgrading a small number of nodes in the network to SDN
nodes. Therefore, IGALFAHSDN is a competitive routing protection algorithm for
internet service providers.

Funding Statement: This work is supported by the Program of Hainan Association for
Science and Technology Plans to Youth R & D Innovation (No. QCXM201910), the
National Natural Science Foundation of China (No. 61702315, No. 61802092), the
Scientific Research Setup Fund of Hainan University (No. KYQD (ZR) 1837), the Key R &
D program (international science and technology cooperation project) of Shanxi Province
China (No. 201903D421003), Scientific and Technological Innovation Programs of Higher
Education Institutions in Shanxi (No. 201802013).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Amin, R.; Amin, M.; Shah, N. (2018): Hybrid SDN networks: a survey of existing
approaches. IEEE Communications Surveys and Tutorials, vol. 20, no. 4, pp. 3259-3306.

678 CMC, vol.64, no.1, pp.665-679, 2020

Astuto, B. N.; Mendonca, M.; Nguyen, X. N.; Obraczka, K.; Turletti, T. (2014): A
survey of software-defined networking: past, present, and future of programmable
networks. IEEE Communications Surveys and Tutorials, vol. 16, no. 3, pp. 1617-1634.
Braun, W.; Menth, M. (2016): Loop-free alternates with loop detection for fast reroute
in software-defined carrier and data center networks. Journal of Network and Systems
Management, vol. 24, no. 3, pp. 470-490.
Das, T.; Sridharan, V.; Gurusamy, M. (2020): A survey on controller placement in
SDN. IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 472-503.
Foerster, K. T.; Pignolet, Y. A.; Schmid, S.; Tredan, G. (2018): Local fast failover
routing with low stretch. ACM SIGCOMM Computer Communication Review, vol. 48, no.
1, pp. 35-41.
Geng, H. J.; Shi, X. G.; Wang, Z. L.; Yin, X. (2018): A hop-by-hop dynamic
distributed multipath routing mechanism for link state network. Computer
Communications, vol. 116, no. 4, pp. 225-239.
Geng, H. J.; Shi, X. G.; Wang, Z. L.; Yin, X.; Yin, S. P. (2017): Algebra and
algorithms for multipath QoS routing in link state networks. Journal of Communications
and Networks, vol. 19, no. 2, pp. 189-200.
Qiu, K.; Zhao, J.; Wang, X.; Fu, X. M.; Secci, S. (2019): Efficient recovery path
computation for fast reroute in large-scale software defined networks. IEEE Journal on
Selected Areas in Communications, vol. 37, no. 8, pp. 1755-1768.
Rubio, L. J.; Galis, A.; Astorga, A.; Serrat, J.; Lefevre, L. et al. (2011): Scalable
service deployment on software-defined networks. IEEE Communications Magazine, vol.
49, no. 12, pp. 84-93.
Salsano, S.; Ventre, P. L.; Lombardo, F.; Siracusano, G.; Gerola, M. et al. (2016):
Hybrid IP/SDN network: open implementation and experiment management tools. IEEE
Transactions on Network and Service Management, vol. 13, no. 1, pp. 138-153.
Scott-Hayward, S.; Natarajan, S.; Sezer, A. S. (2016): A survey of security in software
defined networks. IEEE Communications Surveys and Tutorials, vol. 18, no. 1, pp. 623-654.
Sezer, S.; Scott-Hayward, S.; Chouhan, P. K.; Fraser, B.; Lake, D. et al. (2013): Are
we ready for SDN? Implementation challenges for software-defined networks. IEEE
Communications Magazine, vol. 51, no. 7, pp. 36-43.
Shi, X. J.; Li, Y. Y.; Xie, H. Y.; Yang, T. F.; Zhang, L. C. et al. (2020): An openflow-
based load balancing strategy in SDN. Computers, Materials & Continua, vol. 62, no. 1,
pp. 385-398.
Vissicchio, S.; Vanbever, L.; Cittadini, L.; Xie, G. G.; Bonaventure, O. (2017): Safe
update of hybrid SDN networks. IEEE/ACM Transactions on Networking, vol. 25, no. 3,
pp. 1649-1662.
Wang, X.; Deng, Q.; Ren, J.; Malboubi, M.; Wang, S. et al. (2020): The joint
optimization of online traffic matrix measurement and traffic engineering for software-
defined networks. IEEE/ACM Transactions on Networking, vol.28, no. 1, pp. 234-247.
Xu, H.; Li, X. Y.; Huang, L.; Deng, H.; Huang, H. et al. (2017): Incremental
deployment and throughput maximization routing for a hybrid SDN. IEEE/ACM

Single Failure Routing Protection Algorithm in the Hybrid SDN Network 679

Transactions on Networking, vol. 25, no. 3, pp. 1861-1875.
Xu, H. L.; Huang, H.; Chen, S. G.; Zhao, G. M.; Huang, L. S. (2018): Achieving high
scalability through hybrid switching in software defined networking. IEEE/ACM
Transactions on Networking, vol. 26, no. 1, pp. 618-632.
Yang, Y.; Xu, M. W.; Li, Q. (2018): Fast re-routing against multi-link failures without
topology constraint. IEEE/ACM Transactions on Networking, vol. 26, no. 1, pp. 384-397.
Zhang, X.; Cheng, Z.; Lin, R. P. (2017): Local fast reroute with flow aggregation in
software defined networks. IEEE Communications Letters, vol. 21, no. 4, pp. 785-788.
Zhang, Y.; Cui, L.; Wang, W. (2018): A survey on software defined network with
multiple controllers. Journal of Network and Computer Applications, vol. 103, no. 3, pp.
101-118.
Zheng, J.; Xu, H.; Zhu, X.; Chen, G.; Geng, Y. (2019): Sentinel: failure recovery in
centralized traffic engineering. IEEE/ACM Transactions on Networking, vol.27, no. 5, pp.
1859-1872.

	Single Failure Routing Protection Algorithm in the Hybrid SDN Network
	Haijun Geng0F , Jiangyuan Yao1F , * and Yangyang Zhang2F

