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Abstract: Loop free alternate (LFA) is a routing protection scheme that is currently 
deployed in commercial routers. However, LFA cannot handle all single network 
component failure scenarios in traditional networks. As Internet service providers have 
begun to deploy software defined network (SDN) technology, the Internet will be in a 
hybrid SDN network where traditional and SDN devices coexist for a long time. 
Therefore, this study aims to deploy the LFA scheme in hybrid SDN network architecture 
to handle all possible single network component failure scenarios. First, the deployment 
of LFA scheme in a hybrid SDN network is described as a 0-1 integer linear 
programming (ILP) problem. Then, two greedy algorithms, namely, greedy algorithm for 
LFA based on hybrid SDN (GALFAHSDN) and improved greedy algorithm for LFA 
based on hybrid SDN (IGALFAHSDN), are proposed to solve the proposed problem. 
Finally, both algorithms are tested in the simulation environment and the real platform. 
Experiment results show that GALFAHSDN and IGALFAHSDN can cope with all single 
network component failure scenarios when only a small number of nodes are upgraded to 
SDN nodes. The path stretch of the two algorithms is less than 1.36. 
 
Keywords: Multipath routing, network availability, routing protection algorithm, 
network failure, hybrid SDN network. 

1 Introduction 
SDN is a newly emerging network architecture, which is characterized by decoupling the 
functions of control and forwarding planes [Wang, Deng, Ren et al. (2020); Qiu, Zhao, 
Wang et al. (2019)]. The former consists of one or more SDN centralized controllers 
responsible for path selection and routing decision [Das, Sridharan and Gurusamy (2020); 
Zhang, Cui and Wang (2018)]. The latter is composed of SDN switches responsible for 
forwarding the packets in the network. SDN refers to the idea of software programming.  
The centralized SDN controller communicates with the SDN switches through the 
standardized OpenFlow protocol [Astuto, Mendonca, Nguyen et al. (2014); Shi, Li, Xie et 
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al. (2020)]. The SDN centralized controller has a logical view of the whole network 
controlling the forwarding path of all packets in the network [Zhang, Cheng and Lin (2017)]. 
The controller sends the routing decision information to the SDN switches through 
OpenFlow protocol [Rubio, Galis, Astorga et al. (2011); Zheng, Xu, Zhu et al. (2019)]. 
Compared with the traditional network architecture, the SDN network has many advantages, 
such as flexible control of network traffic and easy to implement network management and 
security policies [Scott-Hayward, Natarajan and Sezer (2016)]. Therefore, the performance 
of the network can be greatly improved when the SDN technology is deployed in the 
existing traditional network [Sezer, Scott-Hayward, Chouhan et al. (2013)]. However, 
upgrading all current network devices to SDN devices is impossible. On the one hand, 
deploying SDN devices needs considerable economic costs, such as human and material 
resources. On the other hand, deploying SDN devices may lead to network interruption and 
further seriously affect the user’s experience. In academia and industry, SDN technology is 
widely used to upgrade the traditional network and gradually replace the traditional 
equipment in the network. The network where traditional and SDN devices coexist is 
regarded as the hybrid SDN network [Vissicchio, Vanbever, Cittadini et al. (2017)]. A 
hybrid SDN network mainly includes SDN controller, SDN switch, and traditional router 
[Xu, Li, Huang et al. (2017)], as shown in Fig. 1. The SDN controller exchanges information 
with SDN switch through the OpenFlow protocol. SDN switch can work in two modes; one 
is to interact with the traditional router through traditional routing protocols, and the other is 
to interact with SDN switch and controller through SDN protocols [Xu, Huang, Chen et al. 
(2018)]. However, the traditional router only supports the traditional routing protocol and 
cannot communicate with the SDN controller. Existing studies on a hybrid SDN network are 
mainly focused on network performance and management. However, studies on fast re-
routing in a hybrid SDN network [Salsano, Ventre, Lombardo et al. (2016)]. Routing 
availability and energy efficient routing are two key problems in the network. This paper 
mainly studies routing availability. Therefore, this study concentrates on how to implement 
fast re-routing technology in a hybrid SDN network. This technology can immediately 
respond to network failures and reduce the packet loss caused by such failures. 

Router A Router B

SDN Controller

SDN Switch B    SDN Switch A

OpenflowOpenflow

 
Figure 1: Hybrid SDN network architecture 

The structure of the paper is organized as follows: Section 2 describes the related works. 
Section 3 introduces the network model and describes the problem which will be solved 
in this study. Section 4 proposes two algorithms showing how to deploy LFA scheme in a 
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hybrid SDN network. Section 5 carries out experiment simulation in different network 
topologies and summarizes the experiment results. Finally, Section 6 concludes. 

2 Related works 
A considerable number of studies have shown that 70% of the failures in the network are 
single-link failures, and the remaining 30% are single-node and concurrent failures 
[Amin, Amin and Shah (2016); Foerster, Pignolet, Schmid et al. (2018); Zheng, Xu, Zhu 
et al. (2019)]. Hence, this study focuses on how to deal with the single-link failure in the 
network. Routing protection scheme is widely employed in academia and industry to deal 
with frequently occurring network failures [Geng, Shi, Wang et al. (2018)]. Equal cost 
multipath routing (ECMP) is the earliest and simplest route protection scheme employed 
in the industry. However, numerous studies have shown that ECMP cannot provide a 
high network failure protection ratio [Geng, Shi, Wang et al. (2017); Yang, Xu and Li 
(2018)]. To overcome this, the internet engineering task force (IETF) puts forward the 
framework of fast re-routing. From this framework, studies have proposed LFA, Not-via, 
backup tunnel, and so on. Among all routing protection schemes, LFA has been paid 
close attention to the industry because of its simplicity and has been deployed and 
supported by router manufacturers, such as Cisco, Juniper, and Huawei. LFA is simple 
and easy to deploy. However, LFA has a fatal disadvantage, that is, it cannot protect all 
possible single network failure scenarios in the network. To overcome this, this study 
analyzes the problem of LFA failure coverage by using the theoretical knowledge of 
graph theory in the literature. In addition, this study increases the LFA failure protection 
ratio by adjusting the link weight in the network. However, the proposed method still 
cannot guarantee to deal with all single failure scenarios. Therefore, the relationship 
between LFA’s failure protection ration and network topology is theoretically analyzed in 
detail, and LFA can cope with all single failure scenarios by adding links to the network. 
Braun et al. [Braun and Menth (2016)] studied how to deploy LFA in SDN network, so as 
to deal with all possible single failure scenarios. However, all schemes are based on the 
traditional network architecture or SDN network, which cannot be directly applied to the 
hybrid SDN network. 
Therefore, this study analyzes how to deploy LFA in a hybrid SDN network and ensures 
that LFA can deal with all possible single failure scenarios in the network. This study 
proposes the following: First, all source-destination pairs that are not protected by the 
LFA are calculated and protected by deploying SDN nodes in the network, so that the 
solution can cope with all single network failure scenarios. 
Fig. 2 depicts the key idea of this study. As shown in the figure, the shortest path from 
source 𝑠𝑠 to destination 𝑑𝑑 is (𝑠𝑠,𝑎𝑎, … ,𝑑𝑑), and the SDN node is 𝑐𝑐. If no failure in the 
network occurs and a packet is forwarded from the source 𝑠𝑠 to the destination 𝑑𝑑, then 
the forwarding path of the packet is (𝑠𝑠,𝑎𝑎, … ,𝑑𝑑). When the link (𝑠𝑠,𝑎𝑎) fails, the source 𝑠𝑠 
will first forward the packet to the SDN node 𝑐𝑐, and then, the SDN node 𝑐𝑐 forwards the 
packet to the destination node 𝑑𝑑. 
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Figure 2: Key idea of the study 

3 Network model and problem description 
3.1 Network model 
A network can be modeled as a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 and 𝐸𝐸 are respectively the 
set of nodes and edges in the network. For any node ∀𝑣𝑣 ∈ 𝑉𝑉 in the network, 𝑁𝑁(𝑣𝑣) 
represents all the neighboring nodes of the node 𝑣𝑣, 𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣) is the shortest path tree (SPT) 
rooted at node 𝑣𝑣. For ∀𝑥𝑥,𝑦𝑦 ∈ 𝑉𝑉(𝑥𝑥 ≠ 𝑦𝑦), 𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦) is the collection of nodes on the 
shortest path from node 𝑥𝑥 to 𝑦𝑦, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) represents the shortest cost from node 𝑥𝑥 to 
𝑦𝑦 in the network, and 𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦) is the best next hop from node 𝑥𝑥 to 𝑦𝑦. 

3.2 Problem description 
The intra-domain routing protocols deployed on the Internet are mainly link-state routing 
protocols, such as intermediate system to intermediate system (IS-IS) and open shortest 
path first (OSPF). In both routing protocols, all routers in the network have a complete 
topology within the autonomous domain. When the network is in a stable state, the 
topologies stored in all routers are consistent with one another. Each router in the 
network employs the shortest path first algorithm to compute shortest path tree (SPT) on 
the basis of network topology. Then, a routing table is constructed using the SPT. From 
the above description, the intra-domain routing protocol uses the shortest path to forward 
packets. When the network component fails, network interruption will occur, which 
seriously affects the performance of the network. Therefore, the IETF proposes to use 
LFA to deal with frequently occurring failures in the network to improve network 
availability and improve the user’s experience. The three rules in the LFA are described 
separately as follows: 
Loop-free criterion (LFC): 𝑥𝑥 can be selected as a valid next hop from 𝑐𝑐 to 𝑑𝑑 in the 
case of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑑𝑑) < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑐𝑐) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐,𝑑𝑑). When packets are routed from 𝑥𝑥 to  𝑑𝑑, 
they are not routed back to 𝑐𝑐 because 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑐𝑐) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐,𝑑𝑑) is the lowest cost of any 
path from 𝑥𝑥 to 𝑑𝑑 that passes  𝑐𝑐. Thus, the protection route bypasses 𝑐𝑐, thereby also 
bypassing the link (𝑐𝑐, 𝑏𝑏). 
Node-protecting criterion (NPC): 𝑥𝑥 can be selected as a valid next hop from 𝑐𝑐 to 𝑑𝑑 
when  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑑𝑑) < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑓𝑓) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓, 𝑑𝑑) , which means that the protection route 
bypasses 𝑓𝑓, thereby also bypassing the node 𝑏𝑏. 
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Downstream path criterion (DC): 𝑥𝑥 can be selected as a valid next hop from 𝑐𝑐 to 𝑑𝑑 
when 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑑𝑑) < 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐,𝑑𝑑), which means that the protection route bypasses 𝑐𝑐 (and 
link (𝑐𝑐, 𝑏𝑏)), and the remaining cost to the destination strictly decreases. 
Studies have reported that not all source-destination node pairs have an optional LFA 
next hop. Therefore, to overcome the inherent problem of LFA, this study mainly solves 
how to deploy LFA scheme in a hybrid SDN network, so that it can protect all possible 
single failure scenarios in the network. We can express the problem solved in this study 
as follows: how to choose a group of nodes to deploy the SDN technology for a given 
network so that LFA can cope with all possible single link failure scenarios in the 
network. The above problem can be described as a 0–1 ILP model, namely: 
Minimize: 
∑ 𝑥𝑥(𝑖𝑖),                                                                                                                                   𝑖𝑖∈𝑉𝑉         (1) 

Subject to: 
𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) ∈ {0,1}    𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ∈ 𝑉𝑉,                                                                                                        (2) 

𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 0    𝑖𝑖 ∉ 𝑆𝑆(𝑗𝑗,𝑘𝑘),                                                                                                             (3) 

𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 1    𝑖𝑖 ∈ 𝑆𝑆(𝑗𝑗,𝑘𝑘),                                                                                                             (4) 

𝑥𝑥(𝑖𝑖) ∈ {0,1}    𝑖𝑖 ∈ 𝑉𝑉,                                                                                                                        (5) 

𝑥𝑥(𝑖𝑖) = 0    ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘) = 0,                                                                                           (𝑗𝑗,𝑘𝑘)∈𝑉𝑉      (6) 

𝑥𝑥(𝑖𝑖) = 0    ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘) ≥ 1,                                                                                           (𝑗𝑗,𝑘𝑘)∈𝑉𝑉      (7) 

𝑓𝑓(𝑖𝑖, 𝑗𝑗) ∈ {0,1}       𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉,                                                                                                             (8) 

𝑓𝑓(𝑖𝑖, 𝑗𝑗) = 0    (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸,                                                                                                                    (9) 

𝑓𝑓(𝑖𝑖, 𝑗𝑗) = 1   (𝑖𝑖, 𝑗𝑗) ∉ 𝐸𝐸,                                                                                                                  (10) 

𝑧𝑧�(𝑖𝑖, 𝑗𝑗), 𝑖𝑖,𝑑𝑑� ∈ {0,1}   𝑖𝑖, 𝑗𝑗, 𝑑𝑑 ∈ 𝑉𝑉,                                                                                                (11) 

𝑧𝑧�(𝑖𝑖, 𝑗𝑗), 𝑖𝑖,𝑑𝑑� = 0  (𝑖𝑖, 𝑗𝑗) ∉ 𝑠𝑠𝑠𝑠(𝑖𝑖,𝑑𝑑),                                                                                             (12) 

𝑧𝑧�(𝑖𝑖, 𝑗𝑗), 𝑖𝑖,𝑑𝑑� = 1  (𝑖𝑖, 𝑗𝑗) ∈ 𝑠𝑠𝑠𝑠(𝑖𝑖,𝑑𝑑),                                                                                             (13) 

∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘) ≤ 1𝑖𝑖∈𝑉𝑉 ,                                                     (14) 

𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) ≤ 𝑥𝑥(𝑖𝑖),                                                                                                                            (15) 

𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 1    𝑥𝑥 ��𝑗𝑗,𝑑𝑑𝑑𝑑(𝑗𝑗,𝑘𝑘)�, 𝑗𝑗, 𝑖𝑖� +∏ 𝑥𝑥 ��𝑗𝑗,𝑑𝑑𝑑𝑑(𝑗𝑗,𝑘𝑘)�,𝑁𝑁(𝑖𝑖),𝑘𝑘� = 0,𝑖𝑖                         (16) 

In the next section, we will explain the above ILP model in detail. In the model, Eq. (1) is 
the objective function, that is, the number of deployed SDN nodes is minimized. 𝑥𝑥(𝑖𝑖) 
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indicates that whether the node 𝑖𝑖 is an SDN node or not. If 𝑥𝑥(𝑖𝑖) = 1, then the node 𝑖𝑖 is 
an SDN node; otherwise, the value is 0. The variable 𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) in Eqs. (2)-(4) indicates 
that whether node 𝑖𝑖 is the SDN node of the source–destination pair of 𝑗𝑗 − 𝑘𝑘 or not. If 
the node 𝑖𝑖 is the SDN node of the source-destination pair of 𝑗𝑗 − 𝑘𝑘, then the value of 
𝑦𝑦(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) is 1; otherwise, the value is 0. Eq. (6) indicates that if the node 𝑖𝑖 is not an SDN 
node of any source-destination pair of 𝑗𝑗 − 𝑘𝑘, then the value of  𝑥𝑥(𝑖𝑖) is 0; otherwise, Eq. 
(7) is correct. The variable 𝑓𝑓(𝑖𝑖, 𝑗𝑗) in Eqs. (8)-(10) indicates whether the link (𝑖𝑖, 𝑗𝑗) is in 
the network or not. If the link (𝑖𝑖, 𝑗𝑗) is in the network, then the value of 𝑓𝑓(𝑖𝑖, 𝑗𝑗) is 1; 
otherwise, the value is 0. The variable 𝑧𝑧�(𝑖𝑖, 𝑗𝑗), 𝑖𝑖, 𝑑𝑑� in Eqs. (11)-(13) indicates whether 
the link (𝑖𝑖, 𝑗𝑗) is on the shortest path from node 𝑖𝑖 to 𝑗𝑗 or not. If the link (𝑖𝑖, 𝑗𝑗)  is on the 
shortest path from node 𝑖𝑖 to 𝑗𝑗, then the value is 1; otherwise, the value is 0. Eq. (14) 
means that only one SDN node is eventually selected for any source-destination pairs. Eq. 
(15) indicates that the node 𝑖𝑖 will be upgraded to an SDN node if an arbitrary source-
destination pair selects the node 𝑖𝑖 as its SDN node. Eq. (16) indicates that node 𝑖𝑖 is the 
SDN node of the source-destination pair of 𝑗𝑗 − 𝑘𝑘, and the following two conditions must 
be satisfied: (1) the link �𝑗𝑗,𝑑𝑑𝑑𝑑(𝑗𝑗,𝑘𝑘)� is not on the shortest path from the node 𝑗𝑗 to 𝑖𝑖; (2) 
the link �𝑗𝑗,𝑑𝑑𝑑𝑑(𝑗𝑗,𝑘𝑘)� is not on the shortest path from the node 𝑚𝑚,𝑚𝑚 ∈ 𝑁𝑁(𝑖𝑖) to 𝑘𝑘. 

4 Algorithms 
The problem that needs to be solved in this study has been proven to be a non-
deterministic polynomial (NP) problem. Hence, obtaining the optimal solution in a 
reasonable time is impossible. For some small networks, we can use the linear 
programming calculator, for example, CPLEX, to obtain the optimal solution. However, 
for large networks, computing the optimal solution in a reasonable time by CPLEX is 
difficult, which is not suitable for deploying in the real networks. Therefore, we usually 
use heuristic algorithms to solve the above problem in practice. In the following section, 
we will introduce two heuristic algorithms, namely, GALFAHSDN and IGALFAHSDN, 
to solve the scientific problem. The former is a traditional greedy algorithm but has high 
time complexity and is not suitable for actual deployment on the Internet. The latter has 
improved the traditional greedy algorithm, which can greatly reduce the time complexity. 
Therefore, IGALFAHSDN is easier to deploy than GALFAHSDN in the real network. 
Considering the three rules in the LFA, the following algorithms are mainly designed for 
the LFC rule. Once you want to implement the other two rules in the LFA, you only need 
to do is to replace the LFC with NPC or DC and do not need to change the rest of the 
algorithms. 
Algorithm 1 GALFAHSDN 
Input: 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸) 
Output:  
SDN node set 𝑀𝑀 
1: 𝑀𝑀 = 𝜙𝜙 
2: Compute the failure protection ratio of LFC 𝑅𝑅(𝐺𝐺,𝑀𝑀) 
3: While 𝑅𝑅(𝐺𝐺,𝑀𝑀) < 1 and 𝑀𝑀 ≠ 𝑉𝑉, do 
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4:  𝑘𝑘 = arg𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑣𝑣∈𝑛𝑛𝑛𝑛𝑛𝑛(𝑉𝑉)(𝐺𝐺,𝑀𝑀⋃𝑣𝑣) 
5:  𝑀𝑀 = 𝑀𝑀⋃𝑘𝑘 
6:  Compute the failure protection ratio 𝑅𝑅(𝐺𝐺,𝑀𝑀) 
7: EndWhile 
8: Return 𝑀𝑀 

4.1 Greedy algorithm  
In this section, we will introduce how to solve the above problem with greedy algorithm. 
Algorithm 1 describes how GALFAHSDN works. First, we set the initial value of 
deployment SDN node set to NULL ( 𝑀𝑀 = 𝜙𝜙) and then compute the initial failure 
protection ratio 𝑅𝑅(𝐺𝐺,𝑀𝑀) according to LFC rule (lines 1-2). To obtain the set of deployed 
SDN node set M , the algorithm needs to perform a series of iterations until the failure 
protection ratio 𝑅𝑅(𝐺𝐺,𝑀𝑀) = 1 or 𝑀𝑀 = 𝑉𝑉 is established. The function 𝑛𝑛𝑛𝑛𝑛𝑛(𝑉𝑉) is used to 
randomly select a node in the set  𝑣𝑣 ∈ {𝑉𝑉/𝑀𝑀} to deploy the SDN technology. The 
function arg𝑚𝑚𝑚𝑚𝑥𝑥𝑅𝑅𝑣𝑣∈𝑛𝑛𝑛𝑛𝑛𝑛(𝑉𝑉)(𝐺𝐺,𝑀𝑀⋃𝑣𝑣) returns the node 𝑘𝑘 with the maximum failure 
protection ratio. Then, node 𝑘𝑘 is added to the set 𝑀𝑀, and the network failure protection 
ratio is updated at the same time (lines 3-7). Finally, the deployed SDN node set 𝑀𝑀 is 
returned (line 8). 

4.2 IGALFAHSDN 
Algorithm 2 IGALFAHSDN 
Input: 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸) 
Output: 
SDN node set 𝑀𝑀 
1: Calculate source-destination pairs 𝐿𝐿 = {(𝑠𝑠,𝑑𝑑), 𝑠𝑠,𝑑𝑑 ∈ 𝑉𝑉} that are not protected by LFC 
2: Calculate SDN nodes 𝐷𝐷(𝑠𝑠,𝑑𝑑) for each source–destination pair (𝑠𝑠,𝑑𝑑) ∈ 𝐿𝐿 
3: Calculate ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘)     (𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉  
4: 𝑀𝑀 = 𝜙𝜙 
5：While 𝑅𝑅(𝐺𝐺,𝑀𝑀) < 1 and 𝑀𝑀 ≠ 𝑉𝑉 do 
6:  𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘)     (𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉  
7:  𝑀𝑀 = 𝑀𝑀⋃𝑚𝑚 
8:  For (𝑠𝑠,𝑑𝑑) ∈ 𝐿𝐿 
9:   If 𝑚𝑚 ∈ 𝐷𝐷(𝑠𝑠,𝑑𝑑) then 

10:   Clear 𝐷𝐷(𝑠𝑠,𝑑𝑑) 
11:    𝐿𝐿 = 𝐿𝐿 − {𝑠𝑠,𝑑𝑑} 
12:   EndIf 

13:  EndFor 

14:  Update ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘)     (𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉,𝑖𝑖≠𝑚𝑚  
15：Update 𝑅𝑅(𝐺𝐺,𝑀𝑀) 
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16: EndWhile 
17: Return 𝑀𝑀 

The above algorithm GALFAHSDN is a typical greedy algorithm. To select a node from 
the network to deploy SDN technology, the algorithm needs to go through several 
iterations, so that the time complexity of the algorithm is extremely high in large 
networks. We propose an improved greedy algorithm, IGALFAHSDN, to reduce the 
complexity of the algorithm GALFAHSDN, thus making the algorithm easy to deploy in 
the real network. We will describe the algorithm IGALFAHSDN in detail. First, we 
calculate all source-destination pairs in the network that are not protected by the LFC rule 
and store them in the variable 𝐿𝐿 = {(𝑠𝑠,𝑑𝑑), 𝑠𝑠,𝑑𝑑 ∈ 𝑉𝑉} (line 1). Then, we calculate all SDN 
nodes for each source-destination (𝑠𝑠,𝑑𝑑) ∈ 𝐿𝐿 according to Eq. (16) and stored them in the 
variable 𝐷𝐷(𝑠𝑠,𝑑𝑑). The value of ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘)(𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉  is calculated, and the initial value of 
deployment SDN node was set to NULL (𝑀𝑀 = 𝜙𝜙) (lines 2-4). To obtain the set of 
deployed SDN node set  𝑀𝑀, the algorithm needs to go through several iterations until the 
failure protection ratio 𝑅𝑅(𝐺𝐺,𝑀𝑀) = 1 or 𝑀𝑀 = 𝑉𝑉 is established. In each iteration, the 
node 𝑚𝑚 with the largest ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘)(𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉  was selected to deploy SDN technology and 
update the node set 𝑀𝑀 (lines 6-7). Each pair of source-destination node only selects a 
unique SDN node. Thus, for any source-destination node pair, if 𝑚𝑚 ∈ 𝐷𝐷(𝑠𝑠,𝑑𝑑), then the 
SDN node for this source-destination pair is determined, and computing SDN nodes for it 
is not necessary. The value of  𝐷𝐷(𝑠𝑠,𝑑𝑑) , 𝐿𝐿 , ∑ 𝑦𝑦(𝑖𝑖, 𝑗𝑗,𝑘𝑘)(𝑖𝑖,𝑗𝑗,𝑘𝑘)∈𝑉𝑉,𝑖𝑖≠𝑚𝑚  and 𝑅𝑅(𝐺𝐺,𝑀𝑀)  is 
calculated (lines 8-16). Finally, the deployed SDN node set 𝑀𝑀 is returned (line 17). 

4.3 Algorithm complexity 
This section theoretically analyzes the time complexity of the algorithms GALFAHSDN 
and IGALFAHSDN. 
Theorem 1. The time complexity of the algorithm GALFAHSDN is 𝑂𝑂(|𝑉𝑉|5). 
Proof. To obtain the node set that is needed to deploy SDN technology, the algorithm 
must execute the function arg𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑣𝑣∈𝑛𝑛𝑛𝑛𝑛𝑛(𝑉𝑉)(𝐺𝐺,𝑀𝑀⋃𝑣𝑣) at most |𝑉𝑉| times. The function 
needs to calculate the SDN nodes for all source-destination pairs in the network, and the 
algorithm complexity is 𝑂𝑂(|𝑉𝑉|4). Therefore, the time complexity of GALFAHSDN is 
𝑂𝑂(|𝑉𝑉|5). 
Theorem 2. The time complexity of the algorithm IGALFAHSDN is 𝑂𝑂(|𝑉𝑉|3). 
Proof. The time complexity of the second line of the IGALFAHSDN is 𝑂𝑂(|𝑉𝑉|3). The 
time complexity of lines 5-15 of the IGALFAHSDN is 𝑂𝑂(|𝑉𝑉|2). Therefore, the time 
complexity of the algorithm IGALFAHSDN is  𝑂𝑂(|𝑉𝑉|3). 

5 Performance evaluations 
LFA has three rules. However, the implementation methods of the three rules are 
basically similar. The experiment results are basically the same, so this section only lists 
the experiment results of LFC rule in LFA. We will not list the experiment results of the 
other two rules in detail. 
In this section, we will use experiments to test the performance of algorithms 
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GALFAHSDN and IGALFAHSDN. The evaluation indicators include the number of 
SDN nodes, failure protection ratio, computational overhead, and path stretch. As the 
number of SDN nodes deployed in the network decreases, the deployment overhead also 
decreases. In the experiment, we compare the failure protection ratio of LFC, 
GALFAHSDN and IGALFAHSDN. If the corresponding failure protection ratio of an 
algorithm is 100%, then the algorithm can deal with all possible single failure scenarios 
in the network; otherwise, the algorithm cannot protect some of the failures. We have 
theoretically analyzed the time complexity of algorithms GALFAHSDN and 
IGALFAHSDN in Section 4. In this section, we will use the real computation time of the 
algorithm to compare the overhead of algorithms GALFAHSDN and IGALFAHSDN. In 
the experiment, we compared the path stretch of GALFAHSDN with that of 
IGALFAHSDN. The path stretch directly affects the network delay and path overhead, so 
we hope that the path stretch of the algorithm is as small as possible. We first describe the 
network topology of the algorithm, then introduce the experiment results, and last analyze 
the experiment results in detail. 
To evaluate the performance of GALFAHSDN, IGALFAHSDN, and LFC, we run three 
algorithms on a considerable number of topologies. The experiment topology of this 
paper includes the following three types of topologies: 
(1) Real network topology. In this type of network topology, we select three real network 
topologies, that is, Abilene, TORONTO, and USLD. 
(2) The topologies measured using Rocketfuel. In this type of network topology, we 
select four measurement topologies, that is, AS1755, AS1239, AS3257, and AS3967. 
(3) The topology generated by the simulation software Brite. The model used by Brite is 
Waxman, the number of nodes in the topology ranges from 100 to 500, the parameter of 
alpha and beta is set to 0.15 and 0.2 respectively, the average node degree parameter of 
the network ranges from 2 to 4, and the distribution of nodes in the network is subject to 
heavy tailed distribution. The bandwidth parameter of the link ranges from 10 to 1024. 

5.1 Number of SDN nodes 
In this study, SDN nodes are deployed in the traditional network to improve the failure 
protection ratio of LFC, but the deployment of SDN nodes requires additional overhead. 
If the number of deployed SDN nodes is less, then the additional overhead is also less. 
Therefore, in this section, we will discuss the number of SDN nodes that need to be 
deployed for LFC to cope with all possible single failure scenarios in a hybrid SDN 
network. 
Tab. 1 shows the number of SDN nodes deployed in different network topologies. In Tab. 1, 
Brite (m, n) represents the topology generated by the Brite, the number of nodes is m, and 
the average node degree of the network is n. In all networks, except for Abilene, only a few 
SDN nodes need to be deployed to achieve a full failure protection ratio. From the above 
results, we can draw a conclusion that many SDN nodes are deployed in a sparse graph. For 
example, in the Abilene topology, the number of SDN nodes needs to be deployed is 5, and 
nearly half of the nodes need to be upgraded to SDN nodes. This finding is because the 
Abilene topology and the average node degree are relatively small. In the dense graph, the 
number of SDN nodes deployed is relatively small. For example, the number of SDN 
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nodes that need to be deployed is 18 in Brite (500, 2), whereas the number of SDN nodes 
that need to be deployed is only 4 in Brite (500, 4). This event has two reasons: (1) if the 
network topology is dense, then the source-destination pairs are protected by LFA, so the 
number of SDN nodes that need to be deployed is small. (2) If the network is dense, then 
the re-routed path will less likely bypass the failure component. 

Table 1: Number of SDN nodes 
Network The number of SDN nodes 
Abilene 5 
USLD 4 

TORONTO 2 
AS1239 13 
AS1755 9 
AS3257 12 
AS3967 8 

Brite (100, 2) 6 
Brite (100, 4) 2 
Brite (200, 2) 9 
Brite (200, 4) 2 
Brite (300, 2) 14 
Brite (300, 4) 3 
Brite (400, 2) 17 
Brite (400, 4) 3 
Brite (500, 2) 18 
Brite (500, 4) 4 

5.2 Failure protection ratio 
In this section, we will use the failure protection ratio to measure the ability of LFC, 
GALFAHSDN, and IGALFAHSDN to cope with network failures. Tab. 2 shows the 
corresponding failure protection ratio of the three algorithms in different network 
topologies. Tab. 2 shows that the failure protection ratio of LFC is less than 100%. 
Algorithms GALFAHSDN and IGALFAHSDN can greatly improve LFC in a hybrid 
SDN network. The failure protection ratio of GALFAHSDN and IGALFAHSDN is much 
higher than that of LFC. In this section, we will verify how much higher such ratio is than 
that of LFC through experiments. From this experiment, the failure protection ratio of 
algorithms GALFAHSDN and IGALFAHSDN are 100%, that is, they can cope with all 
possible single failure scenarios in the network. However, the failure protection ratio of 
LFC is not 100%. Even in the Abilene topology, the failure protection ratio of LFC is 
only 65.45% because algorithms GALFAHSDN and IGALFAHSDN deploy a small 
number of SDN nodes in the traditional network, making the packet forwarding more 
flexible. When a packet encounters a failure element in the process of forwarding, the 
node can forward the packet to a specific SDN node, and the SDN node will forward the 
packet to the destination node eventually. 
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Table 2: Failure protection ratio 
Network GALFAHSDN/% IGALFAHSDN/% LFC/% 
Abilene 100 100 65.45 
USLD 100 100 85.58 

TORONTO 100 100 98.83 
AS1239 100 100 85 
AS1755 100 100 70.76 
AS3257 100 100 64.42 
AS3967 100 100 80.07 

Brite (100, 2) 100 100 90.13 
Brite (200, 2) 100 100 91.45 
Brite (300, 2) 100 100 90.54 
Brite (400, 2) 100 100 92.13 
Brite (500, 2) 100 100 92.67 

5.3 Computation overhead 
Table 3: Computation overhead 

Network GALFAHSDN (ms) IGALFAHSDN (ms) 
Abilene 0.003 0.0001 
USLD 0.007 0.001 

TORONTO 0.001 0.0001 
AS1239 289.788 0.599 
AS1755 5.956 0.158 
AS3257 31.833 1.922 
AS3967 1.53 0.046 

This study proposes to deploy LFC scheme in hybrid SDN network by using algorithms 
GALFAHSDN and IGALFAHSDN. In Section 4, we theoretically analyze the time 
complexity of the above algorithms. In this section, we will use the real computation time 
of different algorithms to measure their computation overhead. The experiment platform 
is a PC with Inter(R) Core (TM) i7-5500U and 4 GB of memory running on a 64-bit 
Windows 10 operating system. Tab. 3 shows computation overhead of IGALFAHSDN 
and IGALFAHSDN in real network topologies and Rocketfuel measured topologies. Tab. 
3 shows that the computation overhead of IGALFAHSDN is much lower than that of 
GALFAHSDN. For example, in AS1239, the computation overhead of IGALFAHSDN is 
1/100 times of GALFAHSDN. Therefore, IGALFAHSDN greatly reduces the 
computation overhead of the algorithm and is easier to deploy in practice. This result is 
because GALFAHSDN selects the best node to deploy SDN technology every time, 
which requires a considerable computation overhead. However, IGALFAHSDN uses the 
previously calculated results to decide which node to deploy SDN technology, instead of 
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calculating it from scratch. 
Fig. 3 depicts the computation overhead results of algorithms GALFAHSDN and 
IGALFAHSDN in the Brite topologies. Fig. 3 shows that as the network topology size 
increases, the computation overhead of GALFAHSDN increases, and the computation 
overhead of IGALFAHSDN does not change substantially. The computation overhead of 
IGALFAHSDN is smaller than that of GALFAHSDN. To further verify the performance 
of the two algorithms deployed in the real network, we first installed the router software 
Quagga and Click on 28 computers to simulate the real router. Then, both were connected 
in accordance with the Abilene, USLD, and TORONTO topologies. We then run the 
algorithms GALFAHSDN and IGALFAHSDN on the real experiment environment. 

 
Figure 3: Computation overhead in Brite topologies (ms) 

Table 4: Computation overhead on real networks 
Network GALFAHSDN (ms) IGALFAHSDN (ms) 
Abilene 0.0035 0.00017 
USLD 0.0073 0.0011 

TORONTO 0.0016 0.00013 

Tab. 4 shows the computation overhead of algorithms GALFAHSDN and 
IGALFAHSDN. Tab. 4 shows that the computation overhead corresponding to the 
experiment is basically the same as that on a PC. The above 28 computers are configured 
with an Inter(R) Core (TM) i7-5500U and a 4 GB PC running the 64-bit Windows 10 
operating system. 

5.4 Path stretch 
This section measures the path overhead of algorithms GALFAHSDN and 
IGALFAHSDN by path stretch. In this experiment, we define the path stretch as the ratio 
of the path cost calculated by the algorithm GALFAHSDN or IGALFAHSDN to the 
shortest path cost calculated by OSPF when the network failure occurs. Tab. 5 lists the 
path stretch of both algorithms in three simulation topologies, which is less than 1.36. For 
example, in Abilene topology, the path stretch is only 1.034, which is nearly the same as 
the cost of the shortest path calculated employing OSPF convergence method. 
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Table 5: Path stretch 
Network GALFAHSDN IGALFAHSDN 
Abilene 1.034 1.034 
USLD 1.234 1.234 

TORONTO 1.145 1.145 
AS1239 1.232 1.232 
AS1755 1.256 1.256 
AS3257 1.145 1.145 
AS3967 1.231 1.231 

Brite (100, 2) 1.232 1.232 
Brite (200, 2) 1.321 1.321 
Brite (300, 2) 1.352 1.352 
Brite (400, 2) 1.143 1.143 
Brite (500, 2) 1.245 1.245 

6 Conclusion 
In this study, the deployment of LFA in the hybrid SDN network is described as a 0-1 
ILP problem. Then, algorithms GALFAHSDN and IGALFAHSDN are proposed to solve 
this problem. However, the time complexity of GALFAHSDN is extremely high and not 
suitable for deployment in the real network. The experiment results show that the 
algorithm IGALFAHSDN proposed in this study not only has less computation overhead 
but also has low path stretch and high failure routing protection ratio. IGALFAHSDN can 
protect all possible single failure scenarios in the network without introducing excessive 
computation overhead just by upgrading a small number of nodes in the network to SDN 
nodes. Therefore, IGALFAHSDN is a competitive routing protection algorithm for 
internet service providers. 
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