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Abstract: Electroosmosis is an effective method for liquid mixing. It is associated
with the motion of a liquid in a microchannel induced by an applied electric field.
In this manuscript, a numerical model is elaborated and implemented for the case
of a straight channel with a single electrode pair. In particular, the Navier-Stokes
equation combined with the Convection-diffusion and Helmholtz-Smoluchowski
equation are used to simulate the resulting flow field. The influence of various
electrode parameters on the mixing efficiency and the related mechanisms are
investigated. The numerical results show that a pair of eddies are produced alter-
nately by the changing electric field. The two liquids are mixed by the interaction
of this pair of eddies. The length of the electrode affects the distance between
these eddies, while the amplitude and frequency of electrode voltage determine
the intensity and frequency of the eddy current, respectively. It is shown that
by tuning properly the electrode parameters, the mixing efficiency can reach
97.5%. The optimization process implemented in the present work may lead in
the future to a new approach to obtain controllable electroosmotic flow in micro-
fluidic platforms.
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1 Introduction

Introduction of external electric fields into electrolyte diffusion can drive the flow of liquid on the wall,
thus forming electroosmotic flows [1]. The electroosmotic flows provide an active strategy to solve a variety
of flow issues [2–5]. Especially in the field of biochemical reactions [6], it is essential to generate a
homogenous mixture rapidly after the initial reaction. Microfluidic reactors using electroosmotic
technology can provide faster uniform mixing and higher yields than conventional reactors [7–9].

Researches on electroosmosis mixing have been carried out on different channel structures. For
rectangular channel, the instantaneous electroosmotic flow is simulated and the relationship between the
flow field and applied electric field is also given [10–12]. Zhuang et al. [13,14] studied the influence of
electro-osmotic driving flow on the mixing of power-law fluid in T-shaped micro-channels. Wu [15]
studied the nonlinear mixing process in Y-type micro-channels. Rahim [16] designed a Y-mixer and a
Y-shaped chute mixer, and corresponding researches show that the Y-shaped mixer at the bottom of the
mixing channel has a more significant mixing effect. To enhance electroosmotic mixing in a
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microchannel, a periodically varying electroosmotic flow is generated to control the size and direction of the
electroosmotic flow by manipulating either the distribution of zeta potential at the wall or the applied external
electric field [17–19].

Further researches have focused on the factors affecting the mixing efficiency, such as electrode
characteristics [20,21], fluid temperature [22], liquid viscosity [23] and ion concentration [24]. Alizadeh
et al. studied the distribution characteristics of electric field and the velocity of electroosmotic flow by the
lattice Poisson-Boltzmann method [25–27] investigated the optimum range of electroosmosis parameters.
The results showed it can lead to a highly efficient mixer by increasing disturbances in the primary
laminar flow.

The previous works mainly focus on the design of mixers with complex structures and the influence of
single parameter on mixing efficiency. In this work, we focus on the influence mechanism of electrode
parameters on the mixing efficiency. The effect of electrode parameters on electroosmotic flow and
mixing efficiency is revealed. Furthermore, the global optimal mixing efficiency based on electrode
parameters is given by numerical optimization algorithm.

2 Model and Numerical Results

2.1 Physical Model
The structure of straight channel micro-mixer is shown in Fig. 1. Two liquids flow into the mixer from

inlets A1 and A2, respectively. Mixed liquids leave the micro-mixer from outlet A3. The widths of A1 and A2

are both 5 μm. The length of straight channel L = 100 μm. A pair of electrodes are set on the upper and lower
walls of the channel, with the electrode length W = 5 μm. And the distance between the left boundary of the
electrode and the entrance of the channel is 30 μm.

The Navier-Stokes equation [28] for incompressible flow is used to describe the flow field in the micro-
channel:

r � u ¼ 0

q
@u

@t
�r � gðruþruT Þ þ qu � ruþrp ¼ 0 (1)

Inside the mixer, the following convection-diffusion equation is applied to account for the concentration
of the dissolved substances in the fluid:

@c

@t
þr � �Drcð Þ þ u � rc ¼ 0 (2)

where, the fluid velocity at the entrance u = 0.2 mm/s; the pressure at the outlet is set to a standard
atmospheric pressure; c is the fluid concentration, at the upper half of the inlet, the solute has a given
concentration 1 mol/m3, the concentration at the lower half is 0; the fluid density ρ = 1000 kg/m3; the
dynamic viscosity coefficient η = 10-3 pa∙s; the fluid diffusion coefficient D = 10-11 m2/s.

Figure 1: Structure of micro-mixer
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A sinusoidal voltage with amplitude of 0.1 V and frequency of 10 Hz is loaded on the electrodes. The
fluid velocity on the wall is described by Helmholtz-Smoluchowski equation, as [21]

uw ¼ ewf0
g

rTV (3)

where, ∇TV is the tangential component of the electric field; ex ¼ e0 � er is the permittivity (F/m), relative
electric permittivity εr = 80.2; the zeta potential at the channel wall ζ0 = -0.1V.

Based on the above physical parameters and boundary conditions, for the quantitative evaluation of
mixing performance, the mixing efficiency at the profile of the outlet A3 is introduced as [27]:

h ¼ 1�
R
A3 C � C1j j

R
A3 C0 � C1j j (4)

where, C is the concentration of mixed fluid; C∞ and C0 are the concentrations associated with fully mixed
and completely unmixed states, respectively.

2.2 Numerical Results
The mixing efficiency at the outlet of micro-channel varies with time is shown in Fig. 2. The numerical

result shows after the flow delay of 0.2 s, the mixing efficiency increases gradually, and finally presents
periodic fluctuation with small amplitude. The disturbance caused by the electroosmosis electric field
initially occurs near the electrodes. The disturbed flow field reaches the outlet of the channel at the time
of 0.2 s, and after 0.8 seconds, a stable flow field is formed. The average mixing efficiency is about 94%,
and the fluctuation frequency of mixing efficiency is equal to that of the electroosmotic voltage.

In order to investigate the effect of electric field on flow field, streamlines and concentration distribution
of steady flow are given in Fig. 3. When the phase angle of sinusoidal voltage is 90°, the voltage between
upper electrode and lower electrode is 0.1 V. Under the influence of electric field, a pair of eddies are
produced at the left edge of the upper electrode and the right edge of the lower electrode. The eddy
structure disturbs the flow field, and transfers the liquid from the lower part to the upper part of the
channel (Fig. 3a). The characteristics of the eddies produced at the edge of the electrode are consistent
with existing studies [8]. After this time point, the strength of eddies decreases with the decrease of the
electric field. When the applied voltage is 0, the pair of eddies disappear (Fig. 3b). As the sinusoidal

Figure 2: Change of mixing efficiency with time
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voltage becomes negative with the pass of time, another pair of eddies forms and the disturbance direction of
fluid changes. As shown in Fig. 3c, the liquid from the upper part of the channel is carried to the lower part of
the channel.

In consequence, as the voltage value changes positively and negatively, two pairs of eddies alternately
appear and disturb the liquid in the different directions, thus realizing the active mixing of the two liquids.

3 Effect of Electrode Parameters on the Mixing Efficiency

The parameters of electrode will affect the eddy characteristics and the mixing efficiency. Effect
mechanisms of electrode parameters on the mixing efficiency will be analyzed in this section.

3.1 Effect of Voltage Amplitude
The voltage amplitude of the electrode changes from 0.05 to 0.15 V, and the average mixing efficiency is

obtained after the flow is stable (Fig. 4). Numerical simulations show the mean mixing efficiency increases
first and then decreases slightly with the increase of voltage amplitude.

Keeping the phase angle of voltage at 90°, the distribution of flow field and concentration field in the
channel at the electrode voltage of 0.06 V and 0.14 V is shown in Fig. 5. When the voltage amplitude of
the electrodes is small, the intensity of the eddy formed by electroosmosis is small, thus the ability of the

Figure 3: Streamlines and concentration distribution of fluid at different phase angles of voltage ((a) 90°,
(b) 180°, (c) 270°)

Figure 4: Change of mean mixing efficiency with voltage amplitude
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eddy to disturb the liquid is weak, the liquids are not mixed sufficiently. On the other hand, when the voltage
of the electrodes is larger than 0.09 V, a pair of large eddies will squeeze the liquid of low concentration and
form a backflow in the upper eddy. Excessive low concentration liquid is transported to the upper part of the
channel, which reduces the mixing efficiency. Therefore, the magnitude of the voltage determines the
strength of the eddy and the movement of the fluid between the two eddies, which affects the mixing
efficiency ultimately.

3.2 Effect of Electrode Length
Keep the position of the left boundary of the electrode fixed and change the length of the electrode.

The change of mean mixing efficiency is shown in Fig. 6. The numerical results show that the mixing
efficiency increases first and then decreases with the increase of electrode length. When the electrode
length is 6.5–7.5 μm, the mixing efficiency reaches a higher value, about 96%.

When the phase angle of the electrode voltage is 90°, the effects of the electrode length on the flow field
and concentration field are shown in Fig. 7. When the length of the electrode is 4 μm, eddies generated on the
upper and lower walls are relatively close. Similar to the case of high voltage (Fig. 5b), the fluid in the lower
part of the channel is driven to the upper wall. Due to excessive transport intensity, liquid mixing efficiency
decreases. For the case where the electrode length is 9 μm, increased distance between the two electrodes
results in a decrease of the interaction intensity between them. Fig. 7b shows that the fluid in the upper

Figure 5: Streamlines and concentration distribution at different voltage amplitude ((a) voltage of 0.06 V,
(b) voltage of 0.14 V)

Figure 6: Change of mean mixing efficiency with electrode length
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eddy failed to be carried downstream by the lower eddy. Therefore, the distance between eddies affects the
coupling strength and mixing efficiency.

3.3 Effect of Voltage Frequency
Furthermore, the mixing efficiency is investigated with changing the frequency of the electrode power

(Fig. 8). Numerical results show when the frequency is about 11 Hz, the mixed frequency reaches a
maximum value.

When the phase angle of the electrode voltage is 90°, the streamlines and concentration distribution at
the frequency of 9.8 Hz and 11.8 Hz are shown in Fig. 9. In both cases, the flow field structures are similar
while the concentration fields are different. With low frequency of voltage (Fig. 9a), the eddy current lasts for
a long time and a large amount of liquid at the bottom of the channel is transported to the upper part of the
channel. Therefore, at the outlet of the channel, the concentration of the upper portion is low while the
concentration of the lower portion is high. When the voltage frequency is higher, transport capacity of
fluid decreases owing to the rapid change of flow field. The liquid concentration in the upper part of the
channel is higher than that in the lower part. There is an optimal frequency to make the concentration at
the outlet of the channel more uniform.

Figure 8: Change of mean mixing efficiency with voltage frequency

Figure 7: Streamlines and concentration distribution at different electrode length ((a) electrode length of 4
μm, (b) electrode length of 9 μm)
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4 Optimization of Electrode Parameters

The numerical results show that there are optimum parameters for the electrode voltage, electrode length
and frequency under the condition of single parameter changes. In order to achieve the highest mixing
efficiency in the global scope, the numerical algorithm of global search is used to optimize the three
electrode parameters [29]. The range of electrode parameters and the final optimum values are shown in
Tab. 1. With the optimum electrode parameters, the mixing efficiency is up to 97.5%.

5 Conclusion

The influence mechanism of electroosmotic parameters on the mixing efficiency is studied by a
numerical model of straight channel mixer. Compared with the existing research, the parameter of
electrode length is introduced in this manuscript, which affects the position of eddy current, thus
enhancing the ability to control the flow field greatly.

In summary, a pair of eddies are produced alternately at the edges of electrodes under the effect of
electroosmotic voltage. From these results, we conclude that the length of electrode affects the distance
between eddies, the amplitude and frequency of electrode voltage determine the intensity and frequency
of eddy current, respectively. Therefore, changes in electrode parameters can modify the characteristics of
eddy current, which in turn affects the mixing efficiency. By optimizing the electrode parameters, the
mixing efficiency can reach 97.5% in the simplest structure of mixer.

Electroosmotic mixing has important application prospects. The research results can guide the design of
electroosmotic mixer in straight channel, and the obtained analytical solution can be used as meaningful
methods to improve the mixing efficiency in microfluidic systems.
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Table 1: The parameters of being optimized

Parameter Name Parameter range Optimum value

Voltage amplitude 0.05–0.18 V 0.087 V

Electrode length 3–9 μm 7.06 μm

Voltage frequency 9–13 Hz 9.7 HZ

Figure 9: Streamlines and concentration distribution at different voltage frequency ((a) frequency of 9.8 Hz,
(b) frequency of 11.8 Hz)
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