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Abstract: Submarine maneuverability has been analyzed by means of computa-
tional fluid dynamics (CFD). This approach provides an alternative, accurate,
and cost-effective method for simulating actual flow. The numerical results show
that the numerical simulation of the viscous flow related to a moving submarine
based on the RANS equation with a relevant turbulence model can not only pro-
vide rich flow field details such as flow separation, but also accurately predict its
hydrodynamic performance. The present study indicates that CFD can be used to
forecast the submarine’s maneuverability in the initial design stage. The present
results will be used in the future as a basis for analyzing methods to reduce the
vibration and noise generated by the submarine.
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1 Introduction

Maneuverability is an important navigation performance, which is closely related to navigation safety
and tactical performance of submarine. At present, the real ship experiment method is the most reliable
method for the study of submarine maneuverability. However, it usually has the disadvantages of long
period, high cost, and difficulty in obtaining the flow details. Therefore, numerical simulation of
submarine maneuverability has gained much interest. With the rapid development of computer technology
and numerical methods, numerical simulation has attracted increasing attention in the research of
submarine maneuverability. The SUBOFF standard model has been intensively investigated through
experiments and calculations [1–3]. Reynolds number was investigated for the wing model, leading to
some useful conclusions [4–7]. RANS simulation of viscous flow of fully appended submarine has been
investigated [8]. Numerical prediction of submarine hydrodynamic coefficients by computational fluid
dynamics (CFD) has been discussed [9]. Numerical simulation of flows over underwater axis symmetric
bodies with full appendages has been researched [10]. The unsteady Reynolds averaged Navier-Stokes
and large Eddy simulation of SUBOFF have been studied [11]. The effect of turbulence closure models
on the vertical flow field around a prolate ellipsoid and submarine body undergoing steady drift has been
considered [11,12].

The primary purpose of static measurements in these experiments is to obtain maneuvering forces and
moments for developing and validating semiempirical or coefficient-based simulation methods and
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validating CFD codes. In most cases, accurate determination of the drag or axial force is a secondary
consideration.

This study has two objectives. The first is to make a general examination of the static data for a prolate
ellipsoid to compare overall uncertainty with the Sk � x, SSTk � x, and k-e models. However, differences
in the procedures and experimental conditions, and differing degrees of details in the difference value
analysis provided, preclude selection of the “best” set of data. The second objective is to compare
selected static data and predictions from the SUBOFF standard model. These comparisons were made in
the course of refining some of the hydrodynamic calculations in recent revisions of the code. These
objectives are related to each other in that the development of semiempirical prediction methods
invariably uses data from different sources. It is important to evaluate whether apparent inconsistencies
arise from differences between facilities and procedures, or represent physical phenomenon that should be
modeled, as much of the standard model database is proprietary to the various sponsors.

2 Mathematical Models

2.1 RANS Equations
The governing equations are the 3D uncompressible RANS equations [13]. Continuity equation and

momentum equation in the tensorial expression can be written as:
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where ui is the Cartesian xiði ¼ 1; 2; 3Þvelocity component, ui0 is the Fluctuating velocity component, and
qu0iu0j indicates the Reynolds stress tensor.

2.2 k � e Turbulence Modeling
k � emodel is widely used for pressure gradient solution due to its advantages of good stability and high

precision.
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where e is the turbulent kinetic energy dissipation rate and Pk is the turbulent kinetic energy term Cμ = 0.09,
Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.30.

2.3 k � x Turbulence Modeling
k � x modeling is an empirical model, based on Wilcox’s original model [14].
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where Gk represents the production of turbulent viscosity, Gx, Yk , and Yx represent the dissipation of
turbulent viscosity. σk = 2.0, σω = 2.0, a0 = 1/9, a∞ = 0.52.

2.4 SSTk � x Turbulence Modeling

SSTk � x modeling was developed by Menter et al., taking into account the orthogonal divergence. It
has wide application and precision in the near-wall free flow.
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where Dx is the matrix parameter, and Sk and Sx are the custom parameters.

3 Numerical Analysis and Validation

3.1 Numerical Model
The three-dimensional viscous flow was numerically simulated by the SUBOFF model. The other two

models were processed by solving RANS equations with two-equation turbulence model and finite volume
method, and with SIMPLEC method for pressure-linked terms, central difference schemes for temporal
derivative terms, and second-order upwind schemes for convective and diffusive terms.

The numerical calculation of the three-dimensional flow field around a 6:1 ellipsoid was performed. The
total length L of the ellipsoid is 4.356 m, the maximum diameter of the ellipsoid is 0.726 m, and the ratio of
the major axis to the minor axis is 6:1, as shown in Fig. 1.

The inflow conditions and turbulence modes selected for the ellipsoid are as follows:

The inflow surface: The speed inlet boundary condition was adopted, and the inflow speed was 0.97 m/s.

The outflow surface: Free to flow out boundary condition was used.

The wall: No slip condition was used.

The turbulence mode: Reynolds number is 4.2 × 106. SIMPLE algorithm, second-order upwind scheme,
and three turbulence modes of Sk � x, SSTk � x, and k-ε were selected for comparative analysis.

3.2 Analysis and Validation
Fig. 2 shows the three-dimensional flow separation diagram of an ellipsoid. The flow around the

ellipsoid was numerically simulated with the angle of attack of 10° and 20°.

Figs. 3–6 show that the surface pressure distribution of the ellipsoid is consistent with the calculation
results [13]. When the angle of attack of the ellipsoid is 10°, there is almost no flow separation. However,
a sign of diversion is observed. When the angle of attack reaches 20°, the surface of the ellipsoid shows a
second flow separation.

The hydrodynamic calculation results corresponding to different turbulence models of ellipsoids at the
working angles of 10° and 20° are listed in Tab. 1.
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Figure 1: 6:1 ellipsoid

Figure 2: 3-D Flow separation diagram of 6:1 ellipsoid

Figure 3: Pressure distribution on the surface of ellipsoid calculated in this study (a = 10°, Re = 4.2 × 106)

Figure 4: Pressure distribution on the surface of ellipsoid calculated in previous report [Pasinato (2002)]
(a = 10°, Re = 4.2 × 106)

Figure 5: Pressure distribution on the surface of ellipsoid calculated in this study (a = 20°, Re = 4.2 × 106)

Figure 6: Pressure distribution on the surface of ellipsoid calculated in previous report [Pasinato (2002)]
(a = 20°, Re = 4.2 × 106)
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Tab. 1 shows that the calculated results of the vertical force of each turbulence model are generally lower
than the experimental values. When the angle of attack is 20°, the results of the vertical force are higher than
the experimental values. This is because under the condition of high angle of attack, fluid flow separation
occurs on the back flow surface when the fluid passes through the ellipsoid. Moreover, the separation
shear layer presents two spirals, which generate additional lift to the ellipsoid. By comparing the vertical
force, pitching moment, and the center position of the hydrodynamic action, it is found that the Sk 2T
turbulence model exhibits good agreement with the experimental data [3].

4 Numerical Results and Analysis

The SUBOFF submarine model is a hull with a podium and a stabilizer wing, as shown in Fig. 7. The
total length L of the hull, the length of the inflow section, the length of the parallel hull, the length of the
outflow section, and the maximum diameter D are 4.356 m, 1.016 m, 2.229 m, 1.111 m, and 0.508 m,
respectively. The podium enclosure is 0.368 m long and 0.460 m high. The leading edge of the podium is
located at 0.924 m, and the trailing edge is located at 1.923 m. The stabilizer wing is arranged in a cross
shape with the trailing edge of the wing at 4.007 m. The specific geometry of the SUBOFF model is
from DAPRA [3].

Table 1: Hydrodynamic calculation results of ellipsoid

turbulence models Z 0(1-e3) difference value M 0(1-e3) difference value

Experiment (a = 10°) 3.3099 – −3.5862 –

Sk � x (a = 10°) 3.0895 −6.5 −3.3102 −7.4

SSTk � x (a = 10°) 2.9210 −11.0 −3.3201 −6.1

k-e (a = 10°) 3.0306 −7.7 –3.4201 −7.0

Experiment (a = 20°) 13.169 – –5.2676 –

Sk � x (a = 20°) 15.012 9.5 −4.7032 −8.0

SSTk � x(a = 20°) 12.120 −8.1 −5.1230 −1.8

k-e (a = 20°) 11.315 −12.8 −5.5236 3.6

Figure 7: SUBOFF model
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The SUBOFF full-appendage model including a podium enclosure and cross-shaped tail is shown in
Fig. 8. The podium and the tail of the SUBOFF model were made of grids to capture the flow field
characteristics near the podium and the tail. Fig. 9 shows the flow field grid around the SUBOFF model
and Fig. 10 shows the rear wing grid.

4.1 The Inflow Conditions
The larger the selected calculation domain, the closer would be the calculation model under the

unbounded flow circumstance, and the more accurate would be the result. However, the larger the amount
of calculation, the larger the error. If the calculation area is too small, the boundary conditions may not be
established, and it would be difficult to guarantee the correctness of the results. Therefore, the selected
calculation area length is five times longer than the model, and the width is three times longer than the model.

Tab. 2 shows the results of mesh sensitivity analysis. It can be seen that the values of vertical force and
moment change with the number of meshes. When the Reynolds number is 1.3 × 107, the submarine model
has an attack angle of 12°, and the number of grids is increased from 2 to 3.5 million. At this point, the values

Figure 8: Surface grid of SUBOFF

Figure 9: Flow grid of SUBOFF model

Figure 10: The rear wing grid of SUBOFF model
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of vertical force and moment are relatively stable and do not change significantly. Thus, it is feasible to
choose 2 million grids.

The inflow conditions and turbulence modes selected for the SUBOFF model are as follows:

The inflow surface: The speed inlet boundary condition was adopted, and the inflow speed was 2.1 m/s.

The outflow surface: Free flow out boundary conditions.

The wall: No slip conditions.

The turbulence mode: Reynolds number is 1.3 × 107. SIMPLE algorithm, second-order upwind scheme,
and Sk � x turbulence models were selected for comparative analysis.

The inflow surface is a semi-sphere and cylinder, the outlet surface is the back end of the cylinder, and
the wall surface is the surface of the submarine, as shown in Fig. 11.

4.2 Numerical Analysis
Fig. 12 shows the simulation of the surface pressure distribution of the SUBOFF full attachment, which

reflects the pressure distribution on the surface of the submarine well. The pressure coefficient is likely
caused by the low flow velocity in these areas.

Figs. 13 and 14 show the comparison diagrams of the longitudinal section pressure coefficient and
longitudinal section friction coefficient with the experimental values, respectively. These calculated values
are in good agreement with the reported experimental values [2].

Figs. 15 and 16 present the surface pressure distribution diagrams of a fully attached submarine when the
Reynolds number is 1.3 × 107, and the submarine model has an attack angle of −4° and 8°. It can be seen that
the pressure on the submerged surface is significantly greater than the pressure on the leeward surface.

Table 2: Mesh sensitivity analysis

Number of fluid cells X 0(1-e3) Z 0(1-e3) M 0(1-e3)
515690 0.8223 3.0562 −2.5263

1025782 0.9042 3.1869 −2.6562

2052744 0.9145 3.4953 −2.7356

3562176 0.9182 3.5025 −2.7897

Figure 11: Computational domain of flow field

FDMP, 2020, vol.16, no.3 567



Figs. 17 and 18 present the streamline diagrams of the near surface of a fully attached submarine when
the submarine model has an attack angle of 8° and 14°, respectively. The figures show the complex vortices
near the submarine’s control platform and the tail.

Tab. 3 shows the results of hydrodynamic calculations of a fully attached submarine (Re = 1.3 × 107,
−12° to 12°). It can be seen that the deviation between the numerical simulation results and the
experimental values is less than 4%. Figs. 19 and 20 show the comparison charts between the calculated
vertical force coefficient and the pitching moment coefficient curve and the experimental values. The
numerical simulation curve agrees well with the experimental curve [14,15].

Figure 12: Surface pressure of fully attached SUBOFF (a = 0°)

Figure 13: Profile pressure coefficient curve of the longitudinal section of fully attached SUBOFF
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Figure 14: Friction coefficient curve of the longitudinal section of fully attached SUBOFF

Figure 15: Surface pressure of fully attached SUBOFF (a = −4°, Re = 1.3 × 107)

Figure 16: Surface pressure of fully attached SUBOFF (a = 8°, Re = 1.3 × 107)

Figure 17: Surface streamline of fully attached SUBOFF (a = 8°, Re = 1.3 × 107)
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Figure 18: Surface streamline of fully attached SUBOFF (a = 14°, Re = 1.3 × 107)

Table 3: SUBOFF full appendage hydrodynamic calculation results (Re = 1.3 × 107)

Hydrodynamic derivative Experiment value Calculated value Difference value

Z 0
w −0.01105 −0.01051 −3.91

M 0
w 0.01082 0.01045 −4.02

Z 0
wjwja= -12°~+12° −0.04528 −0.04823 3.2

M 0
wjwja = -12°~+12° −0.01203 −0.01008 5.4

Figure 19: Curve of vertical force coefficient of fully attached submarine with variable angle of attack

Figure 20: Pitch moment coefficient curve of fully attached submarine with variable angle of attack
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5 Conclusions

In this work, turbulent three-dimensional viscous flow around an ellipsoid was numerically compared
with different turbulence models, and the hydrodynamic forces were calculated. The calculated results
were in good agreement with the previously reported experimental data.

Numerical simulations were carried out for the main hull of the SUBOFF submarine with sail on the top
in maneuvering motions. The simulated flow details and computed hydrodynamic forces and moments were
in good agreement with the experimental data.

In order to evaluate the hydrodynamic performance of the submarine stern appendages, the viscous flow
around the foil was studied by numerical simulation, and the results were found to be consistent with the
experimental data. This work demonstrates that the use of a solver based on the RANS equation to
numerically simulate the viscous flow of a moving submarine can not only provide rich flow field details
such as flow separation, but also accurately predict its hydrodynamic performance.

The initial design stage of the submarine can be used to predict the submarine’s maneuverability, which
can provide a basis for the analysis and research of the vibration and noise reduction of the submarine.
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