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Abstract: Increasing usage of foams in various industry sectors had causing serious
disposal problems once it reaches the end of its life-cycle. Herein, PVA-MFC foam
was prepared by freeze-drying using polyvinyl alcohol (PVA) and microfibrillated
cellulose (MFC) as a reinforced material from sugarcane bagasse (SCB). In this
study, the PVA-MFC foam was chemically silylated with Y-methacryloxypropyltri-
methoxysilane (MPS) and tetraethoxysilane (TEOS). The wetting ability and
mechanical strength of the silylated 2,20PVA-MFC foam was greatly enhanced com-
pared with unmodified 2,20PVA-MFC foam. The silane chemicals (MPS and TEOS)
had been confirmed grafted on 2,20PVA-MFC foam due to the presence of Si-C and
Si-O-C stretching vibration as showed in Fourier Transform Infrared (FTIR) spectra
and cloud-like coating of porous pore was observed in scanning electron micro-
scopy (SEM) images. The silylated 2,20PVA-MFC foam (MPS and TEOS) exhibited
a series of desirable properties such as lower swelling ratio and high absorption
capacity of solvents and oils but had low thermal stability in thermogravimetric
(TGA) analysis. The characterization of 2,20PVA-MFC foam using TEOS was
further investigated. A significant difference in morphology was clearly observed
between the unmodified and silylated 2,20PVA-MFC-TEOS foam through field
emission scanning electron microscopy (FESEM) images. The X-ray photoelectron
(XPS) analysis of silylated 2,20PVA-MFC-TEOS foam confirmed the presence of C,
O and trace amount of Si elements. These synthesized 2,20PVA-MFC foam could be
a promising material for broad range of polymer foam applications.

Keywords: Polyvinyl alcohol foam; microfibrillated cellulose; sugarcane bagasse;
Y-methacryloxypropyltrimethoxysilane; tetraethoxysilane and oil absorbent

1 Introduction

Polymer foams have attracted considerable attention toward various applications such as thermal and
acoustic insulation, energy dissipation, packaging, shock protection and many more [1]. However, these
polymer foams are made from non-degradable polymers which are inevitably brought substantive waste
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and serious environmental pollution [2]. Recently, trend toward fabrication of degradable polymer foams
reinforced with renewable resources such as natural fibers is considerable increased due to the demand of eco-
friendly and non-toxic material. Hence, the use of natural fibers such as microfibrillated cellulose (MFCs) is
considered to be a promising material as an alternative to inorganic fillers in porous composite materials [2].
MFC is also known as nanocelluloses which can be extracted from lignocellulosic materials through chemical
and/or mechanical disintegration methods [3]. Typically, it is in the range of 20–40 nm since it usually
consists of aggregates of cellulose microfibrils [4]. They are usually used as reinforced materials in composites
due to its desirable properties such as lightweight, nontoxic and biodegradable. In this study, the
microfibrillated cellulose was extracted from sugarcane bagasse (SCB). SCB is a by-product which is
generated after juice extraction from sugarcane mills [5] and have dry weight basis of cellulose approximately
43.8% [6]. It has been extensively applied in various industries such as in pulp and paper production [7],
textiles [8] and furniture industry [9]. Due to its intrinsic mechanical and chemical properties, it can be used to
build hierarchical structures which can enhance the performance of traditional polymeric materials [10–12].

In this respect, the development of ‘green foams’ from biodegradable polymer reinforced with natural fibres
from renewable resources is necessity as an alternative to non-degradable polymer foams. Polyvinyl alcohol
(PVA) is consider as one of the polymers that is nontoxic, biodegradable, biocompatible and water soluble
synthetic polymer. In presence of suitable microorganisms, PVA is easily susceptible to biodegradation
[1,13]. PVA and SCB are highly hydrophilic which rich in pendant hydroxyl groups that act as attachment
sites for biomolecules [14] and have low thermal stability that can limit the choice of polymer matrices as
well as processing technologies for production of foam composites [15]. Thus, incorporating MFC-SCB into
PVA foam will be less attractive as it lacks fine interfacial adhesion, low melting point and poor resistance
towards moisture which may lead to fibers agglomeration and cause poor mechanical properties [16].
Therefore, the most feasible solution to this problem is increasing the hydrophobicity of PVA-MFC
composite foams by chemically modification using coupling agents such as alkoxysilane.

Alkoxysilane is one example of organosilicon compounds which particularly effective in
hydrophobizing hydroxylated substrates [17] and improved degree of cross-linking in the interface region
besides offering a perfect bonding [18]. After silanols react with hydroxyl groups of MFC and PVA, they
can form stable covalent bonds to the cell wall that are chemisorbed onto the foam surface [18]. Hence,
the swelling ratio of the PVA-MFC composite foams (i.e., creation of a crosslinked network) due to
covalent bonding between the matrices can be restrained by modification with silane.

PVA foam has poor dimensional stability and mechanical properties, while pure fibrillar cellulose foam
has loose characteristics [2]. Therefore, in this study, the microfibrillated cellulose of sugarcane bagasse
(MFC-SCB) was incorporated with PVA in order to prepare composite foam and chemically modified
with Y-methacryloxypropyltrimethoxysilane (MPS) and tetraethoxysilane (TEOS). The best silane
concentration and reaction time in preparing the silylated PVA-MFC composite foams were determined.
The characteristics such as morphology, chemical structure, thermal, mechanical and wetting ability of
PVA-MFC composite foams before and after treatment were investigated. The swelling ratio and
absorption capacity of the unmodified and silylated foams were also compared. The silylated 2,20PVA-
MFC-TEOS10,2 foams showed a good characterization in terms of morphology, absorption capacity,
wetting ability, thermal and mechanical properties. Thus, further examinations of this foam were
performed in respects of morphology, chemical compositions and specific surface area using FESEM,
XPS and BET surface area, respectively.

2 Experimental

2.1 Materials
The agricultural residues (SCB) were obtained from Sri Gombak market, Selangor. Sodium hydroxide

(NaOH) pellets, 35% hydrogen peroxide (H2O2), 95% sulphuric acids (H2SO4) and polyvinyl alcohol (PVA)
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with degree of hydrolysis (87–89%) at molecular weight 50 k were purchased from Sigma-Aldrich. Two
silane coupling agent Y-methacryloxypropyltrimethoxysilane (MPS) and tetraethoxysilane (TEOS) were
purchased from Merck and Fisher Scientific (Malaysia) respectively. Others reagent such as ethanol
(HmbG chemical) and glacial acetic acid (CH3COOH) were purchased from Merck (Malaysia). All the
reagents are analytical grade and were used as received without further purification.

2.2 Extraction of Microfibrillated Cellulose (MFC) from Sugarcane Bagasse (SCB)
Extraction of cellulose from SCB was adapted from Anchor et al. [19] with slightly modification as

described by Asem et al. [20]. The SCB was sun-dried and ground-using grinder until it achieved 100 μm
size. The SCB powder (25 g) were mixed with 500 ml of 2% (w/v) of NaOH and water bath for 5 h at
80°C. The treated SCB were filtered, then bleached with 500 ml of H2O2 in 1:1 aqueous dilution at 75°C.
The samples were further treated with 12% (w/v) of NaOH solution and incubated in water bath at 80°C
for 15 min. In order to breakdown the chemical bond of hemicellulose and lignin of SCB completely, the
SCB was treated two times using NaOH. The treated SCB sample was vacuum filtered and washed for
few times to ensure there were no NaOH and H2O2 residues in the cellulose fibers suspension. The
treated SCB samples were then further treated with 1% v/v of H2SO4 at 80°C. The extracted samples
were cleaned with distilled water until achieved neutral pH value. The samples were sonicated using
probe sonicator (B.Braun Biotech International, Germany) for few hours at amplitude of 70. The MFC-
SCB samples were centrifuged for 15 min at 6000 rpm and stored in the refrigerator at 4°C until further used.

2.3 Preparation of PVA-MFC Foams
The PVA-MFC foams were prepared with 2 w/w% concentration of MFC-SCB suspension, 20 w/v%

concentration of PVA (MW: 50 k). The mixtures were slowly stirred at room temperature for 4 h and
frozen at –22°C freezer (Polar 530SV, AS biomedical division, Italy) for 24 h. The frozen samples were
subsequently dried for 4 days in ALPHA 1–4 LD Plus freeze-dryer (Christ, Germany) to sublimate the
water under vacuum. This method is adapted from Dash et al. with slightly modification [21]. The PVA-
MFC foam was denoted as 2,20PVA-MFC foam, where 2 denotes as concentration of MFC-SCB
suspension (w/w%) and 20 as concentration of PVA (w/v%).

2.4 Modification of PVA-MFC Foams
The freeze dried PVA-MFC foam was firstly cut with diameter of 1.6 cm and 1 cm of thickness. The

coupling agents, MPS and TEOS were gently stirred in ethanol/water mixture in ratio of 80:20 at
different concentrations (5 wt%, 10 wt% and 15 wt%). In order to ensure efficient coating of MPS/TEOS
on PVA-MFC foam, the mixture was gently stirred at room temperature and pH of the solution was
adjusted to 5 using acetic acid as described in previous studies [22]. The PVA-MFC foam was immersed
into 1 mL of MPS/TEOS and 1 mL of deionized water at different reaction time (2 h, 4 h and 6 h) in the
conical flasks. These flasks were tightly sealed and placed in an oven at 70°C. Then, the silylated sample
was taken out and placed in oven for another 24 h at 60°C. The silylated PVA-MFC foams were stored in
desiccator until further used. The silylated PVA-MFC foams are denoted as PVA-MFC-MPSx,y foam and
PVA-MFC-TEOSx,y foam. The x and y are denoted as silane concentration and reaction time, respectively.

2.5 Characterization
2.5.1 Morphology Observation of the MFC-SCB and PVA-MFC Foam

Field emission scanning electron microscopy (FESEM, MERLIN ZEIS) analysis was performed to
investigate the dimension of the MFC-SCB. A drop of the MFC-SCB suspension was placed on
conductive carbon tape and left it dry. The, the tape was mounted on the aluminium studs and sputter
coated with irradium for 15 s.
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The scanning electron microscopy (SEM) analysis of 50 mg unmodified and silylated PVA-MFC foam
were determined using JEOL (JSM IT 100, Japan) at an accelerating voltage of 8 kV. The foam samples were
fixed on sample holders using carbon pad and sputter-coated with a thin layer of platinum.

2.5.2 Structural Characterization by Fourier Transform Infrared (FTIR) of PVA-MFC Foam
Fourier transform infrared (FTIR) spectra of unmodified and silylated PVA-MFC foams were recorded

on IRAffinity-1S FTIR (Shimadzu™ Corporation, Japan) in the transmittance mode in range of 4000–400
cm–1 using KBr pellets with resolution of 4 cm–1.

2.5.3 Wetting Ability of PVA-MFC Foam
The surface wettability of unmodified and silylated PVA-MFC foams were evaluated by contact angle

measurement, using Static Contact Angle (Data Physics Instruments, Germany) combined with high speed
camera. At the top surface of the sample, 0.1 μL/s of water droplet were deposited directly using a precision
stainless steel tip at room temperature. Three measurements of each sample were taken after contact angle
measurement had reached a stable value after 30 s.

2.5.4 Thermogravimetric Analysis (TGA) of PVA-MFC Foam
Thermal stability measurements of unmodified and silylated PVA-MFC foam were carried out using

simultaneous thermal analyzer (TG2, STA7300 HITACHI, Japan) at a heating rate of 10 °C/min, under
argon atmosphere (flow rate about 100 mL/min) from 25°C to 600°C.

2.5.5 Compression Test Analysis of PVA-MFC Foam
Compression testing of foam sample was performed on an electronic universal tensile machine (LR10K

Plus, LLYOD Instruments, Germany) with thickness 1 cm and diameter of 1.6 cm. The preload for each
sample was 0.5 N with a speed of 1 mm/min to 50% of its original thickness for 10 s. The samples were
prepared according to the American Society for Testing and Materials, ASTM D3574 Part C. Five
different experiments of unmodified and silylated 2,20PVA-MFC foams were performed.

2.5.6 Swelling Ratio of PVA-MFC Foam
For swelling ratio (Sr) test, three measurements of each PVA-MFC foam (thickness 1 cm, diameter

1.6 cm) were performed and the average values were calculated. Each foam sample was immersed into
distilled water until its weight remained constant. Calculation of PVA-MFC foams swelling behavior were
evaluated using Eq. (1) [13]:

Sr ¼ 100 � Ws � Wd

Wd
(1)

where, Ws is the weight of the sample in the swollen state and Wd represent the dried weight of the sample.

2.5.7 Solvent and Oil Absorption Capacities of PVA-MFC Foam
The solvent and oil absorption capacities (Cm) of PVA-MFC foam were determined by dipped the

unmodified and silylated PVA-MFC foams (thickness 1 cm and diameter of 1.6 cm) into 20 mL of
solvents (phosphate buffered saline, ethanol, dichloromethane, dimethyl sulfoxide) and oil (castor oil,
synthetic oil, cooking oil) for 5 s. The average of Cm obtained by measuring three different foam
samples and was calculated as follows [17]:

Cm ðw=wÞ ¼ m1 � m0

m0
(2)

where m0 and m1 are the weights of the sample before and after absorption, respectively.
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2.6 Further Characterization of the Silylated 2,20PVA-MFC-TEOS10,2 Foam
2.6.1 Field Emission Scanning Electron Microscopy (FESEM)

The unmodified and silylated 2,20PVA-MFC-TEOS10,2 foam were further observed by field emission
scanning electron microscopy (FESEM, MERLIN, ZEISS, Germany). The foams samples (10 mg) were
mounted on the aluminium studs and sputter-coated with a thin layer of iridium.

2.6.2 X-Ray Photoelectron Spectrometer (XPS)
XPS was performed using Axis Ultra DLD (Kratos, SHIMADZU, Japan) with an aluminum anode

(AlKa = 1486.6 eV) operating at 150 W with a background pressure 1–10 torr. The low-resolution
survey scans were taken with 50 eV analyzer pass energy and high-resolution spectra was taken with
20 eV analyzer pass energy. The atomic ratio of oxygen-to-carbon (O/C) was calculated from their
normalized peak areas as [23]:

O

C
¼ I0

Ic
� Sc

S0
(3)

where Io and Ic are the normalized integrated area of the peaks for oxygen and carbon, respectively while SC/
SO is the corrected term for the sensitivity factor. The quantitative data on the surface chemical composition
are acquired primarily from the O/C atomic proportion and the relative quantity of each carbon type (C 1 s).
For example, the oxygen-to-carbon (O/C) nuclear ratio was calculated using region sensitivity variables as an
original indication of 2,20PVA-MFC foam surface treatment.

2.6.3 Brunauer-Emmet-Teller (BET) Specific Surface Area
The BET specific surface area of the best silylated PVA-MFC foam (silylated 2,20PVA-MFC-TEOS10,2

foam) was determined by nitrogen adsorption using surface area and pore size analyzer (Autosorb-1,
Quantachrome, USA). 30 mg of foam sample was dried under a nitrogen gas flow at 105°C for 18 h and
measured at –196°C, under a range of relative vapor pressures between 0.05 and 0.2. The BET surface
area and pore size were evaluated from the obtained adsorption isotherm.

3 Results and Discussion

3.1 FESEM Analysis of Microfibrillated Cellulose of Sugarcane Bagasse (MFC-SCB)
Fig. 1 showed the even surface morphology of sugarcane bagasse microfibrillated cellulose (MFC-SCB) at

90 k magnification. It is clearly showed that the individualized forms of MFC covering the whole area. These
fibrillated microcelluloses with high entangled-structure that is several microns in length but 1–100 nm in diameter.

Figure 1: FESEM micrograph of microfibrillated cellulose of sugarcane bagasse (MFC-SCB) with
magnification of 90 k X
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3.2 Determination of Appropriate Parameters (Silane Concentration and Reaction Time) of Silane

Modification on PVA-MFC Composite Foam
The density and porosity obtained from unmodified 2,20PVA-MFC foams (Mw: 50 k) were 0.49 g/cm3

and 68%, respectively. However, the density values of silylated 2,20PVA-MFC-MPS foams and 2,20PVA-
MFC-TEOS foams were higher compared to unmodified 2,20PVA-MFC foams. This is because, increased
in density values lead to the decrement of porosity values of the silylated 2,20PVA-MFC foams. From the
result obtained, the porosity values of silylated 2,20PVA-MFC-MPS foams were decreased from 68% to
32% when increasing in silane concentration and reaction time. Meanwhile, silylated 2,20PVA-MFC-
TEOS foams also showed a decreasing of porosity values (68% to 26%), when increasing in silane
concentration and reaction time. Previous study reported that a gradual decreased in porosity of both
silylated foams (MPS and TEOS) indicated that the void volume fraction progressively decreased within
the silylated foams due to the thickening of the cellulosic scaffold after silylation [18]. Moreover, this
phenomenon may also due to the number of hydroxyl groups of PVA and cellulose decreased with
increasing of silane concentration which resulted an increased in density values of silylated 2,20PVA-MFC
foam [24]. Both porosity of silylated foams (MPS and TEOS) also showed a decreased value when the
reaction time was increased. It might be due to longer reaction time in complex interactions between
cellulose, PVA compounds and solvents may affect the physical properties of 2,20PVA-MFC foams
[25,26]. Therefore, these two parameters (silane concentration and reaction time) need to control carefully
in order to optimize the surface modification of 2,20PVA-MFC foams. The highest porosity values
achieved in this work were 65% (2,20PVA-MFC-MPS foam) and 67% (2,20PVA-MFC-TEOS foam). The
appropriate conditions to achieve this porosity value were observed at conditions of 10 wt% of silane
concentration and 2 h of reaction time.

3.3 Characterization of PVA-MFC Foams before and after Silane Modification
3.3.1 Scanning Electron Microscopy (SEM)

SEM micrograph of unmodified 2,20PVA-MFC foam with open pore structure is shown in Fig. 2. SEM
micrographs of silylated 2,20PVA-MFC composite foam surface are illustrated in Fig. 3.

As can be seen, the modification of foams with silane resulted in a continuous and cloud-like coating
unlike unmodified 2,20PVA-MFC foam. The unmodified 2,20PVA-MFC foam showed a random three-
dimensional network structure. This formation might be due to the nucleation and growth of large ice
crystals within the network when the MFC are pushed out from its original location during the freeze-
drying process [27]. When coupling agent (MPS or TEOS) were introduced, the 2,20PVA-MFC foam

Figure 2: SEM micrograph of unmodified 2,20PVA-MFC foam with magnification of 5 k X
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pores become smaller and the texture of foams surface were quite different before and after silylation as can
be seen in Fig. 3. This difference showed that MPS and TEOS had successfully been grafted on the surface of
2,20PVA-MFC foam as the porous pores of the silylated 2,20PVA-MFC foam were almost covered and closed
by silane chemicals.

3.3.2 Fourier Transform Infrared (FTIR) Analysis
Fig. 4 shows the FTIR spectra of 2,20PVA-MFC foams before and after silanization (2,20PVA-MFC-

MPS10,2 foams and 2,20PVA-MFC-TEOS10,2 foams). As observed, bands at 3340 cm–1, 2940 cm–1, 1646
cm–1, 1429 cm–1, 1143 cm–1, 1096 cm–1 and 895 cm–1 were presence in all samples. The band at 3340
cm–1 is attributed to O-H vibration which mainly results from hydrogen bonds in cellulose [25].
Meanwhile, the bands at 2940 cm–1, 1429 cm–1 and 1143 cm–1 are associated with C-H, C-H2 and C-O
stretching vibrations, respectively. The shoulder band presence at 1096 cm–1 is attributed to C-O
stretching, which could be detected in PVA nanocomposites [28]. From the spectra, it was observed that
the band at 1594 cm–1 and 895 cm–1 associated to C-NH2 bending vibration [29] and ß-1,4-glucosidic
bond vibration [30], respectively. Further inspection of these spectra reveals the presence of two small
peaks around 950 cm–1 and 800 cm–1 in both silylated 2,20PVA-MFC-MPS10,2 foams and silylated
2,20PVA-MFC-TEOS10,2 foams. These bands were attributed to Si-O stretching vibration and deformation
of Si-OH stretching vibrations, respectively [31].

Figure 3: SEMmicrographs surface of (a) silylated 2,20PVA-MFC-MPS10,2 foam, and (b) silylated 2,20PVA-
MFC-TEOS10,2 foam with magnification 5 k X

Figure 4: FTIR spectra of (a) silylated 2,20PVA-MFC-MPS10,2 foam, (b) silylated 2,20PVA-MFC-TEOS10,2
foam and (c) unmodified 2,20PVA-MFC foam
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3.3.3 Wetting Ability of Unmodified and Silylated PVA-MFC Foams

2,20PVA-MFC foam is easily to absorb moisture and swell in water due to high density of the hydroxyl
groups present at the surface of PVA and MFC-SCB [27]. Therefore, this hydrophilicity features were
modified with silane coupling agents (MPS and TEOS). The resulting wetting properties were evaluated
by measuring contact angle of a water droplet (WCA) deposited directly at the top surfaces of the
unmodified and silylated 2,20PVA-MFC foams.

Fig. 5a shows a distinct hydrophilic character of unmodified 2,20PVA-MFC because WCA could not be
measured as it was immediately absorbed within the foam structure in less than 1 s. This is due to the
amphiphilic character of cellulose [32] and hydrophilic properties of PVA [33,34]. In contrast, the water
droplets could stand on the surfaces of the silylated 2,20PVA-MFC-MPS10,2 (123.3° ± 0.4°) foams and
2,20PVA-MFC-TEOS10,2 (99.6° ± 0.6°) foams. Both silylated 2,20PVA-MFC foams kept their original
shapes well without significant absorption within 30 s (Figs. 5b and 5c). The difference in contact angle
might also be attributed at least in part to the different surface chemistry as reported in previous studies
[34–36]. TEOS has short pendant group compared to MPS [37], thus extent of silane hydrolysis and its
degree of polymerization are known to exert a great influence on the silane adsorption at the foam surface
[38]. The improved in WCA measurements of both silylated 2,20PVA-MFC foams (MPS and TEOS) can
be attributed to the formation of a thin and interpenetrated silane coating network on the surface of the

Figure 5: Contact angle measurements of (a) unmodified 2,20PVA-MFC foam, (b) silylated 2,20PVA-MFC-
MPS10,2 foam, and (c) silylated 2,20PVA-MFC-TEOS10,2 foam using water droplets
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foam [27]. In this respect, the hydrophobic nature of alkoxy groups on the surface of the silane coatings can
influence the WCA measurements of silane treated 2,20PVA-MFC-MPS10,2 foams and 2,20PVA-MFC-
TEOS10,2 foams [27,39].

3.3.4 Thermal Properties of Unmodified and Silylated PVA-MFC Foams
Figs. 6a and 6b show the thermo gravimetric (TG) and derived curves (DTG) of unmodified 2,20PVA-

MFC foams, silylated 2,20PVA-MFC-MPS10,2 foams and silylated 2,20PVA-MFC-TEOS10,2 foams,
respectively. The starting curve was not stable due to different moisture uptake that different sample
exhibits. Modification with silane was not only reduced ambient moisture uptake but also acted as barrier
preventing inherent available bound water within PVA/MFC foam from easily evaporated (or diffused
out) at the beginning of TGA test. This can be seen clearly in Fig. 6 when unmodified sample
experienced faster weight loss from ambient up to 100°C). Based on the observation, the initial weight
loss in the range of 30–150°C for silylated 2,20PVA-MFC-MPS10,2 foams and silylated 2,20PVA-MFC-
TEOS10,2 foams were attributed to the removal of intermolecular H-bonded water [25,40]. However,
without modification with silane, the unmodified 2,20PVA-MFC foams showed an initial and slow weight
loss until around 200°C, which might be attributed to the loss of residual moisture in the MFC as well as
the slow degradation of MFC [41]. This phenomenon also occurs due to the evolution of water produced
by elimination of hydroxyl side groups [13,42] and formation of some volatile products which yields
predominantly macromolecules with a polyene structure in PVA [13,43].

The degradation temperature for unmodified 2,20PVA-MFC foams was 237°C. Upon treated the foam
samples with silane, the degradation temperatures for silylated 2,20PVA-MFC-MPS10,2 foams and silylated
2,20PVA-MFC-TEOS10,2 foams shifted to lower temperature which is 158°C and 191°C, respectively.
This might be due to the agglomeration of silane treated inside the silylated 2,20PVA-MFC foams. This
phenomenon occurred due to the agglomeration of silane treated composites that could result in poor
interfacial adhesion with the polymer matrix [43]. Thus, due to poor dispersion of silane treated
composite in the polymer matrix, strong van der Waals forces between composites can cause the
formation of aggregates in the matrix and the thermal stability of the polymer nanocomposites was
reduced. Furthermore, other studies reported that addition of silane can decrease the crystalline, and
thereby decreased the thermostability [24].

As seen from DTG curves (Fig. 6b), for silylated 2,20PVA-MFC-MPS10,2 foams and silylated 2,20PVA-
MFC-TEOS10,2 foams, both weight loss started at around 30.3°C, followed by a drastic weight loss at 119°C
and 134°C. In contrast, the unmodified 2,20PVA-MFC foams showed a slow weight loss in range of 201°C–
243°C. By comparing both types of silylated foams, a better improvement of thermal stability was observed

Figure 6: TG (a) and DTG (b) curves of unmodified 2,20PVA-MFC foam, silylated 2,20PVA-MFC-MPS10,2
foam and silylated 2,20PVA-MFC-TEOS10,2 foam
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on silylated 2,20PVA-MFC-TEOS10,2 foams. This result could be attributed to the better retardation of PVA
thermal decomposition by covalent bonds formed between PVA and silane chemical [27] during silane
modification using TEOS.

3.3.5 Compressive Properties of Unmodified and Silylated PVA-MFC Foams
In this study, unmodified 2,20PVA-MFC foams were easily loose and fragmented while silylated

2,20PVA-MFC foams (MPS and TEOS) could be manipulated without breaking and showed higher
flexibility based on the mechanical properties results. All samples; unmodified 2,20PVA-MFC foams,
silylated 2,20PVA-MFC (MPS and TEOS) were compressed to 50% of their original thickness.

Based on compressive stress-strain curves presented in Fig. 7, all samples exhibited typical
characteristics of elasto-plastic foams, showing an elastic behavior at low stress, followed by collapse
region and then the stress increased steeply. The deformation mechanism of the foam could be separated
into three different phases during compression [44,45]. At the early stage, a linear-elastic region appears
where the cell walls start to bend. Then, there is a plateau-like state which corresponds to the buckling of
cell walls. When the foam was further compressed to higher strain, its volume decreased and the cell
walls began to collapse, which showed a significant increase in the stress. The compressive strength of
the foams lies in the order of silylated 2,20PVA-MFC-TEOS10,2 foam > silylated 2,20PVA-MFC-MPS10,2
foam > unmodified 2,20PVA-MFC foam in the elastic region of the curves. It showed that the
compression strength of the silylated foams were higher than unmodified 2,20PVA-MFC foams.

The compression stress of unmodified 2,20PVA-MFC foams was 0.31 MPa at 50% strain. Meanwhile,
the compressive strength of silylated 2,20PVA-MFC-MPS10,2 foams and silylated 2,20PVA-MFC-TEOS10,2
foams were 0.43 MPa and 0.64 MPa, respectively (as shown in Tab. 1). It is clearly showed that the
silane treatment could improve the mechanical properties of 2,20PVA-MFC foams which opposite to the
thermal properties results. This result could be attributed to the increase in the degree of hydrogen
bonding within the PVA-MFC network after silylation, which incite an increase in the arrangement of
networks between PVA and MFC [17].

Figure 7: Compressive stress-strain curves of unmodified and silylated 2,20PVA-MFC foams (MPS and
TEOS) compressed to 50% strain
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3.3.6 Swelling Ratio of Unmodified and Silylated PVA-MFC Foams
As observed in Fig. 8, all foams reached an equilibrium swelling state within 24 h. The highest swelling

ratio observed in unmodified 2,20PVA-MFC foams was 10.8%. This result can be ascribed to the
hydrophilicity feature of PVA and MFC. The swelling behavior can be explained by taking into account
that hydrogen-bonding interactions between PVA and MFC free hydroxyl groups occurs in 2,20PVA-MFC
foams [13]. After 2 h water immersion, silane treated sample exhibited ~2.5 times less absorption (2–3%
swelling ratio) compared to unmodified sample (10% swelling ratio). The low values of swelling ratios in
silylated 2,20PVA-MFC-MPS10,2 foams (3.95%) and silylated 2,20PVA-MFC-TEOS10,2 foams (2.65%)
were observed. This might be due to the silane treatment was successfully carried out to enhance the
hydrophobicity of the foam. These differences occurred due to the origin of silylated 2,20PVA-MFC foams
(MPS and TEOS) in specific ionic or hydrogen bonding phenomena [46]. The interaction H-bond
networks between PVA and MFC-SCB are occurred due to both PVA and MFC-SCB are hydrophilic
[47]. In this respect, the silane chemicals (MPS and TEOS) have removed the H-bond networks. Hence,
the ionic charges are no longer active when the surface of the 2,20PVA-MFC foams are silylated and
soaked into water. This phenomenon of hydrophobicity of silylated 2,20PVA-MFC foams was confirmed
by water contact angle analysis.

3.3.7 Solvents and Oils Absorption Capacity of Unmodified and Silylated PVA-MFC Foams
Through the silanization using MPS or TEOS, the 2,20PVA-MFC foams exhibited decreasing of theirs

inherent hydrophilicity features. Hydrophobizing of hydroxylated PVA-MFC by silylating agents (MPS
and TEOS), were expected to serve as absorbents for effective clean and collection of organic solvents
and oils [48]. As seen in Fig. 9, the silylated 2,20PVA-MFC foams were kept floating on the water
surface, whereas the unmodified 2,20PVA-MFC foams was sank into water rapidly.

Table 1: Compressive strength of unmodified and silylated 2,20PVA-MFC (MPS and TEOS) foams at 50% strain

Materials Compressive strength (MPa)

Unmodified 2,20PVA-MFC foam 0.31 ± 0.1

Silylated 2,20PVA-MFC-MPS10,2 foam 0.43 ± 0.2

Silylated 2,20PVA-MFC-TEOS10,2 foam 0.64 ± 0.3

Figure 8: Swelling ratios of unmodified 2,20PVA-MFC foam, silylated 2,20PVA-MFC-MPS10,2 foam and
silylated 2,20PVA-MFC-TEOS10,2 foam
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The absorption capacity of unmodified 2,20PVA-MFC foams could not be measured as it was easily to
absorb water as well as solvents and oils during the absorption capacity tests. Silane-treated samples were
also selectively absorb organic solvent and oil (Figs. 10 and 11) in water-oil environment. Figs. 10a–10c
showed the results of removal of genuine engine oils (0.5 mL) from water using unmodified 2,20PVA-
MFC foam, silylated 2,20PVA-MFC-MPS10,2 foam and silylated 2,20PVA-MFC-TEOS10,2 foam. As
observed, the unmodified 2,20PVA-MFC foam was quickly absorbed water while the silylated 2,20PVA-
MFC-MPS10,2 foam and silylated 2,20PVA-MFC-TEOS10,2 foam were selectively absorb the genuine
engine oil. Based on this observation, there was no residual of genuine engine oils left after these tests,
revealing that the excellent absorption capacity of the silylated 2,20PVA-MFC foams with MPS and
TEOS. These behaviors clearly demonstrated the cooperative hydrophobic interaction is favored over
hydrophilic absorption in silylated 2,20PVA-MFC foams.

The absorption capacity of silylated 2,20PVA-MFC-MPS10,2 foams and silylated 2,20PVA-MFC-TEOS10,2
foams for different oils and organic solvents were measured and presented in Fig. 11. The absorption capacity
of solvents and oils in silylated 2,20PVA-MFC-TEOS10,2 foams were range from 0.41 g/g to 48.59 g/g and 16.42
g/g to 23.7 g/g, respectively. It shows that the highest absorption capacity compared to silylated 2,20PVA-MFC-
MPS10,2 foams. While, the range of solvents and oils in silylated 2,20PVA-MFC-MPS10,2 foams were from 0.78
g/g to 37.8 g/g and 14.56 g/g to 22 g/g, respectively. In general, the absorption capacity of the silylated 2,20PVA-
MFC foams increased with the density of the liquids, as reported for other absorbent materials [49–51]. The
chemical functionalization by MPS and TEOS could cause the modification of surface chemistry of the
pores and led to increment of the oleophilicity, which due to an increase in the capillary pressure of the
medium and low pore connectivity foams [52]. As expected lower absorption values obtained for deionized
water could be linked to the hydrophobicity of silylated 2,20PVA-MFC foams.

3.4 Characterization of Silylated2,20 PVA-MFC-TEOS10,2 Foams
Based on the initial characterization of unmodified and silylated 2,20PVA-MFC-SCB foams (MPS and

TEOS), the silylated 2,20PVA-MFC-TEOS10,2 foams showed good characterization in terms of

Figure 9: The unmodified and silylated 2,20PVA-MFC foams were immersed in water
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morphology, absorption capacity, wetting ability, thermal and mechanical properties. Therefore, it was
further examined in terms of morphology, chemical compositions and specific surface area using FESEM,
XPS and BET surface area, respectively.

Figure 10: Removal of genuine engine oil from water by (a) unmodified 2,20PVA-MFC foam, (b) silylated
2,20PVA-MFC-MPS10,2 foam, and (c) silylated 2,20PVA-MFC-TEOS10,2 foam

Figure 11: Absorption capacity of the silylated 2,20PVA-MFC-MPS10,2 foam and silylated 2,20PVA-MFC-
TEOS10,2 foam for various solvents and oils
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3.4.1 Field Emission Scanning Electron Microscope (FESEM) of 2,20PVA-MFC-TEOS10,2 Foam
The FESEM micrographs (Figs. 12a and 12b) showed the surface of the prepared foams (unmodified

2,20PVA-MFC foams and silylated 2,20PVA-MFC-TEOS10,2 foams) respectively with magnification of 5 k
X. A significant difference in morphology between the unmodified and silylated foams was clearly
observed. Fig. 12a show open small pores of unmodified 2,20PVA-MFC foams. The small pores size were
probably due to the removal of ice crystals in the samples during freeze-drying, which can only form
very small bubbles in the polymer matrix [53]. As can be seen in the image of unmodified 2,20PVA-MFC
foams, the interior of the pores possessed a continuously three-dimensional (3D) porous structure, formed
by randomly entangled MFC fibers and PVA. After 2,20PVA-MFC foam was silylated with TEOS, there
were closed small pores and cloud-like structure observed on 2,20PVA-MFC-TEOS10,2 foam surface.

3.4.2 XPS Analysis of 2,20PVA-MFC-TEOS10,2 Foam
The change in chemical compositions after silane modification with TEOS was further characterized by

X-ray photoelectron spectrometer (XPS). As shown in Fig. 13, the XPS analysis of the unmodified 2,20PVA-
MFC foams and silylated 2,20PVA-MFC-TEOS2,20 foams confirmed the presence of C,O and trace amount of
Si elements. The Si 2p peak appeared in the silylated foam demonstrating the successful silane treatment of
the 2,20PVA-MFC-TEOS10,2 foams. The peak spectrum in Fig. 14 showed the XPS spectrum between 108
and 98 eV of binding energy which indicated the existence of Si 2p peaks as reported in previous study
[54]. The peaks at 102.1 eV and 101.5 eV are represented the Si-O-Si bond and C-O-Si bond,
respectively [48,54,55].

Figure 12: FESEM images of (a) unmodified 2,20PVA-MFC foams and (b) silylated 2,20PVA-MFC-
TEOS10,2 foams at magnification 5 k X

Figure 13: The XPS curves of the unmodified 2,20PVA-MFC foam and silylated 2,20PVA-MFC-TEOS10,2 foam
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The XPS results provide direct proofs for the coupling of TEOS on the 2,20PVA-MFC foams which
enable to elucidate the modification process of 2,20PVA-MFC foam in this study. As expected in
unmodified and silylated 2,20PVA-MFC foams, the main elements detected are carbon and oxygen. The
O/C atomic ratio of unmodified 2,20PVA-MFC foam and silylated 2,20PVA-MFC-TEOS10,2 foam was 0.91
and 0.52, respectively. The O/C atomic ratio of unmodified 2,20PVA-MFC foam was close to the
theoretical value of 0.83 based formula of cellulose [56]. The chemical shifts for C 1 s and O 1 s could
be observed in the XPS spectra (Fig. 13). The binding energy of C 1 s and O 1 s for unmodified 2,20PVA-
MFC foams is 284.95 eV and 530.91 eV, respectively. Meanwhile, the binding energy of C 1 s and O 1 s
for silylated 2,20PVA-MFC-TEOS10,2 foams is 284.8 eV and 529.25 eV, respectively. The binding energy
of C 1 s and O 1 s for unmodified 2,20PVA-MFC foams and silylated 2,20PVA-MFC-TEOS10,2 foams were
shifted to lower value respectively probably due to the rise of hydrogen bonding in the MFC [23].

3.4.3 Brunauer-Emmett-Teller (BET) Specific Surface Area of 2,20PVA-MFC-TEOS10,2 Foam
The subsequent pore structure data was presented in Tab. 2. As can be seen in this table, the surface area

and pore volume of silylated 2,20PVA-MFC-TEOS10,2 foam were 3.14 m2/g and 0.01 cm3/g, respectively. A
low BETsurface area of the silylated foammight be due to the characteristic of silane coupling agent (TEOS)
which is easy to be self-polymerization especially on PVA-MFC foam, where it is frequently decreased the
specific surface area and obstructed the inner pore structure [25,57].

4 Conclusion

The successfully grafted of MPS and TEOS on the surface of foams was proven as showed in FTIR
results. The WCA of both silylated foams possessed a hydrophobic characteristic than the unmodified
2,20PVA-MFC foam. In contrast to unmodified 2,20PVA-MFC foam, both silylated 2,20PVA-MFC foam
show low thermal properties but displayed high compressive strength. The silylated 2,20PVA-MFC foam
also exhibited low swelling ratio and excellent absorption capacity on organic solvents and oils compared
to unmodified 2,20PVA-MFC foam. Silylated 2,20PVA-MFC foam with TEOS showed good
characterization in terms of morphology, absorption capacity, wetting ability, thermal and mechanical
properties compared to the 2,20PVA-MFC foam with MPS. Perhaps this absorbent foam could be
alternative materials used for oil-water separation.

Figure 14: The Si 2p XPS spectrum of silylated 2,20PVA-MFC-TEOS foam

Table 2: Pore structure data of silylated 2,20PVA-MFC-TEOS10,2 foam

Samples SBET (m2/g) Vpore (cm
3/g) Pore Radius Dv (r) (Å)

Silylated 2,20PVA-MFC-TEOS foam 3.14 0.01 19.32
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