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Abstract: With continuous urbanization, cities are undergoing a sharp expansion within 
the regional space. Due to the high cost, the prediction of regional traffic flow is more 
difficult to extend to entire urban areas. To address this challenging problem, we present 
a new deep learning architecture for regional epitaxial traffic flow prediction called 
GACNet, which predicts traffic flow of surrounding areas based on inflow and outflow 
information in central area. The method is data-driven, and the spatial relationship of 
traffic flow is characterized by dynamically transforming traffic information into images 
through a two-dimensional matrix. We introduce adversarial training to improve 
performance of prediction and enhance the robustness. The generator mainly consists of 
two parts: abstract traffic feature extraction in the central region and traffic prediction in 
the extended region. In particular, the feature extraction part captures nonlinear spatial 
dependence using gated convolution, and replaces the maximum pooling operation with 
dynamic routing, finally aggregates multidimensional information in capsule form. The 
effectiveness of the method is evaluated using traffic flow datasets for two real traffic 
networks: Beijing and New York. Experiments on highly challenging datasets show that 
our method performs well for this task. 
 
Keywords: Regional traffic flow, adversarial training, feature extraction, nonlinear 
spatial dependence, dynamic routing. 

1 Introduction 
With the rapid pace of deep learning, these related methods have further fostered the 
development of traffic prediction [Yi, Jung and Bae (2017)]. A lot of traffic data is 
obtainable through the effective channel that extensive deployment of traffic sensors. 
Simultaneously, advanced data processing technology is convenient for converting raw 
trajectory data into traffic flow. The study of traffic prediction has also changed from 
statistical model based on limited traffic data to research model based on data-driven deep 
learning methods. More complex architectures are used to achieve better results than 
traditional methods. Nevertheless, these attempts still focus primarily on traffic forecasts 
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for road networks or small areas [Park, Li, Murphey et al. (2011); Huang, Song, Hong et al. 
(2014); Lv, Duan, Kang et al. (2015); Ma, Yu, Wang et al. (2015)]. Few studies have 
considered an entire transportation network and directly estimated large-scale traffic 
evolution. What’s more, time series forecasts of traffic variables ignored spatial 
characteristics and the spatial information cannot be effectively exploited this way. 
However, with the rapid development of global urbanization, the trend of urban 
expansion to surrounding areas is obvious, especially in metropolitan areas. This 
expansion trend will generate new situations and problems in urban management and 
traffic control. In terms of data collection, due to the influence of daily life and economic 
activities, the traffic data information in the central area is easy to obtain and cover 
widely. In terms of data collection, the influence of daily life and economic activities help 
central area cover more trajectory information. On the contrary, it is difficult to obtain the 
data of an area far from the center, as the coverage is limited, and the cost of data 
collection is increasing. This two-level differentiation phenomenon brings challenges to 
the intelligent traffic management, and proposes new research directions and tasks, i.e., 
regional extension prediction task of short-term traffic flow. This task of traffic flow 
prediction is a novel work, which make an epitaxial prediction from central area to 
surrounding area. As far as we know, this task has not been studied yet. The research of 
this paper has an essential meaning to future urban traffic calculation. 
In order to explore spatial correlation of urban transportation in detail, we use geographic 
information to describe the spatial structure. As shown in Fig. 1, we try to divide the city 
into many regions in a grid form. As a reference, latitude and longitude is necessary. 
Each mesh represents traffic flow of different regions. Traffic flow includes two types: 
inflow and outflow. These can be estimated by the number of pedestrians, cars, and buses 
which enter or go out a region within a specific time interval. The flow between the 
regions always interacts and changes. In order to explore what kind of spatial dependence 
existing between regions, we select 9 regions centering on A (including region A), which 
are four neighbor regions B, C, D and E, respectively, and F, G, H and I far from A. The 
nine regions selected correspond to the urban regional network of Beijing and New York 
respectively. It can be seen in Fig. 2(a), the corresponding relations of Beijing are [16, 
16]-A, [15, 16]-B, [16, 15]-C, [16, 17]-D, [17, 16]-E, [16, 0]-F, [1, 16]-G, [16, 31]-H, [31, 
16]-I, respectively; In fig 2(b), the corresponding relations of New York are [8, 4]-A, [7, 
4]-B, [8, 3]-C, [8, 5]-D, [9, 4]-E, [8, 0]-F, [0, 4]-G, [8, 7]-H, [15, 4]-I, respectively. 
Taking the inflow as an example, Figs. 2(a) and 2(b) respectively show the interactions of 
inflows between different regions in the trajectory data of Beijing and New York over a 
certain time interval. It can be seen from the two figures that the time regularity of traffic 
flow during a short period of time is weakened or even negligible, but the spatial 
correlation performance is particularly prominent. Specifically, in the same time intervals, 
the traffic flows of the adjacent regions B, C, D, and E and the far-distance regions F, G, 
H, and I have the same tendency to change with the region A. It is worth to note that this 
trend indicates that if there is traffic congestion in a certain region, the spatial dependence 
or the influence of congestion propagation in the spatial regions will not only quickly 
affect its neighbors, but also the regions far from it. The reason is the adjacency between 
regions doesn’t necessarily mean the adjacency in the road network, such as the existence 
of subways. Therefore, how to establish an intrinsic relationship model of map attributes 
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and spatial correlation types is of great significance for urban traffic forecasting, which 
can help with real-time traffic control and induction. 
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Figure 1: Urban regional traffic gird diagram 

 
Figure 2(a): The different distance zones’ traffic inflow of adjacent time period trend in 
Beijing. The abscissa contains fifty time intervals, and every time interval has thirty 
minutes. The ordinate is value of traffic inflow 
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Figure 2(b): The different distance zones’ traffic inflow of adjacent time period trend in 
New York. The abscissa contains fifty time intervals, and every time interval has one 
hour. The ordinate is value of traffic inflow 
In response to the tasks mentioned above, we propose a generative adversarial capsule 
network model called GACNet. This method is aimed to predicts traffic flow in the 
surrounding areas by capturing the nonlinear spatial dependence of the near and far 
regions. In order to better extract spatial features and achieve good predictive 
performance, we constructed a model between adversarial capsule network based on the 
idea of confrontation. In addition, we use gated convolution to capture nonlinear spatial 
correlation, and then the maximum merge operation is replaced by dynamic routing to 
aggregate multidimensional information in a capsule form. What we design can improve 
the robustness of the prediction in an effective manner. Finally, this approach would be 
evaluated on a public dataset in a large real-world world. 
The contributions of the paper can be summarized as follows: 
● In view of the trend of urban expansion to surrounding areas in the process of 
urbanization development, we propose a new task of epitaxial regional traffic flow 
forecasting, i.e., to predict the traffic flow of surrounding areas according to the central area. 
This task is original and has important research significance for future traffic prediction. 
● We design an adversarial capsule network model to solve the proposed epitaxial 
regional traffic flow prediction task. In order to better extract the spatial correlation 
between the near and far regions, we collect multidimensional information through the 
dynamic routing of the capsule layer. 
● We use the method of adversarial training, exploiting the discriminant function of the 
discriminator to improve predictive ability of the generator and enhance robustness of the 
model. The approach proposed is verified on real-world data. 
The rest of this paper is structured as follows: The data definitions and problem of our 
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research is described in Section 2. The architecture of our model is described in Section 3. 
The experimental results and analysis of the proposed method are shown in Section 4. 
Finally, Section 5 will draw conclusions and sketch out future research directions. 

2 Related work 
2.1 Traffic prediction method 
Great success deep learning achieved in many challenging tasks means that these 
techniques can be solve the related problems of traffic forecasts. Original method of 
studying traffic prediction was to study the time characteristics and construct a complex 
network structure to simulate time series. This type of method decomposes the traffic 
time series into periodic terms, trend terms and other parts, and strives to analyze 
multiple factors in the real situation, and pursues prediction accuracy. Later, some 
researchers gradually shifted their attention to spatial characteristics, and creatively 
proposed a method of learning traffic as images [Ma, Dai, He et al. (2017)] proposed the 
deep learning architecture of Convolutional Neural Network (CNN) to extract temporal 
and spatial traffic features contained in images, and achieved good prediction 
performance. It is noteworthy that spatio-temporal features can be captured by 
convolutional network better. In complicated scene, therefore, Kim et al. proposes that 
adopting deep learning approach to solve traffic forecasts for road networks [Kim, Wang, 
Zhu et al. (2018)]. Differ from other manners, this way focuses on the temporal features of 
traffic flow, and not treats the time dimension as multi-dimension channel that like images. 
However, what focus on long-term forecasting tasks based on past traffic information would 
not be our emphases for research. In this paper, we will study how to solve one short-term 
forecasting tasks that named regional epitaxial traffic flow prediction. 

2.2 Generative adversarial network 
The appearance of Generative Adversarial Network (GAN) provides a new idea for solving 
deep learning problems [Li, Liang, Zhao et al. (2019)]. It consists of a generator and a 
discriminator. The important point of Generative Adversarial Network is adversarial 
training between the generator and the discriminator. The discriminator distinguishes 
false and real samples to learn iteratively in a supervised way. Through competition of 
two models, generator of network gets continually optimization. This optimization come from 
discriminant loss of the discriminator, finally its purpose is that indistinguishable pseudo-
examples are produced by the generator. The great potential of Generative Adversarial 
Network has verified in many applications [Li, Jiang and Cheslyar (2018)]. As shown in 
Eq. (1), it is objective function of Generative Adversarial Network. 

~ ( ) ~p(z)min min ( , ) [log D(x)] [log(1 ( ( )))]= + −
datax p x zG D

V D G E E D G z                                       (1) 
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3 Preparation materials 
3.1 Data definition 

                      
(a)                                                              (b) 

Figure 3: Urban regional flow processing graph 
As seen as Fig. 3(a), we divide whole city into several grids, and each mesh represents traffic 
flow of different regions. Inflow and outflow can be estimated by the number of pedestrians, 
cars, and buses which enter or go out a region within a specific time interval. Let P be the 
trajectory set of time interval . For the grid  is the row and column, the inflow 
and outflow of the specified time interval are calculated as follows: 
 

              (2) 

              (3) 

where  is anyone trajectory which belong to ; the 

space coordinate indicates the position in the grid region . In the  

time interval, inflow and outflow in whole regions can be expressed as 
, where , .  

The inflow and outflow of each region we get is displayed in the form of images, as shown in 
Fig. 3(b), the depth of yellow represents the flow rate. 

3.2 Problem statement 
In this article, we will identify clearly the research goal. And given the central area 

, predict traffic flow of both sides area, as shown in Fig. 4. 
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Figure 4: Region extension flow prediction graph 

4 Description of our approach 
The GACNet we proposed aims to address the previously mentioned problem that 
predicts epitaxial regional traffic flow. And Fig. 5 illustrates the architecture of GACNet, 
which contains two components: a generator and a discriminator. We introduce a gating 
mechanism in the convolutional layer of the generator’s feature extraction part and add 
different levels of multidimensional features extracted by the capsule layer at the back 
end. The discriminator is trained to distinguish between predicted surrounding area traffic 
and real results. In this section, the architectural details of the generator and discriminator 
are given. 
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Figure 5: Architecture of regional extended traffic prediction 

4.1 Generator 
Due to existence of some special means of transportation such as subway, therefore the 
adjacency in the roads does not represent adjacency between various regions of city 

https://www.baidu.com/link?url=3bj9LPk3eFdKglOI4pPrn-98xE7lJZwpxIa_nwzMzvZ7zdnH_StzmBVF4Pgr1wtpvuaZ5r3ncyvtgyuZ5zuCTNYfBFYr65-kqTLs1o9KDdC1VJg4xUVXAFcii5dfHadf&wd=&eqid=f67bf4660001bc20000000025e805c85
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[Shaw, Fang, Lu et al. (2014)]. In this case, although the CNN acquires some spatial 
features, and the maximum pooling operation is used to construct higher-order features, 
the largest collection loses valuable information by picking the way with the most 
activated neurons. This structure, which uses only one vector to represent relational 
features, can result in impaired accuracy of multi-region association extraction. Even 
with different convolution sizes, the effect on the extraction of multidimensional features 
is not obvious. The proposed capsule network was used to improve the representative 
limitations of CNN [Sabour, Frosst and Hinton (2017); Hinton, Sabour and Frosst 
(2018)]. A capsule is a group of neurons, and each layer contains a number of capsules, 
each of which represents a different property of the same object. One of the main features 
of the capsule is that it has a carrier form, in which the vector output is provided by the 
squash activation function and the artificial neurons are operated by scalars. Unlike 
convolutional network, the use of capsules can extract more local features, such as the 
relative relationship between non-linear spatial traffic features, and high-level capsules 
can be gathered from lower-level capsules through a transformation matrix. 
Inspired by the above-described method, we specially designed the feature extraction part 
to put at the front end of the generator, whose main components are Conv1, Gated Conv2, 
PrimaryCaps, and TrafficCaps. The first convolutional layer, Conv1, has a kernel size of 
4×4, 8 channels, and step size is set to 1. It initially combines the inflow and outflow as 
regional traffic information for dual channel inputs. Then, we introduce a gating 
mechanism in the second layer of the model. Specifically, we use the higher-level 
activations to only process relevant information by filtering out the rest since start. The 
output in the Gated Conv2 layer is defined as follows: 

( ) ( )= ∗ + ⊗ ∗ +u X W a b X V c               (4) 

where X  is the output of convolutional layer, W and V  represent different 
convolution kernels. And parameters a    and c  can be learned continuously. ⊗  represents 
elementwise product between matrices, and sigmoid function is represented as b . 
Since the size of our input image is small, the size of the output is kept constant in the 
design of the first two layers of convolution and the number of channels of the feature 
map is increased. The purpose is to increase the amount of information obtained. 
According to deal with images of traffic flow, The Gated Conv2 layer transform it to 
local feature which is used as inputs of PrimaryCaps. Actually, it is deformation of the 
convolutional layer that has 3×3 kernel size and four channels. PrimaryCaps layer has 
several capsules with 8-dimensional vector. It's worth noting that capsules share their 
weights with each other. 
Dynamic routing performs 3 iterations between PrimaryCaps and TrafficCaps to capture 
important spatial-hierarchical relationships among all capsules in the PrimaryCaps layer 
and each capsule in TrafficCaps layer. After acquiring the high-level capsule feature, we 
perform a nonlinear squash operation on the high-level capsule, ensuring the direction of 
the vector is constant. This operation can be defined as: 
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At the back end of the generator, two fully connected layers are designed to decode, then 
reconstruct the regional spatial relationships by Conv3. In order to refine this detailed 
information, we finally add a convolutional layer Conv4 with 2 channels and output 
regional epitaxial traffic map predicted.  

4.2 Discriminator 
The discriminator accepts the results of the extended prediction and the real image to 
determine whether the input is true or false. It consists of five convolution layers and two 
fully connected layers. The first convolutional layer uses the 32 convolution kernel size, 
while the other four convolutional layers all have 64 kernel size. After convolutional 
layer, we add relu activation. Finally, our fully connected layer with sigmoid activation is 
added to obtain a probability for binary classification. It is worth noted that both the 
generator and the discriminator add an instance normalization (IN) [Ulyanov, Vedaldi 
and Lempitsky (2016)] layer to alleviate the vanishing gradient problem. We use the 
discriminator to train once, while the generator trains twice to balance the training.  
As illustrated in Algorithm 1, our approach is implemented as following: 
By taking traffic flow dataset set as input, the original data is preprocessed and obtains two 
subdata sets including the central region dataset and the surrounding region dataset. Instead 
of using batch training, take the way to train by entering a single piece of data. Firstly, enter 
the data of the central area into the generator to get the preliminary prediction results of the 
surrounding area. Then, train discriminator to distinguish between the real and predicted 
data. After that, keep discriminator parameters fixed, and use the BP algorithm to adjust the 
generator parameters. Finally, output generator (predictor). 

4.3 Loss function 
To train our model better, we follow the training loss function of Least Squares GAN 
[Mao, Li, Xie et al. (2017)]. We mark the generated predicted traffic graph as 0, and the 
real graph as 1. The discriminator is used to distinguish fake and real samples. We adopt 
the mean squared error loss function to approximate the distance between result predicted 
and real value. The way training the generator is effective and achieves the goal of 
improving the quality of result generated. 
The loss function of the discriminator and generator is as follows: 

( ) ( ) ( )( )( )22
~ ~

1 1min ( ) ( ( ) )
2 2

  = − + −    data zGAN x p x z p zD
L D E D x b E D G z a                  (6) 

In the above equation, we choose b=1, to indicate that it is real data, and a=0, to indicate 
that it is forged data. 

( )
2

~
1min ( ) [ ( ( ) 1)]
2

= −
zGAN z p zG

L G E D G x               (7) 
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Algorithm 1: The training procedure of the regional epitaxial traffic flow predictor in 
association with GAN. 
Input: The given dataset U , discriminator D and generator G . 
Output: Final generator (predictor) G . 

Initialization: Preprocessing data U obtain ( ) ( ) ( ){ }1 2= , ,...., nX x x x   and 

( ) ( ) ( ){ }1 2= , ,...., nY y y y ; =∅P ; the initial learning rate of discriminator α ; the initial 

learning rate of generator β ; the initial parameters of discriminator ( )1 1,W b ; the initial 

parameters of generator ( )2 2,W b ; the training iterations is k . 

Training: 
1: for 1=t  to k  do 
2:     for each instance ( )ix  in X  
3:    ( ) ( )( )←i ip G x  

4:             Add ( )ip  to P  

5:             Distinguish the truth and prediction by ( ) ( )( ),i iD y p  

6:                for 1=j  to T  do 

7:                       Keep discriminator parameters ( )1 1,W b  fixed, and use the BP 

algorithm to adjust the generator parameters ( )2 2,W b . 

8:               end for 
9:       end for 

10:  end for 

5 Empirical study 
5.1 Data description 
Experiments on two real-world datasets that will verify the effectiveness of the proposed 
network. Zhang et al. [Zhang, Zheng, Qi et al. (2018)]. The details of our experimental 
datasets are shown in Tab. 1. 
TaxiBJ: We obtain taxi flows from Beijing’s taxicab trajectories, which include four 
time periods: June 1st, 2013 to August 30th, 2013, May 1st, 2014 to June 30th, 2014, 
May 1st, 2015 to June 30th, 2015, December 1st, 2015 to April 10th, 2016. Beijing city is 
divided to 32×32 grids, then we get hourly taxi flows for each grid. 
BikeNYC: The New York’s trajectory data is from the New York bicycle system, which 
spans from April 1st to September 30th, 2014. One piece of data includes: travel time, ID 
of the start and end sites, start time, and end time. New York City is divided to 16×8 
grids, then we get hourly taxi flows for each grid. 
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According to the above data definition, we obtain two types of traffic flow. The data is 
divided into non-overlapping training and test data at a ratio of 8:2.  

Table 1: Experimental datasets 

Dataset Taxi BJ Bike NYC 

Data type Taxi GPS Bike rent 

Location Beijing New York 

Time Span 

2013/7/1~2013/10/30 

2014/4/1~2014/30/9 
2014/3/1~2014/6/30 

2015/3/1~2015/6/30 

2015/11/1~2016/4/10 

Time interval 30 minutes 1 hour 

Size of grid (32, 32) (16, 8) 

Average sampling rate(s) ~60 \ 

taxis/bikes 34000+ 6800+ 

Available time interval 22459 4392 

5.2 Implementation details 
In regard to the efficiency performance, it takes 10 epochs for training. Scale data into the 
range [-1,1], before feeding it into our network. The learning rate of the generator and the 
discriminator are initially set to 0.001 and 0.0001 respectively. And the dropout rate is 0.5. 

5.3 Results and comparison 

                
(a)                                                                                (b) 
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(c)                                                                                    (d) 

Figure 6: The training process of the discriminator and generator on TaxiBJ and 
BikeNYC dataset. We divide the loss value interval from 0.2 to 0.3 into 1000 equal parts. 
The X-axis represents the interval of the loss value, the Y-axis represents the epoch of 
GACNet training, and the Z-axis represents the probability that the loss value belongs to 
a certain interval 
Fig. 6 shows the training processes of the discriminator and generator on the TaxiBJ and 
BikeNYC training sets, respectively. In order to better show convergence of the 
discriminator and the generator in the model training process, we set the loss value 
interval to 0.2-0.3. We divide the average into 1000 segments between 0.2 and 0.3. As 
shown in Figs. 6(a) and 6(b) (respectively), the discriminator and generator of GACNet 
converge very fast on the TaxiBJ dataset, and as the number of epochs increases, the loss 
value remains stable around 0.25. On the BikeNYC dataset, the discriminator and 
generator of GACNet also converge very fast, and gradually stabilize at around 0.25, as 
shown in Figs. 6(c) and 6(d). The training process described above shows that our 
training method performs well on the two training sets. 

Central region            Prediction                           Real 
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Figure 7: Traffic prediction on TaxiBJ dataset 

We present some samples to show intuitively the effect of prediction for on TaxiBJ 
dataset. As showed as Fig. 7, inflow and outflow are visualized. Concretely speaking, 
samples show traffic condition in different areas. We choose two color to represent the 
condition of traffic flow. For high traffic areas, it’s yellow is deeper. On the contrary, the 
deeper the green is, the smaller the traffic flow is. Real the images of traffic flow are 
added to contrast, and it’s obvious that our method proposed is close to real results. The 
visualization has a good performance. 
The visualization shown in Fig. 7 are just one kind form of effect on experiment. 
However, its form has not shown complete performance on so large data set. And, mean 
absolute error (MAE) and root mean squared error (RMSE) [Miyato, Kataoka, Koyama et 
al. (2018); Heusel, Ramsauer, Unterthiner et al. (2018); Lucic, Kurach, Michalski et al. 
(2018)] are intuitive metrics to assess the performance of traffic flow prediction. The two 
performance metrics are defined as: 

2

1

1 ( )
∧

=

= −∑
n

i i
i

RMSE y y
n

              (8) 

1

1 ( )
∧

=

= −∑
n

i i
i

MAE y y
n

              (9) 

Five baselines as comparison are chosen to test the performance of our algorithm 
proposed. CNN [Wang, Zhang, Yang et al. (2015)] is good for extracting features near-
distance spatial for traffic flow. Deformable CNN [Dai, Qi, Xiong et al. (2017)] flexibly 
extracts feature information for important regions by adopting the irregular shape of the 
convolution. Separable CNN [Chollet (2017)] adopt convolution layers to extract features 
then merge, after input data from several channel. Gated CNN [Dauphin, Fan, Auli et al. 
(2017)] uses the gated mechanism in the convolution layer to extract important feature 
information. NonLocalResNet adopt non-local means methods to extract long-range 
dependencies [Wang, Girshick, Gupta et al. (2018)]. Tab. 2 shows the results for the 
proposed GACNet model and the alternative algorithms on the two types of test datasets 
over the 10 epochs. The results show that GACNet is better than other comparison 
algorithms for the regional extension traffic flow prediction task. Compared with the 
Gated CNN, our method provides 5.54% and 6.28% improvement in RMSE and MAE on 
TaxiBJ dataset. In addition, ours provides 37.5% and 35.7% improvement in RMSE and 
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MAE on TaxiBJ dataset. The result shows that adversarial learning can not only improve 
the prediction accuracy, but also stably train. Compared with other models, GACNet has 
a significant advantage in regional traffic flow prediction tasks. 

Table 2: Performance (RMSE, MAE) of GACNet and other algorithms 

Model     RMSE MAE 

 TaxiBJ BikeNYC TaxiBJ BikeNYC 

CNN 36.89 12.47 16.32 6.67 

NonLocalResNet 55.66 10.28 34.59 5.92 

Deformable CNN  19.62 4.68 11.57 2.80 

Separable CNN  16.61 4.78 9.95 2.71 

Gated CNN  15.68 6.45 9.87 3.64 

GACNet 14.81 4.03 9.25 2.34 

6 Conclusion 
In this paper, we have presented a new deep learning architecture, called GACNet for 
regional extension traffic flow prediction task. This approach is absorbed in the design of 
the information extraction structure of the generator, particularly adding the capsule 
network layer with dynamic routing mechanism, which automatically improves spatial 
traffic feature extraction capability. The results show that our model has better predictive 
effect than comparison models on TaxiBJ and BikeNYC datasets. In future work, we will 
present some interesting extensions to this task, such as a further extended forecast in 
space based on the predicted results. 
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