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Abstract: This paper addresses the problem of assessing and optimizing the acoustic 
positioning system for underwater target localization with range measurement. We 
present a new three-dimensional assessment model to evaluate the optimal geometric 
beacon formation whether meets user requirements. For mathematical tractability, it is 
assumed that the measurements of the range between the target and beacons are corrupted 
with white Gaussian noise with variance, which is distance-dependent. Then, the 
relationship between DOP parameters and positioning accuracy can be derived by 
adopting dilution of precision (DOP) parameters in the assessment model. In addition, the 
optimal geometric beacon formation yielding the best performance can be achieved via 
minimizing the values of geometric dilution of precision (GDOP) in the case where the 
target position is known and fixed. Next, in order to ensure that the estimated positioning 
accuracy on the region of interest satisfies the precision required by the user, geometric 
positioning accuracy (GPA), horizontal positioning accuracy (HPA) and vertical 
positioning accuracy (VPA) are utilized to assess the optimal geometric beacon 
formation. Simulation examples are designed to illustrate the exactness of the conclusion. 
Unlike other work that only uses GDOP to optimize the formation and cannot assess the 
performance of the specified size, this new three-dimensional assessment model can 
evaluate the optimal geometric beacon formation for each dimension of any point in 
three-dimensional space, which can provide guidance to optimize the performance of 
each specified dimension. 
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1 Introduction 
The last decade has witnessed tremendous progress in the development of marine 
technology. In the execution of individual and military affairs, marine robotics, for 
example, autonomous underwater vehicle (AUV) and remote operated vehicle (ROV) are 
becoming ubiquitous. Reliable, accurate underwater positioning and navigation systems 
are quite important to the operation of AUV and ROV. Underwater positioning and 
navigation systems mainly include inertial navigation system [Xu, He, Qin et al. (2017); 
Chang, Li and Xue (2017)], geophysical navigation system [Rice, Kelmenson and 
Mendelsohn (2006); Teixeira (2013)], visual navigation system [Bonin-Font, Ortiz and 
Oliver (2008); Eustice, Pizarro and Singh (2008)], acoustic positioning system [Cheng, 
Shu and Liang (2008); Bayat, Crasta, Aguiar et al. (2016)] and integrated navigation 
system [Zhang, Chen and Li (2016); Shabani, Gholami and Davari (2014)]. To locate 
targets in a large range moving for a long time, the acoustic positioning system is always 
utilized. There are many researchers interested in solving the problem of how to place 
beacons in two or three dimensions. Zhang [Zhang (1995)] addressed the problem of 
determining the optimal two-dimensional spatial placement of multiple sensors 
participating in robot perception tasks. Levanon [Levanon (2000)] studied position 
determination in a two-dimensional scenario by achieving the lowest GDOP when range 
measured from beacons optimally located at the vertices of a regular n-sided polygon to 
the target. It can be noted that the definition of GDOP contains the fundamental 
relationship between measurement errors and computed position and time bias errors 
[Rob, Ronald, Christopher et al. (2006)]. In this paper, the definition of dilution of 
precision (DOP) is similar to that in Rob et al. [Rob, Ronald, Christopher et al. (2006)]. 
Moreno-Salinas et al. [Moreno-Salinas, Pascoal and Aranda (2013)] studied the multiple 
target localization with range measurements in unconstrained two-dimensional scenarios. 
Some other works also focused on three-dimensional scenarios. Sonia et al. [Sonia and 
Francesco (2006)] studied optimal sensor placement and motion coordination strategies 
for mobile sensor networks. They investigated the determinant of the fisher information 
matrix (FIM) in the two-dimensional and three-dimensional cases. In order to determine 
the sensor configuration that yields the most accurate positioning, the latter work was 
conducted to maximize FIM its determinant [Moreno-Salinas, Pascoal, Alcocer et al. 
(2010)]. Moreno-Salinas et al. [Moreno-Salinas, Pascoal and Aranda (2011, 2013, 2014, 
2016)], Zhang et al. [Zhang, Chen and Li (2019)], Xue et al. [Xue, Xu, Yu et al. (2018)] 
and Su et al. [Su, Sheng and Xie (2019); Su, Sheng, Liu et al. (2019); Su, Sheng, Leung 
et al. (2019); Su, Sheng, Liu et al. (2020)] also had closely related work. More recently, 
Zou et al. [Zou, Wang, Zhu et al. (2016)] assumed that range measurements had different 
weights depending on their value and took uncertainty of initial node position into 
consideration for the calculation of the determinant of FIM. All the above researches 
focused on the optimal beacon configuration, and only few concentrated on the 
assessment models and rules of acoustic positioning system like assessment models and 
rules of global navigation satellite system (GNSS). For instance, in the work of Wang et 
al. [Wang, Lv and Li (2013)], the assessment models and rules of GNSS interoperability 
with range measurements were previously presented by the authors. Assessment 
parameters such as DOP, navigation satellite system precision and navigation satellite 
system integrity were introduced to assess the GNSS performance. Rajasekhar et al. 
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[Rajasekhar, Dutt and Rao (2016)] presented a study on GPS combined with Indian 
regional navigation satellite system (IRNSS) with DOP to measure the satellite-receiver 
geometry related to positioning accuracy. Also, Swaszek et al. [Swaszek, Hartnett and 
Seals (2017)] analyzed lower bounds DOP to allow users to assess how well their 
receivers are performing respecting the best possible performance, which should be 
useful for users to select satellites with multiple GNSS constellations. 
Inspired by the previous works in the area, we offer the analytic assessment model of 
DOP parameters related to the position accuracy for the problem of evaluating acoustic 
positioning systems in this paper. Then, the geometric beacon placement is optimized 
based on target to beacons range measurements. Next, we require to focus on the values 
of GPA, HPA and VPA over the interesting region where the sampling points taking 
place of the target. The document is organized as follows. In Section 2, DOP parameters 
and positioning accuracy for the assessment model are derived, and the steps to assess the 
acoustic positioning system are listed as well. Section 3 contains the optimal beacon 
configurations for the case where the beacons can be placed freely in both two-
dimensional scenario and three-dimensional scenario. The results of Section 3 are then 
examined in Section 4 for the particular scenario, and the steps to assess the acoustic 
positioning system in practice are shown. Finally, Section 5 includes conclusions and 
further research. 

2 Assessment model: DOP parameters and position accuracy 
The DOP parameters in Rob et al. [Rob, Ronald, Christopher et al. (2006)] are defined as 
geometry factors that relate the target position errors to the measurements of the ranges 
errors. Generally, the receiver and beacons clock both have bias errors from the system 
time and the bias errors are about a few microseconds, and the speed of sound in water is 
about 1500 m/s. Consequently, the measurements errors are insignificant compared to the 
accuracy of positioning and the DOP parameters in this paper do not consider the clock 
bias errors. 
Next, the position of the ith beacon is (xi, yi, zi) relative to the coordinate origin, and the 
actual position coordinates (x, y, z) of the target are considered unknown. In order to 
achieve the position of the target in three dimensions, ideal measurements of ranges are 
made with n (n>3) beacons from equations: 

2 2 2( , , ) ( ) ( ) ( )i i i id f x y z x x y y z z= = − + − + −                                                              (1) 

where di is the ideal measurement of range from the ith beacon to the target without noise 
interference, i ranges from 1 to n and references the beacons. 
However, the measurements are always corrupted by noise. We assume that all noise 
sources are independent and have equal variance. Using this notation, the measurement 
model is given by: 

2 2 2( ) ( ) ( )i i i i iD x x y y z z ω= − + − + − +                                                                         (2) 

where Di is the actual measurement of range from the ith beacon to the target with noise 
interference, iω  is the measurement error taken to be a zero mean Gaussian process 
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2(0, )N σ with covariance is 2σ . 

Assuming that the position of the target is approximately estimated as (xe, ye, ze) when the 
measurements are corrupted by noise. However, we still use Eq. (1) to estimate the 
position of the target, and so we can obtain the expression as follows: 

2 2 2( , , ) ( ) ( ) ( )i e e e i i iD f x y z x x y y z z= = − + − + −                                                         (3) 

We can denote the offset of the actual position (x, y, z) from the approximate position by 
a displacement ( , , )x y z∆ ∆ ∆ : 

e e ex x x y y y z z z= + ∆ = + ∆ = + ∆， ，                                                                               (4) 

Substituting Eq. (4) into Eq. (1), we can attain the expression: 
( , , ) ( , , )e e ef x y z f x x y y z z= + ∆ + ∆ + ∆                                                                             (5) 

The function in the right of Eq. (5) can be expanded about the approximate target’s 
position using a Taylor series: 

( , , ) ( , , )
( , , ) ( , , ) ( , , )

e e e e e e

e e e e e e e e e

e e e

f x x y y z z f x y z
f x y z f x y z f x y zx y z

x y z

+ ∆ + ∆ + ∆ = +
∂ ∂

∆ + ∆ + ∆
∂ ∂ ∂

                                                       (6) 

The expansion has been truncated after the first-order partial derivatives and the partial 
derivatives evaluate as follows: 

( , , ) ( )

( , , ) ( )

( , , ) ( )

e e e i e

e i

e e e i e

e i

e e e i e

e i

f x y z x x
x D

f x y z y y
y D

f x y z z z
z D

∂ −
= −

∂
−

= −
∂

∂ −
= −

∂

                                                                                                 (7) 

Substituting Eq. (7) into Eq. (6) yields: 
( ) ( ) ( )i e i e i e

i i
i i i

x x y y z zd D x y z
D D D
− − −

= − ∆ − ∆ − ∆                                                             (8) 

For convenience, we will simplify Eq. (8) by introducing new variables, where: 
( ) ( ) ( )i e i e i e

xi yi zi
i i i

x x y y z za a a
D D D
− − −

= = =， ，                                                                 (9) 

By substituting Eq. (9) into Eq. (8), it gives: 

i i i xi yi ziD d a x a y a zω = − = ∆ + ∆ + ∆                                                                                  (10) 

Now, the three unknowns composing the vector T( , , )x y z∆ = ∆ ∆ ∆u  and the unknown 
quantities can be determined by solving the matrix, which can be shown as: 
∆ = ∆d H u                                                                                                                        (11) 
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where T donates the transpose of matrix; the matrix ∆d  and observation matrix H  are 
described by making the definitions: 

1

2

n

ω
ω

ω

 
 
 ∆ =
 
 
 

d


                                                                                                                       (12) 

1 1 1

2 2 2

x y z

x y z

xn yn zn

a a a
a a a

a a a

 
 
 =
 
 
  

H
  

                                                                                                      (13) 

If vectors ( , , )xi yi zia a a  do not all lie in a plane, the weighting matrix (HTH) will be 
invertible. Thus, the method of least squares can be used to solve Eq. (11) for  ∆u : 

T 1 T( )−∆ = ∆u H H H d                                                                                                        (14) 

In fact, the ideal positioning accuracy is decided by ∆u , and then the covariance of ∆u  is 
obtained by forming the product and computing an expected value T∆ ∆u u : 

( )TT T 1 T T 1 T

T 1 T T T 1 T 1 T T 1

cov E[ ] ( ) ( )

( ) ( ) ( ) cov( ) ( )

− −

− − − −

 ∆ = ∆ ∆ = ∆ ∆  
 = ∆ ∆ = ∆ 

u u u H H H d H H H d

          H H H d d H H H H H H d H H H
                 (15) 

The usual assumption is that iω  is distributed and independent, with zero mean Gaussian 
process whose variance is 2σ . The covariance of ∆d  is a scalar multiple of the identity: 

2
n nσ ×I , where n n×I  is the n×n identity matrix. Thus, the result of Eq. (15) can be derived as: 

2 T 1 T T 1 2 T 1cov ( ) ( ) ( )σ σ− − −∆ = =u H H H H H H H H                                                           (16) 

Under the stated assumptions, the covariance of the errors of the position is just a scalar 
multiple of the weighting matrix T 1( )−H H . The covariance of ∆u  is a 3×3 matrix and 
has an expanded representation: 

2

2

2

cov
x x y x z

x y y y z

x z y z z

σ σ σ σ σ
σ σ σ σ σ
σ σ σ σ σ

 
 ∆ =  
  

u                                                                                     (17) 

The components of the weighting matrix T 1( )−H H  quantify how measurement errors 
translate into components of the covariance of ∆u . The weighting matrix T 1( )−H H  can 
be expressed in a component form: 



 
 
 
1010                                                                       CMC, vol.64, no.2, pp.1005-1023, 2020 

11 12 13
1

21 22 23

31 32 33

( )T

D D D
D D D
D D D

−

 
 = =  
  

H H D                                                                                    (18) 

Unlike other work that only uses GDOP to optimize the formation, which cannot assess 
the performance of any specified dimensions, more DOP parameters are presented in this 
paper, and GDOP, HDOP and VDOP are utilized to assess the optimal geometric beacon 
formation in each dimension for any point in three-dimensional space: 

2 2 2

11 22 33

2 2

11 22

2

33

GDOP

HDOP

VDOP

x y z

x y

z

D D D

D D

D

σ σ σ

σ

σ σ

σ

σ
σ

+ +
= + + =

+
= + =

= =

                                                                 (19) 

To assess the acoustic positioning system, the sampling points over interesting region are 
adopted to take place of the approximate position of the target. Next, the observation 
matrix H is achieved by Eq. (20): 

1 1 1

1 1 1

2 2 2

2 2 2

s s s

s s s

n s n s n s

n n n

x x y y z z
r r r

x x y y z x
r r r

x x y y z z
r r r

− − − 
 
 
 − − −
 =  
 
 

− − − 
  

Η
  

                                                                                   (20) 

where (xi, yi, zi), i=1···n denotes the position of the ith beacon in three dimensions, (xs, ys, 
zs) denotes the sampling point position over interesting region in three dimensions, ri is 
the range between the ith beacon and the sampling point. 
Eq. (20) is valid and provides that the range measurement errors are sufficiently small, so 
that the error between the actual position of the sample point and approximately 
estimated position can be ignored. The minimum of σ  is c/2f in theory, where c is the 
speed of propagation of sound in the water, f is the frequency of sound in the water. 
However, σ  in practice is always far larger than c/2f. Multiply σ  by GDOP, HDOP and 
VDOP, respectively, so GPA, HPA and VPA will be obtained, correspondingly. 

2 2 2

2 2

GPA GDOP

HPA HDOP

VPA VDOP

x y z

x y

z

σ σ σ σ

σ σ σ

σ σ

= + + = ×

= + = ×

= = ×

                                                                               (21) 

Compare GPA, HPA and VPA with the user requirements and decide whether the 
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positioning accuracy meets the user requirements. If they cannot satisfy the needs, it 
means more beacons are required, e.g., add the beacons in the horizontal plane of HPA, 
add the beacons in the vertical plane for VPA, and add the beacons in main horizontal 
plane fir GPA. 
According to the above analysis, the steps to assessment acoustic positioning system can 
be summarized as follows: 
1. Determine the optimal beacons configurations with n beacons: the beacons should be 

distributed at the vertices of a regular n-sided polygon on the same plane. This 
conclusion can be brought in Section 3. 

2. According to the spatial resolution needed by users, the sampling points should be 
ensured in space, then compute the ranges from beacons to all sampling points in 
space by Eq. (1). 

3. Define the variance of range measurements errors σ , obtain the DOP parameters, 
GDOP, HDOP and VDOP by Eq. (19), and compute the GPA, HPA and VPA by Eq. 
(21). 

4. Determine whether increase the number of beacons into the acoustic positioning 
system according to the comparison between the ideal positioning accuracy and the 
requirements of users. 

3 The optimal beacons configurations with DOP parameters 
3.1 Two-dimensional scenarios 
This section addresses the problem of estimating beacon placement for underwater target 
positioning in two-dimensional space under the condition that the beacons and the 
sampling point are on the horizontal plane. In this situation, H is singular, so the matrix D 
does not exist. To simplify without loss of generality, the sampling point is regarded as 
the origin in the inertial coordinate frame hereinafter. It is assumed that the position of 
the ith beacon is located on the point whose radius is ri and the polar angle is iα , so the 
polar coordinate of the ith beacon is ( cosi ir α , sini ir α ), while the matrix H can be 
simplified as H1: 

1 1 1 1

1 1
1 1

2 2 2 2
2 2

2 21

2

cos sin

cos sin
cos sin

cos sin

cos sin
cos sin n

n n n n

n n

r r
r r

r r
r r

r r
r r

α α

α α
α α

α α

α α
α α

 
 
   
   
   = =   
   
   
 
  

H
 

 

                                                              (22) 

At this point, the vectors of X and Y can be defined as: 
[ ]
[ ]

1 2

1 2

cos cos cos

sin sin sin
n

n

α α α

α α α

=

=

X       

Y       





                                                                                     (23) 
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It can be obviously seen that the analytical relationship of the determinant of X and Y is 
as follows: 

2 2 n+ =X Y                                                                                                                   (24) 

As a consequence, f can be defined as the angle formed by vectors X and Y, and the 
weighting matrix T 1

1 1 1( )−=D H H  is parameterized by two vectors X and Y: 
2

1
2 2

1 1
1 T2

1 1
1 1

| || | cos
cos cos sin | || | cos

det( )cos sin sin

n n
i i ii i

n n
i i ii i

φ
α α α φ

α α α

−

= =

= =

 −
   −  = =

 
 

∑ ∑
∑ ∑

Y Y X
Y X X

D
H H

     (25) 

The determinant of T
1 1H H  yields: 

T 2
1 1det( ) | || | (1 cos )φ= −H H Y X                                                                                     (26) 

Correspondingly, 2cos 0φ =  is the only feasible solution to make the 
T

1 1det( )H H  largest 
that implies that vectors X and Y are orthogonal. This condition makes T

1 1H H  be a 
diagonal matrix and T

1 1det( )H H  , which can be written as: 
T 2 2 2 2 2 2 2

1 1det( ) | | | | | | ( | | ) (| | / 2) / 4n n n= = − ≤ − − +H H Y X X X X                                  (27) 

Finally, we can get Eq. (28): 

2

4HDOP
/ 4

n
n n

≥ =                                                                                                    (28) 

We now need to ensure the beacon configurations. The sampling point needs to be 
defined at the center of  an n-sided regular polygon (n≥2), and the n beacons are placed at 
the vertices of a regular n-sided polygon. Next, the coordinate of the ith beacon is 
described as: 

2 ( 1) 2 ( 1)cos , sin 1,2, ,i i
i ir r i n
n n

π π− −  = 
 

                                                                   (29) 

Then, the matrix H1 can be described as: 

1

cos0 sin 0
2 2cos sin

2 ( 1) 2 ( 1)cos sin

n n

i i
n n

π π

π π

 
 
 
 =  
 

− − 
  

H
 

                                                                                 (30) 

With the Fourier summation formulas: 
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2 2

1 1

1

1 1

2 ( 1) 2 ( 1)cos sin
2

2 ( 1) 2 ( 1)cos sin 0

2 ( 1) 2 ( 1)cos sin 0

n n

i i
n

i
n n

i i

i i n
n n

i i
n n
i i
n n

π π

π π

π π

= =

=

= =

− −
= =

− −
=

− −
= =

∑ ∑

∑

∑ ∑

                                                                         (31) 

Substituting Eq. (31) into Eq. (25) yields: 
1

1

2 00
2

20 0
2

n
n

n
n

−
  
  

= =   
  
     

D                                                                                                (32) 

It can be concluded that in two-dimensional scenarios, it is clear that the beacon 
configurations have no explicit dependence on the ranges, only related to the angles that 
the range vectors form with the unit axes of the frame. Moreover, for position 
determination, based on n range measurements (n>2), the lowest possible HDOP is  
2 n . This value will occur when the sampling point is on the initial point, and the n 
beacons are located at the vertices of regular n-sided polygon. Besides, more optimal 
beacon configurations can be generated by two methods: 1) multiplying the range of each 
beacon to the sampling point by an arbitrary positive number as long as the sampling 
point could receive the signals from all beacons. 2) rotating the beacon formation rigidly 
in terms of an arbitrary axis. However, these two approaches can only achieve the lowest 
possible HDOP constant when the sampling point is on the initial point, and the n 
beacons are located at the vertices of regular n-sided polygon. 

3.2 Three-dimensional scenarios 
Similar to the two-dimensional scenarios, the sampling point is considered to be located 
at the origin of the inertial coordinate frame hereinafter. Assume that the position of the 
ith beacon is located on the point (xi, yi, zi), and the range between the sampling point and 
the beacon is  2 2 2

i i i ir x y z= + + . The angles ( , , )i i iα β γ  can be defined as Eq. (33): 

cos /
cos /
cos /

i i i

i i i

i i i

x r
y r
z r

α
β
γ

=
=
=

                                                                                                                  (33) 

The coordinate of the ith beacon can be defined as  ( cos , cos , cos )i i i i i ir r rα β γ , and the 
matrix of H becomes: 
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1 1 1

2 2 2
1

cos cos cos
cos cos cos

cos cos cosn n n

α β γ
α β γ

α β γ

 
 
 =
 
 
 

H
  

                                                                                       (34) 

It is convenient to introduce the vectors X, Y and Z as: 

[ ]
[ ]
[ ]

1 2

1 2

1 2

cos cos cos

cos cos cos

cos cos cos

n

n

n

α α α

β β β

γ γ γ

=

=

=

X       

Y       

Z       







                                                                                     (35) 

The relationship of the determinant of X, Y and Z is shown as follows: 
2 2 2 n+ + =X Y Z                                                                                                         (36) 

Thus, Eq. (18) can be rewritten as: 
12

21

2

cos cos

( ) cos cos

cos cos

T

ϕ θ

ϕ ω

θ ω

−

−

 
 
 = =
 
  

X X Y X Z

D H H X Y Y Y Z

X Z Y Z Z

                                            (37) 

where ϕ , θ  and ω  are the angles formed by vectors X, Y and Z, respectively. From Eq. 
(37), it follows that: 

2 2 2 2 2 22 2 2

T

(1 cos ) (1 cos ) (1 cos )
GDOP

det( )
ω θ ϕ− + − + −

=
Y Z X Z X Y

H H
                  (38) 

The determinant of TH H  yields: 
2 2 2T 2 2 2det( ) (1 2cos cos cos cos cos cos )ω θ ϕ θ ω ϕ= + − − −H H X Y Z                     (39) 

We suppose a procedure inspired in the two-dimensional problem; the optimal solution is: 
cos cos cos 0ω θ ϕ= = =                                                                                                  (40) 

In this situation, it follows that: 
2

2 2 2

2

2 2 2

2

2 2 2

1 cos 1
1 2cos cos cos cos cos cos

1 cos 1
1 2cos cos cos cos cos cos

1 cos 1
1 2cos cos cos cos cos cos

ω
ω θ ϕ θ ω ϕ

θ
ω θ ϕ θ ω ϕ

ϕ
ω θ ϕ θ ω ϕ

−
=

+ − − −

−
=

+ − − −

−
=

+ − − −

                                                        (41) 

It can be demonstrated that 1 is the minimum possible value. Without loss of generality, a 
smaller value can be supposed to satisfy: 
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2

2 2 2

1 cos 1
1 2cos cos cos cos cos cos

ω
ω θ ϕ θ ω ϕ

−
<

+ − − −
                                                        (42) 

Generally, the determinant of symmetrical matrix TH H  is not less than 0. Moreover, 
GDOP is inexistence when the determinant of T 0=H H . Therefore, the determinant of 

T 0H H>  is in consideration. In this situation, the above inequality is equivalent to: 
2 22cos cos cos cos cosω θ ϕ θ ϕ− −                                                                                  (43) 

Because cos 1ω < , it follows that: 
2 22cos cos cos cos cosω θ ϕ θ ϕ≤ +                                                                                 (44) 

This conclusion contradicts Eq. (43). Therefore: 
2

2 2 2

1 cos 1
1 2cos cos cos cos cos cos

ω
ω θ ϕ θ ω ϕ

−
≥

+ − − −
                                                        (45) 

Similarly, we can prove that: 
2

2 2 2

2

2 2 2

1 cos 1
1 2cos cos cos cos cos cos

1 cos 1
1 2cos cos cos cos cos cos

θ
ω θ ϕ θ ω ϕ

ϕ
ω θ ϕ θ ω ϕ

−
≥

+ − − −

−
≥

+ − − −

                                                        (46) 

In such circumstances, GDOP is computed as: 

2 2 2 2 2 2 2

1 1 1 1 1 1GDOP
n

= + + = + +
− −X Y Z X Y X Y

                                        (47) 

The binary function ( , )f a b  can be constructed as follows: 

1 1 1( , )f a b
a b n a b

= + +
− −

                                                                                             (48) 

The Hessian matrix of Eq. (48) is: 
2

3 3 32

2

3 3 32

2 2 2( , ) ( , )
( ) ( )

Hessian
2 2 2( , ) ( , )

( ) ( )

f a b f a b
a n a b n a ba ab

f a b f a b
n a b a n a bab b

  ∂ ∂ +   − − − −∂ ∂   = =
  ∂ ∂ +   − − − −∂ ∂   

                 (49) 

where it is easy to proof that the Hessian matrix of Eq. (48) is positive definite, the 
minimum value of ( , )f a b  is obtained provided that the first derivatives equal to 0: 

2 2

2 2

( , ) 1 1 0
( )

( , ) 1 1 0
( )

f a b
a n a b a

f a b
b n a b b

∂
= − =

∂ − −
∂

= − =
∂ − −

                                                                                      (50) 
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Having that: 

3
na b= =                                                                                                                          (51) 

Substituting this result in Eq. (36), we obtain: 
2 2 2

3
n

= = =X Y Z                                                                                                        (52) 

Next, the geometric configuration can be established in three-dimensional scenarios. To 
simplify the computation, we assume that the optimal beacon formations are placed on a 
unit sphere centered at the sampling point. Inspired by the work in two-dimensional 
scenarios, we address the problem of optimal beacon placement subject to the condition 
that the beacons are on the same plane. Then, the beacons may be distributed at the 
vertices of a regular n-sided polygon, which belongs to the circumference of the plane 

1 3z =  or on the circumference of the plane 1 3z = − . In addition, the optimal 
radius. Next, a simple proof of this geometric configuration can be presented. Firstly, the 
positions of the beacons in polar coordinates can be rewritten as: 
cos /
cos /
cos /

i i i i

i i i i

i i i i

x r x
y r y
z r z

α
β
γ

= =

= =

= =

                                                                                                           (53) 

Because all beacons are distributed on the circumference of the plane 1 3z =  or on the 
circumference of the plane 1 3z = − , so it follows that: 

2

2 2
1

cos 1 3

cos 3
i

n
ii

n

γ

γ
=

=

= =∑Z
                                                                                                   (54) 

With the conclusion in Eq. (31), we can get: 

( )

( )

2 2
1 1

2 2
1 1

1 1

1 1

1 1

2 ( 1)/ cos
2

2 ( 1)/ sin
2

2 ( 1) 2 ( 1)cos sin 0

2 ( 1)cos 0

2 ( 1)sin 0

n n
ii i

n n
ii i

n ni i
i i

n ni
i i

n ni
i i

i nx R
n
i ny R
n

x y i i
R R n n
x i
R n
y i
R n

π

π

π π

π

π

= =

= =

= =

= =

= =

−
= =

−
= =

− −   = =  
  

−  = = 
 

−  = = 
 

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

                                                       (55) 

Therefore, we can obtain the formulas as follows: 
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( )

( )

( )

2 2 2
1

2 2 2
1

1

1

1

2 3

2 3
0

1 3 0

1 3 0

n
ii

n
ii

n
i ii
n

ii
n

ii

n nx R

n ny R

x y

x

y

=

=

=

=

=

= = × =

= = × =

= =

= =

= =

∑

∑

∑
∑
∑

X

Y

X Y

X Z

Y Z

                                                                                         (56) 

Besides, Eq. (37) yields: 
1

T 1

3 0 0 3 0 0
( ) 0 3 0 0 3 0

0 0 3 0 0 3

n n
n n

n n

−

−

   
   = = =   
      

D H H                                                   (57) 

Once the optimal beacon placement on a unit sphere in three-dimensional scenarios is 
found in terms of the direction cosines achieved above, more infinite optimal beacon 
placements can be generated by multiplying the range of each beacon to the sampling 
point by an arbitrary positive number, as long as the sampling point can receive the signal 
from the beacons. The lowest possible GDOP is 3 n  based on the n range 
measurements (n>3). 
An interesting problem arises: whether HDOP and VDOP can attain the lowest value 
when the optimal beacons configurations cause GDOP lowest. The answer is no. Assume 
that the coordinate of the ith beacon is (xi, yi, zi), without loss of generality, if the beacons 
are located on a circle centered at the sampling point, which can be described as: 

2 2 2ˆi ix y r+ =                                                                                                                     (58) 

With the condition shown in Eqs. (36) and (40), HDOP and VDOP can be described as: 
2

2 2

2 2 2 2

2 2 2 21 1

2 2 2 2 2 2 2 2 2 2

2 2 2 2
1 1 1 1

1 1 ˆHDOP

ˆ ˆ

ˆ ˆ ˆ ˆ( ) ( ) ( )

n ni i
i i

n n n n
i i i ii i i i

zn n
r z

x y
r z r z

n r z nz r z n r z r
x y x y

= =

= = = =

−
+= + =

+ +

+ − + +
= =

∑ ∑

∑ ∑ ∑ ∑

X Y

        

                                               (59) 

2

2 2 2

2 2

ˆ1 1 1VDOP 1

ˆ

r
z n zn

r z

 
= = = + 

 
+

Z
                                                                  (60) 

It can be demonstrated that the vertical distance z between beacons and sampling point 
becomes larger, HDOP will be larger, and VDOP will be smaller. In many practical 
applications of interest, however, the sampling point depth can be measured directly with 
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a small error. Thus, there is no need to estimate it with acoustic range measurements. 
Therefore, based on the GDOP or HDOP, we can decide whether the beacons 
configurations meet user needs. 

4 Simulation examples 
4.1 Optimal beacon placement in two-dimensional scenarios 
If there is only one sampling point in the acoustic positioning system and is known to 
users, Section 3.1 clearly shows that the optimal beacons are placed at the vertices of 
regular n-sided polygon. Under the experimental conditions, it is necessary to estimate 
the positioning accuracy in term of the beacon formation for anywhere in the acoustic 
positioning system. To achieve this goal, HPA with hypothetical sampling point on a grid 
in a finite spatial region A is computed. In this paper, the region A will always be a 
rectangle. The formation is one in which four beacons are placed at p1=[2000, 2000] m, 
p2=[-2000, 2000] m, p3=[-2000, -2000] m, p4=[2000, -2000] m. It can be assumed that all 
range measurements are corrupted by additive zero mean Gaussian noise with variance 
σ =1 so that the values of HPA are equal to that of HDOP. The spatial resolution chosen 
is 2 m×2 m. 

 
Figure 1: HPA in the 3D view in two-dimensional scenarios 
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Figure 2: Level curves of HPA in two-dimensional scenarios 

The simulation results of HPA are presented in Figs. 1 and 2. In Fig. 1, the values of HPA 
in 3D view for region A are shown. It is important to note that the HPA obtained at the 
point of beacon is computed with three other beacons, without the beacon location itself, 
so as to avoid Tdet( )H H =0. Thus, the values of HPA at these points are extra-large. In 
Fig. 2, the level curves of HPA in region A are indicated. We can draw the conclusion 
that the better performance obtained in two-dimensional scenarios is within the circle of 
1.02, meaning that around the center of the beacon is more accurate than that nearby the 
beacon. Furthermore, the better positioning region in two-dimensional scenarios is like a 
square, but rotated 90 degrees to the beacon formation. 

4.2 Optimal beacon placement in the three-dimensional scenario 
For the three-dimensional scenario, the beacons are supposed to be placed on the 
surface of the sea, and the coordinates are p1=[2000, 2000, 0] m, p2=[-2000, 2000, 0] m, 
p3=[-2000, -2000, 0] m, p4=[2000, -2000, 0] m. Similar to the two-dimensional 
scenario, all range measurements are assumed to be corrupted by additive zero mean 
Gaussian noise with variance  σ =1. The height of the sampling point at three different 
levels is taken into account in the computation of the GPA involved in the optimization 
figuration. The depths of the sampling points are assumed to be -1000 m, -2000 m and -
3000 m, respectively. The spatial resolution chosen is 2 m×2 m. In Figs. 3 and 4, GPA 
values of the -2000 m sampling points are supplied. The other GPA values of the -1000 
m and -3000 m sampling points are similar to those of -2000 m. They are not addressed 
in this paper due to space limitations. The comparisons of GPA, HPA and VPA 
between different heights of sampling points are provided in Tab. 1. 
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Figure 3: Level curves of HPA in three-dimensional scenarios 

 
Figure 4: Level curves of HPA in three-dimensional scenarios 

From Fig. 3, the best theoretical accuracy can be obtained at the center of beacons. This 
implies the target around the center of the beacons can achieve more accurate positioning 
than targets nearby the beacons. As can be seen from Fig. 4, in the three-dimensional 
scenario, the area with better positioning is also like a square, similar to the beacon 
formation. Therefore, the beacons for acoustic positioning should be located outside the 
region of interest. Moreover, the better performance will be achieved when the distances 
between beacons are larger, only if the target could receive the signals from all beacons. 
In the interesting region, GPA shows ideal accuracies in some parts of the interesting 
region. This fact is of great importance to determine the number of beacons needed or 
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whether the positioning accuracy over a given area meets user needs. 
For each case in the three-dimensional scenario, the minimum and maximum GPA, HPA 
as well as VPA are computed with the optimal beacon placement. The results are shown 
in Tab. 1. 

Table 1: Results for three different heights of the sampling points 
       GPAmin GPAmax HPAmin HPAmax VPAmin VPAmax 
-1000 m 1.5651 1.9538 1.0607 1.2862 0.9682 1.5811 
-2000 m 1.5000   1.7464 1.2247 1.4491 0.8602 1.0000 
-3000 m 1.6116 1.9274 1.4577 1.6748 0.6872 0.9539 

Obviously, it can be shown that the minimum of GPA(GDOP) is obtained when the 
height of the sampling point is -2000 m, and this value satisfied the formula 
3 3 4 1.5n = = . Furthermore, the data in Tab. 1 imply that HPA(HDOP) grows 
proportional to the height of sampling points. However, VPA(VDOP) increases inversely 
proportional to the height of sampling points. This conclusion is consistent with the 
theory in Section 3.2. 

5 Conclusions 
This paper offers a new characterization of the solutions to assess and optimize the 
acoustic positioning system. By assuming that the range measurements between the 
sampling points and the acoustic beacons are corrupted by white Gaussian noise, the 
assessment parameter DOP related to the positioning accuracy can be derived. Then, the 
best positioning accuracy to be obtained is converted into that of minimizing the GDOP 
conveniently. Furthermore, unlike other work only use GDOP to optimize the formation 
and cannot assess the performance of any specified dimensions whether users satisfy, we 
apply GPA, HPA and VPA to assess the optimal geometric beacon formation in each 
dimension for any point in the three-dimensional space. This new assessment model can 
provide users with guidance advice to optimize performance of each specified dimension. 
Finally, numerical simulations support the view that the methodology proposed to 
estimate performance of the acoustic system is feasible. Future work will be aimed at: 1) 
extending the methodology developed to deal with time bias errors; 2) studying the 
performance of the acoustic positioning systems in the case of the beacons moving with 
ocean currents. 
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