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Abstract: In recent years, with the continuous advancement of the intelligent process of 
the Internet of Vehicles (IoV), the problem of privacy leakage in IoV has become 
increasingly prominent. The research on the privacy protection of the IoV has become the 
focus of the society. This paper analyzes the advantages and disadvantages of the existing 
location privacy protection system structure and algorithms, proposes a privacy protection 
system structure based on untrusted data collection server, and designs a vehicle location 
acquisition algorithm based on a local differential privacy and game model. The algorithm 
first meshes the road network space. Then, the dynamic game model is introduced into the 
game user location privacy protection model and the attacker location semantic inference 
model, thereby minimizing the possibility of exposing the regional semantic privacy of the 
k-location set while maximizing the availability of the service. On this basis, a statistical 
method is designed, which satisfies the local differential privacy of k-location sets and 
obtains unbiased estimation of traffic density in different regions. Finally, this paper 
verifies the algorithm based on the data set of mobile vehicles in Shanghai. The 
experimental results show that the algorithm can guarantee the user’s location privacy and 
location semantic privacy while satisfying the service quality requirements, and provide 
better privacy protection and service for the users of the IoV. 
 
Keywords: The Internet of Vehicles, privacy protection, local differential privacy, location 
semantic inference attack, game theory. 

1 Introduction 
The Internet of Vehicles is the application of mobile ad hoc networks and the Internet of 
Things (IoT) in the transportation industry. The specific components of the IoV can be 
divided into: vehicle nodes, vehicle units, roadside communication units, data collection 
servers and service providers. The data collection server collects the location service data 
of the mobile vehicle, including the location, speed, direction and time of the vehicle. The 
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service provider of the (IoV) analyzes and mines the data, and draws some conclusions to 
support the location-based service (LBS), to facilitate the optimization of urban road 
planning, business decisions. As people pay attention to personal privacy, more and more 
users are not willing to share their precise location data and most data collection servers 
are untrustworthy. Users, even more, expects that the car network data has been subjected 
to privacy protection processing before leaving the vehicle node. This is true even if the 
data collection server cannot obtain the user’s accurate data. 
Localized differential privacy (LDP) [Ye, Meng, Zhu et al. (2018)], which has emerged in 
recent years, is the best way to solve the above problems. The existing localized differential 
privacy protection technologies are based on a stand-alone system structure, which is a C/S 
structure composed only of a client (i.e., a mobile device) and a server. The user 
independently performs a perturbation mechanism according to requirements, directly 
perturbs the protected data, send to the service provider and obtain the corresponding query 
result. The system structure is simple to implement as there is no limitation of third-party 
security bottleneck, but the client only performs the disturbance processing for itself, 
completely ignoring the real environment information for the release location and the 
actual location If the deviation is too large, not only the location is easily filtered by the 
attacker but also reduces the quality of service obtained by the user; if the publishing 
location is close to the actual location, it is easy to expose the user’s location semantics. 
Therefore, the local differential privacy protection scheme of the IoV needs to be combined 
with the real environmental information and balance the effectiveness and usability of 
privacy protection for further research. 
This paper studies the application of local differential privacy and game model in the 
process of data acquisition of the IoV. The main work is summarized as follows: 
i. Based on the untrusted environment of data collection, it proposes a location data 
acquisition method that satisfies the local differential privacy protection algorithm based 
on optimal k-location set with a dynamic game model. By defining the relevant linear 
programming, in the case of guaranteeing the user’s service quality, the location semantic 
speculation attack in the real environment is most resisted, and the user's protection level 
of location privacy is optimized. 
ii. Proposes a regional traffic density statistical algorithm based on k-location set localized 
differential privacy protection mechanism. Regional traffic density statistical query is 
performed on randomly disturbed location data, and statistical results can support 
intelligent transportation system decision. 
iii. The method proposed in this paper was verified by experiments. It proves that it has 
advantages in data availability, algorithm efficiency and scalability. 

2 Related work 
2.1 Research status of location privacy protection 
In the current location, privacy protection technologies are mainly divided into four 
categories, including policy-based methods, encryption-based technologies [Kim, Hong 
and Chang (2016)], anonymous-based technologies [Li, Lv and Li (2018)], and differential 
privacy-based technologies [Dwork and Lei (2009)]. The privacy protection policy is the 
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only method that acts on the service provider to constrain it by developing privacy 
protection rules, standards, and detailed specifications that rely on the strict enforcement 
of the service provider. The encryption-based privacy protection method has a high level 
of privacy protection, but its operation overhead is huge, and a special database needs to 
be built. The anonymous-based privacy protection method has better data security and 
usability, and has been currently widely used. However, this method has an obvious 
drawback, that is, when measuring the level of privacy protection, it is necessary to assume 
the background knowledge of the attacker. The introduction of differential privacy can well 
solve the problem based on differential privacy protection technology. It does not limit the 
attacker’s background knowledge. Even if the attacker has mastered all the information 
except one record, it can still be against the attacker. The records that are mastered are 
effectively protected and are highly secure. However, the traditional differential privacy 
location data protection method is mostly based on a trusted third-party data collection 
server, requiring each user to send their own real data records to the data collection server. 
The data collection server responds to the query request of the data analyst by using the 
privacy algorithm that meets the demand, thus causing the problem of server data leakage. 
The LDP that has emerged in recent years is a powerful means for data privacy protection on 
the client side, has been introduced into the field of location privacy protection, and has made 
certain progress. The literature Gao et al. [Gao, Cui, Du et al. (2019)] uses the pre-arranged  
information collection points to generate a random response candidate location set, without 
considering the location reachability of the candidate location set, and improving the location 
privacy protection level at the expense of service quality, resulting in low location service 
availability. The literature Chen et al. [Chen, Li, Qin et al. (2016)] proposed a personalized 
count estimation protocol (PCEP) to establish a random response candidate location set based 
on user preference constraints, without considering the constraints in the real road network 
environment. In the PCEP algorithm, the computational cost of the S-Hist perturbation 
algorithm used is positively correlated with the number of users. When the user is busy for a 
long time, the computational cost is huge, and the sampling process also brings a certain 
precision loss, and the availability of the algorithm needs to be improved. The literature Xiao 
et al. [Xiao and Xiong (2015)] considers the timing impact of the released disturbance location 
on the upcoming release location, describes the time correlation with Markov chain, and 
constructs the random response candidate location set according to the location transition prior 
probability. The computational complexity of the algorithm is relatively high. Moreover, when 
the user’s response location set appears at a higher probability possible location, it is easy to 
expose the user’s interest point, failing to consider the information leakage problem caused by 
the attacker’s semantic speculation attack. The literature Zhen et al. [Zhen, Ping and Yan 
(2019)] uses the Voronoi Diagram division method to make a Voronoi grid contain at least one 
road node, and there is no case where an unreachable area is divided into a safe area, such as a 
river, a lake, etc. However, other real locations of users within the Voronoi boundary are 
directly selected as the candidate location set, without considering the location accessibility of 
Voronoi grid under the constraints of real speed and driving direction. 

2.2 Game theory  
An attacker can use the collected data to infer private information. Shokri [Shokri (2015)] 
proposed a protection strategy based on Stackelberg game, which assumes that the attacker 
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has acquired prior knowledge, allowing users and attackers to play in turn. The user 
maximizes the level of privacy protection while ensuring that the quality of service loss is 
less than a given threshold, and the attacker seeks to minimize the level of privacy 
protection based on prior knowledge and offset location. Through the game, the strategy 
can ultimately ensure that the quality of service loss is less than a given threshold while 
optimizing the level of privacy protection. 

3 Privacy protection algorithm for Internet of Vehicles based on local differential 
privacy and game model 
3.1 Description of the problem 
Data availability of LDP. Based on the LDP location protection algorithm, usually preset 
𝑁𝑁  information collection point C = {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑁𝑁} , 𝑛𝑛  collection points cover the entire 
urban area R. The user location (1 ≤ 𝑖𝑖 ≤ 𝑁𝑁) is marked by the strongest communication 
signal i between the vehicle and the collection point, and the generalized vehicle 
coordinates are the labels of the information collection points. The n-bit array A encodes 
the current location of the vehicle as shown in Eq. (1):  

A𝑘𝑘 = �1,            𝑘𝑘 = 𝑖𝑖;
0,   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒                                                                     (1) 

A𝑘𝑘 represents the 𝑘𝑘th bit of the location array A. The strongest signal corresponds to the 
location code 1, and the other locations are 0. 
Although LDP has strict and provable privacy protection features, its disadvantage is that 
it is less usable. Usually, the number of information collection points 𝑛𝑛 is as much as 
possible, coverage R is as wide as possible. If the vehicle’s disturbance location is far from 
the real location, the vehicle will use the disturbance location instead of the real location 
to send to the service provider, which will greatly reduce the quality of the location service. 
At the same time, a large number of information collection points increase the length of 
the location code, resulting in a high transmission cost between the vehicle and the 
information collection point. For the vehicle user, it is of little significance to shift the real 
location to a farther location, and the location disturbance satisfying the service availability 
is more in line with the actual requirements.  
Location Semantic Inference Attack. In the process of location privacy protection based 
on local differential privacy mechanism, the road network semantic information of the real 
environment, and information for the location privacy protection mechanism P(x𝑡𝑡′|x𝑡𝑡),  𝑘𝑘-
location set K𝑠𝑠𝑠𝑠𝑡𝑡  and the release location 𝑥𝑥′ is public. Therefore, service providers and 
malicious attackers can formulate corresponding countermeasures based on the privacy 
protection methods adopted by vehicle users, and combine precise background knowledge 
for location semantic inference attacks.  
Although the nearest  𝑘𝑘 -location set is the location with a high probability of users’ 
occurrence, for attackers who master the semantic location information of the road 
network, the semantic information contained in the nearest 𝑘𝑘-location set still exposed the 
behavior and activity privacy of vehicle users through location semantic inference attacks 
[Ma, Du, Li et al. (2016)]. As shown in Fig. 1, the square areas constitute the 𝑘𝑘-location 
set, which contains four points of interest and three types of locations. Although the 
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semantic diversity is satisfied, if the vehicle requests LBS at 12 o’clock in the evening, 
considering that the school and bank are closed at this time, it’s easy to infer that the user 
is currently in the hospital. In the case where the topic selection rule is unchanged, the 
influence of time on the region implies semantics. That is, the implicit semantics of the 
same 𝑘𝑘-location set will change with time. The attacker can dynamically generate the 
geographically implicit semantic information based on the temporal topic model and guess 
the real location semantic information of the vehicle user. 

School A

$

Bank

School B

Hospital

 
Figure 1: Semantic inference attack 

In summary, although nearest  𝑘𝑘 -location set maximizes the data availability of the 
perturbed location. If the attacker and the user have the same semantic data background 
knowledge, the LDP also exposes the location semantic information of the vehicle. 
Therefore, achieving a reasonable balance between privacy and availability under the LDP 
condition is a big challenge.  

3.2 Local differential privacy protection algorithm based on optimal 𝒌𝒌-location set with 
dynamic game model 
In this paper, a vehicle location protection algorithm optimal k-LDPM (optimal k-location 
Set based Local Differential Privacy Mechanism) is proposed. A dynamic game model is 
established to optimize the selection of 𝑘𝑘-location set. In this game, the vehicle user gives 
the 𝑘𝑘 -location sets K𝑠𝑠𝑠𝑠𝑡𝑡  first, which called 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 |𝑙𝑙𝑡𝑡), while the service provider 
optimizes the location semantic attack strategy according to the real environment 
information and the 𝑘𝑘-location sets K𝑠𝑠𝑠𝑠𝑡𝑡 , which called 𝑔𝑔𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(s𝑡𝑡� |𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ). Therefore, this 
paper introduces a dynamic game model, which takes the vehicle user as the leader (N1), 
the service provider as the follower (N2). Through the game between the protection model 
of user location privacy and the location conjecture model of attacker, the privacy 
protection process of the IoV is optimized, and the balance between the quality of service 
and the risk of privacy disclosure is made to further improve the level of location privacy 
protection. Based on the optimal k-location set, randomly respond to a release location o𝑡𝑡 
that meets LDP and expose it to the service provider to protect the location privacy of the 
vehicle. The specific process of optimal k-LDPM is shown below. 
Dividing road network space, vehicles move in a space area Ω, define the grid size for grid 
partition granularity omega, meshing Ω space area, and generating a set of road network 
space locations P = �𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝|P|�.  Each grid intersection corresponds to a location, and 
the total number of divisions is |P|. After the road network space division is completed, the 
server transmits the division results to the vehicle terminals. 
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Generate offset location 𝑥𝑥𝑡𝑡. After the vehicle receive the road network space division result, 
the vehicle calculates nearest offset location 𝑥𝑥𝑡𝑡  , which replaces vehicle real location l𝑡𝑡 to 
k-location set. The distance between the two spatial locations is measured by Haversine 
distance, as shown in Eq. (2). 
𝑑𝑑𝑖𝑖𝑒𝑒�𝑝𝑝𝑖𝑖,𝑝𝑝𝑗𝑗� = R ∙ arccos�cosβ𝑖𝑖cosβ𝑗𝑗cos�α𝑖𝑖 − α𝑗𝑗� + sinβ𝑖𝑖sinβ𝑗𝑗�                        (2) 
where r is the radius of the earth, β is the longitude angle, α is the latitude angle. 
Construct a set of optimal k-location. The game between the vehicle user and the service 
provider is a strict zero-sum game. The Nash equilibrium is to calculate its own maximum 
revenue on the basis of considering the best choice of the other party. The probability of 
Exposing Semantic (PES, Probability of Exposing Semantic) is used to measure the 
revenue of participants in the game, PES’s calculation is shown in Eq. (3),  

PES =
𝑚𝑚𝑠𝑠� 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠

𝑚𝑚𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑠𝑠 , (0 ≤ 𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 1)                                                                                          (3) 

Among them, 𝑚𝑚𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑡𝑡 𝑜𝑜 represents the effective semantic number of t time, and  𝑚𝑚𝑒𝑒�𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣
𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠

 
represents the effective semantic number of t time-𝑘𝑘-location set 𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡  region inferred by 
the attacker.  The smaller PES is, the less the amount of the location semantics is filtered 
by the attacker, the more the vehicle user's revenue, and the better the privacy protection 
level of the privacy protection algorithm. 
First of all, considering that the 𝑘𝑘-location sets of given N1 at the first stage of the selection 
time 𝑜𝑜 is 𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 , the game needs to hide the true location semantics of the user on the premise 
of ensuring the quality of service of the user. In order to ensure the quality of service, the 
maximum loss of the service quality acceptable to the user is Q𝑣𝑣𝑙𝑙𝑠𝑠𝑠𝑠

𝑚𝑚𝑣𝑣𝑚𝑚, as shown in Eq. (4): 
𝑑𝑑𝑖𝑖𝑒𝑒(𝑝𝑝𝑡𝑡 , 𝑙𝑙𝑡𝑡) ≤ Q𝑣𝑣𝑙𝑙𝑠𝑠𝑠𝑠

𝑚𝑚𝑣𝑣𝑚𝑚,  ∀𝑥𝑥𝑡𝑡′ ∈ 𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡                                                                                       (4) 
where 𝑝𝑝𝑡𝑡 is any single location point of 𝑘𝑘-location sets under the moment 𝑜𝑜; 𝑙𝑙𝑡𝑡 is the true 
location of vehicle user under the moment  𝑜𝑜.  
Currently, the goal of N2  is to minimize the location semantics protection ability. 
According to the background knowledge, a semantic speculation model [Sarda, Eickhoff 
and Hofmann (2016)] of regional location based on the time theme was built by N2. 
Modeling. The key premise of semantic attack lies in that the attacker owns the same map 
data with that of the vehicle user. Therefore, divide the road network space as mentioned 
above and generate the spatial location sets P = �𝑝𝑝1,𝑝𝑝2, … , 𝑝𝑝|P|�, extract the urban road 
network semantics and generate the road network interest point sets M =
�𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚|M|�  and interest semantic sets MS = �𝑚𝑚𝑒𝑒1,𝑚𝑚𝑒𝑒2, … ,𝑚𝑚𝑒𝑒|MS|�𝑚𝑚𝑒𝑒𝑖𝑖 =
(𝑐𝑐𝑙𝑙𝑐𝑐𝑒𝑒𝑒𝑒_𝑚𝑚𝑒𝑒𝑖𝑖,𝑛𝑛𝑓𝑓𝑚𝑚_𝑚𝑚𝑒𝑒𝑖𝑖). 
Semantic annotation of location point. Describe the actual semantics of location point and 
use pst𝑖𝑖 = (ps𝑖𝑖, t) represents the actual semantics of the single point location 𝑝𝑝𝑖𝑖, of which, 
among them ps𝑖𝑖 = �𝑝𝑝𝑒𝑒𝑖𝑖1,𝑝𝑝𝑒𝑒𝑖𝑖2, … , 𝑝𝑝𝑒𝑒𝑖𝑖

|MS|�  is coding with “01”, to represent the semantic 
possibility of the single point location 𝑝𝑝𝑖𝑖; t  represents the time that the semantic possibility 
of the single point location 𝑝𝑝𝑖𝑖 is ps𝑖𝑖 . Such as, M={A hospital, B primary school, C 
Rehabilitation, D Bank}, MS={(healthcare, 2), (finance, 1), (education, 1)}, s_ti=((1, 0, 1), 
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6) represents the location point that the vehicle user appears at 𝑝𝑝i, from 6:00 a.m. to 7:00 
a.m. and the user activity may mean attending school or going to hospital. The process of 
semantic annotation of location point is as follows. 
Distance measurement. Calculate the Haversine distance between each location point in 
the spatial location sets P of road network and |𝑀𝑀| interest point in the road network 
interest point set 𝑀𝑀.  
Valid POI screening. Set the max valid semantic radius to be r, if 𝑑𝑑𝑖𝑖𝑒𝑒(𝑝𝑝, 𝑒𝑒) > r, then the 
interest point is unreachable, then exclude it. And the number of valid POI screened is 
𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣(𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣 ≤ |𝑀𝑀|) at last. Valid interest semantics screening: Based on the time theme, 
use 24 |MS| -bit “01” code to represent whether each interest semantics of each hour every 
day can be accessed  V = {v0, v1, … , v23},  𝑣𝑣𝑡𝑡 =  �v𝑡𝑡

ms1 , v𝑡𝑡
ms2 , … , v𝑡𝑡

ms|MS|� if v𝑡𝑡
ms𝑣𝑣 is 0, then 

the access possibility of the interest semantics ms𝑖𝑖 is 0 in t time period and the interest 
semantics can be excluded. And the number of valid interest semantics screened is 
𝑚𝑚𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑡𝑡 �𝑚𝑚𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑡𝑡 ≤ |MS|� at last. Where the access possibility of the semantics based on 
the time theme is supposed to be known.  
Calculation of semantic possibility. The number of the valid interest point implying the 
interest semantics 𝑚𝑚𝑒𝑒𝑗𝑗   at the location point 𝑝𝑝𝑖𝑖   is 𝑚𝑚𝑒𝑒𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣

𝑡𝑡  and the way of implying the 
interest semantics 𝑚𝑚𝑒𝑒𝑗𝑗 at the location point 𝑝𝑝𝑖𝑖 for |MS|𝑝𝑝𝑒𝑒𝑖𝑖

𝑗𝑗 bit array coding vehicle user is 
as shown in Eq. (5):  

𝑝𝑝𝑒𝑒𝑖𝑖
𝑗𝑗 �

1, 𝑚𝑚𝑒𝑒𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣
𝑡𝑡 > 0 

0, 𝑚𝑚𝑒𝑒𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣
𝑡𝑡 = 0  

                                                                                                       (5) 

By parity of reasoning, the semantic annotations of location point 𝑝𝑝𝑖𝑖 are obtained, as shown 
in Eq. (6):  

𝑝𝑝𝑒𝑒𝑖𝑖 = �𝑝𝑝𝑒𝑒𝑖𝑖1,𝑝𝑝𝑒𝑒𝑖𝑖2, … ,𝑝𝑝𝑒𝑒𝑖𝑖
|𝑀𝑀𝑀𝑀|�                                                                                         (6) 

Regional semantic speculation. The regional semantic distribution of 𝑘𝑘-location sets 𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡  
is speculated according to semantic annotation of location point within the region, as shown 
in Eq. (7):  

�̂�𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑔𝑔𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(�̂�𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 |𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ) =
∑ 𝑝𝑝𝑠𝑠𝑣𝑣𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠

𝑘𝑘
                                                                            (7) 

To sum up, N2 finds out the semantic location sets �̂�𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡  which minimizes semantic privacy 
degree. The privacy attack earnings of N2 are shown in Eq. (8):   

U2
𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑐𝑐𝑥𝑥 �U2 �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝐾𝐾𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜 |𝑙𝑙𝑜𝑜�,𝑔𝑔𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒�𝑒𝑒�𝑒𝑒𝑒𝑒𝑜𝑜

𝑜𝑜 |𝐾𝐾𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜 ��� = 𝑚𝑚𝑐𝑐𝑥𝑥 �𝑚𝑚𝑒𝑒� 𝑣𝑣𝑐𝑐𝑙𝑙𝑖𝑖𝑑𝑑
𝐾𝐾𝑒𝑒𝑒𝑒𝑜𝑜
𝑜𝑜

𝑚𝑚𝑒𝑒𝑣𝑣𝑐𝑐𝑙𝑙𝑖𝑖𝑑𝑑
𝑜𝑜 �                       (8) 

Because the optimal attack strategy of N2 is 𝑔𝑔𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(�̂�𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 |𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ) if N1 selected 𝑘𝑘-location set 
𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 . Then, at the first stage of the game, the goal of  N1  is to maximize the ability of privacy 
protection under the condition of ensuring the availability of private data, thus maximizing his 
own earnings. The privacy protection earnings of N1  are as shown in Eq. (9):  

U1
𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑐𝑐𝑥𝑥 �U1 �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝐾𝐾𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜 |𝑙𝑙𝑜𝑜�,𝑔𝑔𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒�𝑒𝑒�𝑒𝑒𝑒𝑒𝑜𝑜

𝑜𝑜 |𝐾𝐾𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜 ��� = 𝑚𝑚𝑖𝑖𝑛𝑛 �𝑚𝑚𝑒𝑒� 𝑣𝑣𝑐𝑐𝑙𝑙𝑖𝑖𝑑𝑑
𝐾𝐾𝑒𝑒𝑒𝑒𝑜𝑜
𝑜𝑜

𝑚𝑚𝑒𝑒𝑣𝑣𝑐𝑐𝑙𝑙𝑖𝑖𝑑𝑑
𝑜𝑜 �                      (9) 
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To sum up, the 𝑘𝑘 optimal location set 𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡  may use the linear programming to solve it. The 
final definition of linear programming is as shown in Eq. (10):  
Maximize 𝑐𝑐𝑒𝑒𝑔𝑔𝑚𝑚𝑐𝑐𝑥𝑥�U1�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∗(𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 |𝑙𝑙𝑡𝑡),𝑔𝑔𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒∗(�̂�𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 |𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 )��                                   (10) 
s.t.  
U2�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓∗(𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 |𝑙𝑙𝑡𝑡),𝑔𝑔𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒∗(�̂�𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 |𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 )� ≥ U2�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 |𝑙𝑙𝑡𝑡),𝑔𝑔𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(�̂�𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 |𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 )�     (a) 
𝑑𝑑𝑖𝑖𝑒𝑒(𝑥𝑥𝑡𝑡′, 𝑙𝑙𝑡𝑡) ≤ Q𝑣𝑣𝑙𝑙𝑠𝑠𝑠𝑠

𝑚𝑚𝑣𝑣𝑚𝑚, ∀𝑥𝑥𝑡𝑡′ ∈ 𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡                                                                             (b) 
∃𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 :𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 |𝑙𝑙𝑡𝑡),∀𝑙𝑙𝑡𝑡 ∈ Ω                                                                                         (c) 
Solve the objective function under the constraint condition of Eq. (11), in the strategy 
maximizing the earnings expectation, find the 𝑘𝑘-optimal location set 𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡  and maximizes 
the earnings of N2  on the premise of meeting the service quality, thus realizing the 
objective of maximizing privacy protection of location semantic for the vehicle user. 
Where, condition (a) maximizes the earnings of the attacker; condition (b) restrains the 
quality loss of service, condition (c) represents for arbitrary 𝑙𝑙𝑡𝑡 in Ω, there exists at least one 
𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡  which supports 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 |𝑙𝑙𝑡𝑡). 
Generate release location 𝑥𝑥𝑡𝑡′. Combined with the k-RR [Warner (1965)] random response 
mechanism, the vehicle offset location x𝑡𝑡 is perturbed to generate the release location o𝑡𝑡 that 
satisfies the local differential privacy, making it meets the indistinguishability of k-locations. 
Given local differential privacy parameters based on random response mechanisms 𝜖𝜖. Set 
the privacy of mobile vehicles within the same space area Ω budget are the same. At time 
t, the way each vehicle releases the location is as shown in Eq. (11): 

P(o𝑡𝑡  |𝑥𝑥𝑡𝑡) = 1
𝑘𝑘−1+𝑠𝑠𝜖𝜖

�𝑒𝑒
𝜖𝜖 , 𝑖𝑖𝑓𝑓 o𝑡𝑡  = 𝑥𝑥𝑡𝑡

1 , 𝑖𝑖𝑓𝑓 o𝑡𝑡  ≠ 𝑥𝑥𝑡𝑡
                                                                           (11) 

That is, using a probability of 𝑠𝑠𝜖𝜖

𝑘𝑘−1+𝑠𝑠𝜖𝜖
 sending its offset location 𝑥𝑥𝑡𝑡 , using a probability of 

1
𝑘𝑘−1+𝑠𝑠𝜖𝜖

 responding to any of the rest of the 𝑘𝑘 − 1 locations and making them meet the 𝜖𝜖- 
local differential privacy. 𝜖𝜖 used to balance degree of privacy and data availability. The 
smaller 𝜖𝜖, the higher the degree of privacy and the lower the statistical data availability.  

3.3 The regional traffic density statistical algorithm based on meeting the localized 
difference privacy of 𝒌𝒌 location set  
The vehicle user responses randomly to the vehicle location within the 𝑘𝑘-location set through 
the random response mechanism to disturb the vehicle release location within the location set 
coverage area 𝐾𝐾 in order to protect the location privacy of the user. Therefore, different vehicles 
𝑘𝑘  has different location set coverage area. The disturbance statistics and correction of the 
regional traffic density need to be analyzed according to the specific scenario.  
Suppose that the total number of vehicle involving in the random location response is 𝑛𝑛 and 
the vehicle user sends its deviation location 𝑥𝑥𝑡𝑡  with the probability of 𝑝𝑝1 and responses to 
any location of the rest 𝑘𝑘 − 1 locations with the probability of 𝑝𝑝2. The regional traffic density 
statistical algorithm involved in this paper is realized in the following four scenarios:  
a) The density statistics area R completely covers 𝑘𝑘-location set composition area K𝑛𝑛 of 

n vehicles, i.e., K𝑛𝑛 ∩ R = K𝑛𝑛. There are n moving vehicles in the 𝑘𝑘-set composition 
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area K𝑛𝑛 of n vehicles, then the regional traffic density is |𝑇𝑇𝐷𝐷| = n. 
b) The density statistics area intersects with the location set area of each vehicle 

of/vehicles, if and only if: Rn𝑘𝑘K𝑛𝑛
𝑖𝑖 K𝑛𝑛

𝑖𝑖 ∩ R ≠ ∅K𝑛𝑛
𝑖𝑖 ∪ R ≠ RK𝑛𝑛

𝑖𝑖 ∪ R ≠ K𝑛𝑛
𝑖𝑖 . 

Suppose that in the statistical results, the number of vehicles of which response location is 
in the density statistics area R is 𝑛𝑛′ , then the number not in that area is 𝑛𝑛 − 𝑛𝑛′ . The 
disturbance statistics of the proportion of vehicle user of which response location is/isn’t 
in the density statistics area is as shown in Eq. (12):  

�
Pr(𝑀𝑀𝑖𝑖 = "in") = 𝑛𝑛′

𝑛𝑛
=  π�𝑝𝑝1 + 𝑝𝑝2(�̃�𝑒 − 1)� + (1 − π)𝑝𝑝2 ∙ �̃�𝑒

Pr(𝑀𝑀𝑖𝑖 = "𝑛𝑛𝑜𝑜𝑜𝑜 𝑖𝑖𝑛𝑛") = 𝑛𝑛−𝑛𝑛′

𝑛𝑛
=  π𝑝𝑝2 ∙ (𝑘𝑘 − �̃�𝑒) + (1 − π)�𝑝𝑝1 + 𝑝𝑝2(𝑘𝑘 − �̃�𝑒 − 1)�

        (12) 

where, π is the proportion of vehicle user of which true location is in the density statistics 
area R and r�  is the average of the n number of locations in which the vehicle intersects 
with the density statistics area, as shown in Eq. (13): 

r� = ∑ 𝐾𝐾𝑛𝑛𝑣𝑣 ∩𝑅𝑅𝑛𝑛
𝑣𝑣=0

𝑛𝑛
                                                                                                                 (13) 

According to the maximum likelihood estimation, build the likelihood function as shown 
in Eq. (14):  
𝐿𝐿(π) = �π�𝑝𝑝1 + 𝑝𝑝2(�̃�𝑒 − 1)� + (1 − π)𝑝𝑝2 ∙ �̃�𝑒�

𝑛𝑛′�π𝑝𝑝2 ∙ (𝑘𝑘 − �̃�𝑒) + (1 − π)�𝑝𝑝1 + 𝑝𝑝2(𝑘𝑘 − �̃�𝑒 − 1)��𝑛𝑛−𝑛𝑛
′
         (14) 

Then, the corrected statistical value of regional traffic density 𝑅𝑅  is computed with 
maximum likelihood estimation of π, as shown in Eq. (15): 

|𝑇𝑇𝐷𝐷| = π� × 𝑛𝑛 = −𝑛𝑛(𝑝𝑝1−𝑝𝑝2)
𝑛𝑛𝑝𝑝2�̃�𝑟−𝑛𝑛′[𝑝𝑝2(𝑘𝑘−1)+𝑝𝑝1]  × 𝑛𝑛                                                                 (15) 

c) The density statistics area only intersects with the k- location set area K𝑛𝑛1
𝑖𝑖  R of each 

vehicle of 𝑛𝑛1 vehicles, that is K𝑛𝑛1
𝑖𝑖 ∪ R ≠ R and K𝑛𝑛1

𝑖𝑖 ∪ R ≠ K𝑛𝑛1
𝑖𝑖 , 𝑛𝑛1 < 𝑛𝑛. 

Suppose that the total number of vehicles is 𝑛𝑛1 in this scenario, then the calculation method 
of 𝑅𝑅 traffic density is the same to that of (b).  
d) The density statistics area R completely covers the 𝑘𝑘-location set colocation area 

K𝑛𝑛1  of 𝑛𝑛1 vehicles and intersects with the 𝑘𝑘-location set area K𝑛𝑛2
𝑖𝑖  of each vehicle of 

𝑛𝑛2  vehicles, that is K𝑛𝑛1 ∩ R = K𝑛𝑛1  and K𝑛𝑛2
𝑖𝑖 ∩ R ≠ ∅  and K𝑛𝑛2

𝑖𝑖 ∪ R ≠
R and K𝑛𝑛2

𝑖𝑖 ∪ R ≠ K𝑛𝑛2
𝑖𝑖 , 𝑛𝑛1 + 𝑛𝑛2 ≤ 𝑛𝑛. 

The calculation method of regional traffic density in this scenario can be divided into two 
parts, the first is the traffic density of statistical area R K𝑛𝑛1 and the calculation method is 
the same to that of (a); the second is that the calculation method of traffic density of 
statistical area K𝑛𝑛2

𝑖𝑖 ∩ R is the same to that of (c). 

4 Experimental analysis  
This paper uses true data set to release the vehicle disturbance location and conduct the 
simulation experiment of regional traffic density statistics. The vehicle track data set comes 
from Smart City Research Group [Liu, Liu, Lionel et al. (2010)], including the driving records 
for 24 h of 4,000 taxis on Feb. 20, 2007 in Shanghai. The sample interval of vehicle driving 
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data is 1 min. and vehicle track data format is: vehicle ID-time-longitude and latitude-speed. 
The map POI data set comes from Open Street Map [Haklay and Weber (2008)], including 
large amount of latitude and longitude information of interest points in Shanghai. The interest 
point format is: Interest point ID-name of the interest point-longitude and latitude. 

4.1 Data pre-processing  
Division of the urban network. Conduct the meshing of the map of Shanghai and take the 
granularity of meshing 𝜔𝜔 = 1000 m as the example, the number of mesh intersection is 7527. 
Semantic annotation of the urban road network POI. 7 semantic categories of road 
network interest semantic set attributes MS = {𝑚𝑚𝑒𝑒1,𝑚𝑚𝑒𝑒2, … ,𝑚𝑚𝑒𝑒7} are as shown in Tab. 1. 

Table 1: Semantic annotation of Shanghai Road Network POI 

No. Semantic Category Number of POI Total Number of POI 

1 Education 170 

4704 

2 Finance 624 
3 Healthcare 204 
4 Food & Beverage 2590 
5 Market 225 
6 Residence 480 
7 Leisure Spots 411 

Define that probability vectors for accessing the interest semantics  M =
{𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚4704} of Shanghai road network at 12:00 p.m. and 24:00 p.m. are  𝑣𝑣12 =
{1,1,1,1,1,1,1 } and 𝑣𝑣12 = {0,1,1,1,0,1,0 }, respectively and define that the interest point 
within 1 km away from Haversine is the valid point of distance M = {𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚4704} 
as well as complete the semantic annotation MS = {𝑚𝑚s1,𝑚𝑚𝑒𝑒2, … ,𝑚𝑚𝑒𝑒6} of POI of spatial 
location P = �𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝|𝑃𝑃|� of Shanghai road network.  
Vehicle Location Deviation. Calculate the distance between the vehicle location and 
proximity space location point of 12:05 a.m. and 24:05 p.m., select the most proximity 
space location point to generate the vehicle deviation location to replace the actual location 
of vehicles. At 12:05, the total number of vehicle deviation is 1470. At 24:05, the total 
number of vehicle deviation is 1004. 

4.2 Utility analysis of privacy protection mechanism  
To verify the effectiveness of algorithm, this paper would compare LDPM, proximity 𝑘𝑘 −
LDPM and optimization 𝑘𝑘 − LDPM. Take 𝜔𝜔 = 1000 m, 𝑘𝑘 = 10 as an example, for the 
vehicle with ID of 86349 at 12:05, the location distribution of its 𝑘𝑘-location set is shown 
in Fig. 2.  
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(a) Random response location set 
(LDPM) 

(b) Location set 𝑘𝑘 

( nearest 𝑘𝑘 − LDPM) 

(c) Location set 𝑘𝑘 

(optimal 𝑘𝑘 − LDPM) 

Figure 2: Random response location set generated under different algorithms 
In Fig. 2, ○ labels the actual location of vehicle users, ● labels the false location of 𝑘𝑘-location 
concentration. Fig. 2 (a) is the distribution situation of the LDPM selected random response 
location set, Fig. 2 (b) is the location set distribution 𝑘𝑘 − LDPM selected by the proximity 
and Fig. 2 (c) is the optimized 𝑘𝑘-location set distribution and definition Q𝑣𝑣𝑙𝑙𝑠𝑠𝑠𝑠

𝑚𝑚𝑣𝑣𝑚𝑚 = 3000.  
Probability of Exposing Semantic (PES) and Service Loss Expectation (SLE) are adopted 
to measure the privacy protection degree and service quality loss degree of location 
semantic of algorithm. SLE is calculated as the Eq. (16):   

SLE =
∑ 𝑣𝑣𝑖𝑖𝑠𝑠(𝑝𝑝𝑠𝑠,𝑣𝑣𝑠𝑠)𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠

𝑘𝑘
                                                                                                    (16) 

   
(a) 12:00 a.m. (b) 24:00 p.m. 

Figure 3: Comparison of location semantic privacy protection and location service 
availability of vehicles under different algorithms 

Analyzed from Fig. 3, the random response location set of LDPM is the most scattered, and 
some locations appear in the unreachable location, which is not conducive to privacy 
protection and service availability; 𝑘𝑘 − LDPM 𝑘𝑘 -location sets selected are more 
centralized, which reduce the service quality loss to the maximum extent, but it is most 
easily to expose the location semantic information of vehicle users; 𝑘𝑘 − LDPM 𝑘𝑘-location 
set selected by optimization is more scattered. Under the condition of ensuring the 
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maximum service availability, it enriches the location semantics of vehicles and reduces 
the possibility of behavior activity exposure of vehicle users. The greater the 
exposure Q𝑣𝑣𝑙𝑙𝑠𝑠𝑠𝑠

𝑚𝑚𝑣𝑣𝑚𝑚, the better the privacy protection effect of location semantics.  
Random response location set of LDPM is the set of acquisition points of all locations of 
road network space. Under the RAPPOR perturbation mechanism and k-RR perturbation 
mechanism, the transmission cost of its private data is the vector and single value of |P| in 
length. k-location LDPM uses k-RR perturbation mechanism, and its privacy data 
transmission cost is k+1 value, which is positively correlated with the number of k-location. 
Based on location of 𝑘𝑘 - LDPM and the comparison of LDPM RAPPOR perturbation 
mechanism, it greatly reduces the data transmission cost. Although it cannot use the data 
performance of k-RR perturbation mechanism, it balances the applicability of vehicle users 
to obtain the service quality.  

4.3 Statistical analysis of regional traffic density 
The section conducts the comparative analysis of experimental features based on the local 
differential privacy technology of 𝑘𝑘 -location set. It mainly includes three aspects: The 
accuracy impact of privacy budget 𝜖𝜖 on the traffic density statistical results, the accuracy 
impact of area coverage of density statistics on the traffic density statistical results, and the 
accuracy impact of service quality loss limit Q𝑣𝑣𝑙𝑙𝑠𝑠𝑠𝑠

𝑚𝑚𝑣𝑣𝑚𝑚 on the traffic density statistical results.  
The experiment sets up four area coverage of density statistics: R1—𝑅𝑅4. The sizes of spatial 
scale are 3𝜔𝜔 × 3𝜔𝜔 , 5𝜔𝜔 × 5𝜔𝜔 , 20𝜔𝜔 × 20𝜔𝜔 , 50𝜔𝜔 × 50𝜔𝜔  respectively. Three groups of 
different privacy budgets are: 𝜖𝜖𝑣𝑣𝑙𝑙𝑙𝑙 = 0.25, 𝜖𝜖𝑚𝑚𝑖𝑖𝑣𝑣 = 1.25  and  𝜖𝜖ℎ𝑖𝑖𝑖𝑖ℎ = 2.25.  Three groups 
of loss limit of service quality set are: Q𝑣𝑣𝑙𝑙𝑠𝑠𝑠𝑠

𝑚𝑚𝑣𝑣𝑚𝑚
𝑣𝑣𝑙𝑙𝑙𝑙 = 3000, Q𝑣𝑣𝑙𝑙𝑠𝑠𝑠𝑠

𝑚𝑚𝑣𝑣𝑚𝑚
𝑣𝑣𝑙𝑙𝑙𝑙 = 4000, Q𝑣𝑣𝑙𝑙𝑠𝑠𝑠𝑠

𝑚𝑚𝑣𝑣𝑚𝑚
𝑣𝑣𝑙𝑙𝑙𝑙 =

5000. The accuracy expectation measurement function of the regional traffic density statistical 
results is constructed by using the relative error [18], as shown in Eq. (17).  

𝑀𝑀𝑐𝑐𝑐𝑐𝑓𝑓𝑒𝑒𝑐𝑐𝑐𝑐𝑓𝑓 =
∑ �|𝑇𝑇𝐷𝐷|𝑟𝑟𝑠𝑠𝑣𝑣𝑣𝑣−|𝑇𝑇𝐷𝐷|𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑒𝑒𝑣𝑣𝑠𝑠𝑠𝑠�

�|𝑇𝑇𝐷𝐷|𝑟𝑟𝑠𝑠𝑣𝑣𝑣𝑣�
𝑛𝑛

𝑛𝑛
                                                                                  (17) 

   

 (a) under Different 𝜖𝜖 (b) under Different R (c) under the Different Q𝑣𝑣𝑙𝑙𝑠𝑠𝑠𝑠
𝑚𝑚𝑣𝑣𝑚𝑚 

Figure 4: Regional traffic density statistical results 
The accuracy expectation comparison of regional traffic density statistical results is shown 
in Fig. 4(a): Under the high privacy budget, the traffic density statistical result is closest to 
the real count; Under the low privacy budget, the accuracy of traffic density statistical 
results is low due to the large introduced noise.  
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The accuracy comparison of regional traffic density statistical results is shown in Fig. 4(b): 
In the larger area coverage, the traffic density statistical result is closest to the real count; In 
the smaller area coverage, the accuracy of traffic density statistical results is low.  
The accuracy expectation comparison of regional traffic density statistical results is shown 
in Fig. 4(c): The greater the loss limit of service quality is, the closer the traffic density 
statistical result is to the real count; The less the limitation of service quality loss is, the 
lower the accuracy of the traffic density statistical result is. 

5 Conclusions  
Based on the data acquisition environment of the unbelievable Internet of Vehicles, this 
paper puts forward a location data acquisition method that satisfies the local differential 
privacy of k-location set, introduces the dynamic game model to optimize the 𝑘𝑘-location 
set, resists the location semantic inference attack in the real environment to the greatest 
extent and optimizes the level of location privacy protection of users under the condition 
of ensuring the service quality of users. On the basis of it, this paper further puts forward 
the regional traffic density statistical algorithm to satisfy the local differential privacy 
protection mechanism of the 𝑘𝑘-location set. The experimental analysis result shows that 
the method put forward by this paper has the advantages on the privacy protection 
effectiveness, data availability and high efficiency of data transmission.  
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