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Abstract: Graph filtering, which is founded on the theory of graph signal processing, is 
proved as a useful tool for image denoising. Most graph filtering methods focus on learning 
an ideal lowpass filter to remove noise, where clean images are restored from noisy ones by 
retaining the image components in low graph frequency bands. However, this lowpass filter 
has limited ability to separate the low-frequency noise from clean images such that it makes 
the denoising procedure less effective. To address this issue, we propose an adaptive 
weighted graph filtering (AWGF) method to replace the design of traditional ideal lowpass 
filter. In detail, we reassess the existing low-rank denoising method with adaptive 
regularizer learning (ARLLR) from the view of graph filtering. A shrinkage approach 
subsequently is presented on the graph frequency domain, where the components of noisy 
image are adaptively decreased in each band by calculating their component significances. 
As a result, it makes the proposed graph filtering more explainable and suitable for 
denoising. Meanwhile, we demonstrate a graph filter under the constraint of subspace 
representation is employed in the ARLLR method. Therefore, ARLLR can be treated as a 
special form of graph filtering. It not only enriches the theory of graph filtering, but also 
builds a bridge from the low-rank methods to the graph filtering methods. In the 
experiments, we perform the AWGF method with a graph filter generated by the classical 
graph Laplacian matrix. The results show our method can achieve a comparable denoising 
performance with several state-of-the-art denoising methods. 
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1 Introduction  
Image denoising plays an important role in various image processing and computer vision 
scenarios [Wu, Li, Lin et al. (2018); Chen, Wang, Liu et al. (2019)]. It is viewed as an 
inverse problem that clean images are restored from noisy ones [Buades, Coll and Morel 
(2005); Shao, Yan, Li et al. (2017)]. Though a huge number of denoising methods have 
been presented in past decades, they are mainly grouped in two categories, i.e., model-
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based and discriminative-learning-based methods. Most model-based methods handle the 
denoising problem only from the noisy image itself, where internal prior of image is 
exploited by various signal models. Meanwhile, discriminative-learning-based denoising 
methods pay more attention on external prior from different image databases. Many deep 
learning algorithms [Zhang, Zuo, Chen et al. (2016); Zhang, Zuo and Zhang (2018); Jia, 
Liu, Feng et al. (2019); Wang, Jiang, Luo et al. (2019)] are employed in the discriminative-
learning-based methods, which significantly improve the quality of restored images. It 
proves that feature learning from external images is helpful for image denoising. Their 
remarkable performances benefit from the use of feature similarity between target image 
and external images. However, once target image and external images are mismatched, 
these methods become ineffective. In this case, the model-based methods show their 
advantage and still work well for denoising. Therefore, we focus on the model-based 
methods in this paper to restore images without the help of external images. 
To our knowledge, model-based denoising methods are carried out in three domains, i.e., 
spatial, transform and learned domains. The spatial-domain denoising methods, e.g., 
bilateral filtering [Zhang and Gunturk (2008)] and non-local means approach [Verma and 
Pandey (2017)], estimate pixels or patches by fusing the neighborhood ones with similar 
structures. From the view of filtering, they use a spatial smoothing filter to remove the 
noise-like components of image. The transform-domain methods contribute to enhancing 
the denoising performance in other domains rather than the spatial domain. Generally 
speaking, they firstly decompose noisy images into a set of component coefficients on the 
bases in a transform domain such as wavelet and curvelet domains [Yan, Shao and Liu 
(2013); Tessens, Pizurica, Alecu et al. (2008); Deivalakshmi; Palanisamy and Gao 
(2019)]. Then denoised images are reconstructed by the shrinkage of their high-frequency 
component coefficients. Here, a method named as block matching and three-dimensional 
filtering (BM3D) [Dabov, Foi, Katkovnik et al. (2007); Mäkinen, Azzari and Foi (2019)] 
is preferred as a landmark for image denoising. It restores images from both spatial and 
transform domains, where Wiener and wavelet filters are sequentially adopted to extract 
the reliable components from similar patches. 
As for image denoising in learned domain, it is dedicated to adaptively learn internal prior 
of target image for image restoration. Numerous methods via sparse representation [Liu, 
Chen, Chen et al. (2017); Wang, Cai, Shi et al. (2015)] and low rank approximation 
[Huang, Dong, Xie et al. (2017); Wang, Cen, He et al. (2018)] are presented with their 
impressive denoising performance. For sparse representation, image patches are efficiently 
described by a linear combination of atoms from a learned dictionary. Most sparse 
representation methods, e.g., K-means singular value decomposition [Elad and Aharon 
(2006)] and nonlocally centralized sparse representation (NCSR) [Dong, Zhang, Shi et al. 
(2013)], consider the sparsity of patches for denoising. But recent work shows the residual 
of patches has the sparsity attribute, which is also suitable for sparse representation to 
improve the denoising performance [Zha, Zhang, Wang et al. (2018)]. In another line of 
learned-domain methods, many low rank approximation approaches are developed by 
introducing the nuclear norm minimization (NNM) model [Zhang, He, Zhang et al. (2014)]. 
In the NNM model, it demonstrates that similar patches have their low rank attribute with 
the sparse singular values. Subsequently, a weighted NNM (WNNM) model and its 
extended version, low rank approximation with adaptive regularizer learning (ARLLR), are 
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presented to effectively shrink the singular values of patches [Jia, Feng and Wang (2016a, 
2016b)], which make a great success in image denoising. Besides, various additional 
regularizers are adopted in the NNM model to employ other attributes of patches. For 
example, a regularizer of inter-patch correlation is recently utilized to reach a higher quality 
of denoised image [Liu, Xiong, Liu et al. (2018)]. 
On the other hand, graph signal processing has been rapidly developed in recent years. It 
is founded on the geometric structures of signals with the description of graph Laplacian 
matrix [Hein, Audibert and von Luxburg (2005)]. Meanwhile, graph-filtering-based 
methods are paid increasing attention to solve the image denoising problem, since noisy 
patches can contact with each other to form a graph. Several graph polynomial filtering 
methods are presented to employ various Laplacian matrix regularizers in the denoising 
model [Zeng, Bian, Liu et al. (2015); Pang and Cheung (2017); Waheed and Tay (2018)]. 
Graph filtering is also performed on noisy images for its advantage of graph frequency 
analysis. The existing graph filtering methods [Meyer and Shen (2014); Talebi and 
Milanfar (2014)] prove that the eigenvectors of graph Laplacian matrix of patches not 
only represent the global structures of image, but also can be utilized as a set of bases to 
reconstruct clean images. They have achieved the competitive denoising performance 
with BM3D. It is worth noting that these graph filtering methods all employ an ideal 
lowpass graph filter to remove noise, which restore clean images only with the image 
components in low graph frequency bands. This ideal filter has limited ability to separate 
the low-frequency noise from clean images such that it seriously hinders the performance 
of graph filtering. 
To address the problem in graph filtering, an adaptive weighted graph filtering (AWGF) 
method is proposed for denoising. In detail, we firstly analysize the ARLLR model and 
treat it as a special form of graph filter. Then an adaptive shrinkage algorithm is 
presented for graph filtering by introducing the shrinking mechanism of ARLLR. To deal 
with a group of similar patches, the component in each graph frequency band is shrunk 
with its component significance. Consequently, it can remove the noise in all bands to 
overcome the drawback of traditional ideal lowpass graph filter. Experiments show the 
proposed method can effectively restore clean images. It achieves a comparable 
denoising performance with other state-of-the-art methods. 

2 Related work 
Some related work is given to better introduce our AWGF method. In this section, the 
denoising mechanisms of low rank approximation and graph filtering are respectively 
provided with more details. 

2.1 Low rank approximation 
The image denoising methods with low rank approximation can be generalized into an 
optimization problem as 
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{ }

( )
,

2
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1

1arg min
2x i
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x i x x iF
i

g
σ

σ σ
τ =

= − +∑Y UΣ V , (1) 

where τ  is the weighted coefficient, Y  and X  are the noisy and denoised patch groups, 
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the singular value decompositions of Y  and X  are respectively represented as 
T

y=Y UΣ V  and T
x=X UΣ V . Here, { },y iσ  and { },x iσ  are the corresponding diagonal 

entries of yΣ  and xΣ , and ( ),x ig σ  is the prior regularizer of ,x iσ . 

For the low rank model in Eq. (1), various prior regularizers have been proposed to increase 
the sparsity of singular values of { },x iσ . The traditional regularizers are set by the rank-
based functions [Zhang, He, Zhang et al. (2014); Jia, Feng and Wang (2016b)]. However, 
the singular values are often over punished under the rank-based functions, which causes 
the lower denoising performance. More convex and non-convex functions are suggested as 
the prior regularizer [Hu, Zhang, Ye et al. (2013); Yang, Yang and Han (2018); Yang, Fan, 
Yang et al. (2019)]. Among them, the aforementioned ARLLR model that uses a logarithm 
function as its regularizer becomes attractive. It not only well explains the low rank model 
in the Bayesian framework, but also achieves the better denoising performance than other 
existing low rank methods. Its optimization problem is described as 

{ }
{ },

2

, ,
1

1arg min
2x i

r
T

x i x x iF
i

log
σ

σ σ ε
τ =

= − + +∑Y UΣ V , (2) 

where the prior regularizer is defined as a covex non-linear function, 
( ), ,x i x ig logσ σ ε= + , and ε  is a small positive constant. 

2.2 Graph filtering 
In the traditional graph filtering methods, denoised images are achieved by an ideal 
lowpass filter in the graph frequency domain. Therefore, these methods are essentially the 
transform-domain methods. The design of transform bases now becomes an important 
step for filtering. Given a graph Laplacian matrix L  to describe the graph structure of N  
patches, the eigenvectors of L  are provided as ,1 ,2 ,, , ,g g g g N =  V v v v  with the ascending 
eigenvalues. The bases of lowpass graph filter is thus obtained with the first M  
eigenvectors as ,1 ,2 ,, , ,lp

g g g g M =  V v v v . The graph filtering procedure for patches can be 
simply written as 

( )Tlp lp
g gX = YV V , (3) 

In Eq. (3), the denoised patch group X  is restored by retaining the low-frequency 
components of noisy patch group Y . It also indicates the filtering performance depends 
on the basis number M . Several eigenvector selection approaches are proposed to 
estimate the number M  adaptively under the control of image noise [Chen, Tang, Xu et 
al. (2016); Tang, Chen, Xu et al. (2016)]. Unfortunately, these methods still belong to the 
ideal lowpass graph filtering methods. 

3 Proposed method 
Motivated by recent process, we propose an adaptive weighted graph filtering method for 
image denoising. Moreover, the explanation of graph filtering is also given to the existing 
ARLLR method and uniforms it in the proposed method. 
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3.1 Adaptive weighted graph filtering 
We present an adaptive weighted graph filtering in this section. The AWGF model is 
firstly given as 

{ }
{ }

( )
,

2

, ,
1

1arg min
2g i

N
T

g i g g g g iF
i

g
σ

σ σ
τ =

= − +∑Y YV Σ V , (4) 

where the shrinkage coefficients { },g iσ  are the diagonal entries of matrix gΣ . Different 
from the traditional graph filtering of Eq. (3), all graph eigenvectors of gV  are used as the 
filter bases in Eq. (4). Thus, the noisy patch group Y  can be well represented in the full 
space supported by bases gV . The denoised patch group X  is obtained as 

T
g g gX = YV Σ V , (5) 

Inspired by ARLLR, a similar prior regularizer is set as ( ), ,g i i g ig logσ β σ ε= +  with the 

weighted coefficient βi . Substituting ( ),σ g ig  to Eq. (4), we describe the AWGF model in 
a trace form as 
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Sequentially, problem Eq. (6) can be separated into a set of sub-problems by defining the 
matrix gP = YV  with its vectors { }ip  as 
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We rewrite Eq. (7) into a more simple formula as 
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σ γ γ σ β σ ε
τ

= − + + , (8) 

where 2
,γ = T

y i i ip p  represents the component energy of Y  on the basis ,g iv . Here, we 
experientially set ,β γ=i y i  and thus turn Eq. (8) into the final expression as 
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,
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For problem Eq. (9), it has a closed form solution as 

,
, , 2

, , ,

21 max ,0
4

y i
g i y i

y i y i y i

τ
σ γ

γ γ τ

 ′
 ′= −
 ′ ′− 

 , (10) 

where , ,γ γ ε′ = −y i y i  and , ,τ τ εγ′ = −y i y i . So far, the AWGF method completes the 
coefficient shrinkage procedure, where the denoised patch group X  is consequently 
achieved by Eq. (5) with assembling gΣ  by { },g iσ . 

We further propose an iterative AWGF framework for image denoising. As shown in 
Algorithm 1, the intermediate noisy image ( )kY  is tackled in the k-th iteration. In detail, 
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for the target patch group jY  of ( )kY , its noise variance ,σ n j  is firstly estimated by 

( )( )2
, max ,0n j n j jvarσ σ ′= − −Y Y , (11) 

where ′jY  is the patch group of noisy image Y  sharing the same patch index of jY , σ n  is 
the original noise variance, and ( )var ⋅  is the variance operation. Then, the AWGF model 
is performed on the patch group jY , where the weighted coefficient τ  is set as 2

,τ σ= n jc  
with the coefficient c . Moreover, we obtain the graph eigenvectors gV of Eq. (5) from the 
classical graph Laplacian matrix L  [Meyer and Shen (2014)]. The corresponding 
restored patches { }jX  are achieved by calculating Eq. (10) and Eq. (5), which 

sequentially assemble the intermediate denoised image ( )kX . We cast ( )kX  in the next 
iteration to form the intermediate image ( )1k+Y . Finally, the optimal denoised image X  is 
obtained in the K -th iteration. 

Algorithm 1 Image denoising by AWGF 
Input: Noisy image Y , noise variance σ n . 
  1:  Initialize intermediate noisy and denoised images with ( ) ( )0 0 =Y = X Y . 
  2:  For 1:=k K  do 
  3:       Set intermediate noisy image ( ) ( ) ( )1 1k kα α−= −Y X + Y . 

  4:       For each patch jy  of ( )kY  do 
  5:            Find similar patches of jy  to form patch group jY . 
  6:            Calculate eigenvectors gV  of Laplacian matrix L . 
  7:            Estimate noise variance ,σ n j  by Eq. (11). 

  8:            Get shrinkage coefficients { },σg j  by Eq. (10). 
  9:            Obtain restored patch group jX  by Eq. (5). 
10:       end for 
11:       Aggregate all { }jX  to form intermediate denoised image ( )kX . 
12:  end for 
Output: Optimal denoised image ( )K

X = X . 

3.2 Graph filtering explanation for ARLLR 
We explain the ARLLR model from the graph filtering perspective. Problem Eq. (1) is 
first turned into a graph filtering form as 

{ }
{ }

( )
,

2

, ,
1

1arg min
2g i

r
T

g i g g iF
i

g
σ

σ σ
τ′ =

′ ′ ′= − +∑Y YVΣ V , (12) 

where g′Σ  is a diagonal matrix with the shrinkage coefficients { },σ ′g i . In Eq. (12), the 
singular value matrix of X  is equal to ′=x y gΣ Σ Σ  with its corresponding diagonal entries 
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, , ,σ σ σ ′=x i y i g i . Comparing Eq. (12) with Eq. (4), the major difference lies in the number of 
used bases. Since the rank number r  is usually smaller than the patch number N , we can 
build a full space supported by bases [ ]⊥=gV V V , where ⊥V  is the orthogonal 
complement bases of V . Once V  is treated as the low frequency bases of gV , the 
shrinkage coefficients g′Σ  of ARLLR can be extended as gΣ  of Eq. (4) by padding zeros. 

By replacing the parameter pair ( ), g′V Σ  with ( ),g gV Σ , problem Eq. (12) is rewritten as 
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 (13) 

where Q  is the component coefficients of Y  on V  with = yQ UΣ . In the consideration of 

( ), ,g i i g ig logσ β σ ε= +  and ,β σ=i y i , the final graph filtering form of ARLLR is provided as 
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 (14) 

In Eq. (14), it shows the ARLLR model is a special form of AWGF, where it has two 
additional constraints. The noisy patch group Y  is required to represent in a subspace of 

gV . Meanwhile, the optimization procedure is only performed on the first r  shrinkage 

coefficients { },g iσ  with setting the rest coefficients zeros. 

4 Experimental results 
We compare the AWGF method with several state-of-the-art methods, including BM3D 
[Dabov, Foi, Katkovnik et al. (2007)], NCSR [Dong, Zhang, Shi et al. (2013)], ARLLR 
[Jia, Feng and Wang (2016a)] and denoising convolutional neural network (DnCNN) 
[Zhang, Zuo, Chen et al. (2016)]. Note that, the first three methods belong to the model-
based methods, while the last one is a discriminative-learning-based method. Moreover, 
since our method is developed by ARLLR, the denoising parameters inherit from those in 
ARLLR. Some clean images are shown in Fig. 1 as test materials. Their noisy images are 
all generated by adding Gaussian noise. 
We firstly give the denoised image comparison by our AWGF and three model-based 
methods in Fig. 2, where the noisy images contain the noise with its deviation 30σ =n . It 
shows NCSR performs worst. Since NCSR employs sparse representation to directly 
extract the features from noisy patches, the learned atoms are inevitably contaminated by 
the noise. Consequently, it makes the description of image features ineffective and 
achieves the low denoising performance. BM3D is better than NCSR. Due to the jointed 
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filtering approach is used on similar patches, the features of patch group are robustly 
obtained to cope with the noise disturbance. ARLLR is the best. It shows the shrinkage of 
singular value is an efficient strategy to remove noise, for the noise is centralized into 
some small values. As a result, it is easy to wipe the noise by the shrinkage of singular 
value significance. As for AWGF, its performance is slightly worse than that of ARLLR. 
Though we introduce the shrinkage approach for the component coefficients in each 
graph frequency band, the optimal construction of graph filter is not referred. As 
mentioned in Algorithm 1, we simply build a graph filter from the traditional Laplacian 
matrix without any further consideration. However, AWGF still outperforms NCSR and 
BM3D, which shows the remarkable effect of graph filtering. 

 
Figure 1: Clean images. From left to right on the top and bottom lines, images are named 
as C. Man, House, Peppers, Monarch, Lena, Barbara, Boat and Baboon 

 
Figure 2: Denoised image comparison with PSNR (dB) in the noise deviation =30nσ . 
From left to right are the noisy images and their corresponding denoised images by 
BM3D, NCSR, ARLLR and our AWGF, respectively 

The denoised image comparison in the noise deviation of 50σ =n  is provided in Fig. 3. 
The similar result is achieved as that in 30σ =n . ARLLR and AWGF are better than 
BM3D and NCSR, where ARLLR has slight superiority over AWGF. In Fig. 3, ARLLR 
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and AWGF have the better image restoration in textures and flat regions, e.g., in Barbara 
and Lena. From the view of graph filtering, they both benefit from the graph frequency 
analysis, where they require the restored patches smoothing evolved on graphs. We also 
note that the edges of Lena in ARLLR suffer from the artificial noise. However, this 
phenomenon is relieved in AWGF, for the full space is used to restore clean images. 

 
Figure 3: Denoised image comparison with PSNR (dB) in the noise deviation =50nσ . 
From left to right are the noisy images and their corresponding denoised images by 
BM3D, NCSR, ARLLR and our AWGF, respectively 

The statistical results of PSNR and SSIM are shown in Tabs. 1 and 2, where the DnCNN 
method is additional tested for comparison. We use BM3D as a baseline, since it achieves 
the acceptable performance for all images and noise levels. From Tabs. 1 and 2, it shows 
the denoising performance of NCSR is better than that of BM3D in the small noise of 

10σ =n  but worse in the noise of 30σ ≥n . The learned features in atoms tend to be 
obscured by the large noise, due to the dictionary is directly trained from noisy images. 
ARLLR is better than the two former methods because of its singular value shrinkage 
strategy. DnCNN is best among all test methods. It utilizes the external prior of image 
databases rather than the internal prior from the noisy image itself. As for AWGF, it also 
has a remarkable performance in the noise of 30σ ≥n . It is thanks to the adaptive 
shrinkage approach to get rid of the noise on all bands. However, AWGF is ineffective to 
deal with the small noise, which will be further discussed in the next experiment. 

Table 1: PSNR (dB) results by different denoising methods 
 10nσ =  30nσ =  

 BM3D NCSR ARLLR DnCNN AWGF BM3D NCSR ARLLR DnCNN AWGF 
C. Man 34.18 34.18 34.43 34.70 34.18 28.64 28.58 28.78 29.38 28.74 
House 36.71 36.80 36.93 36.63 36.14 32.09 32.07 32.55 32.59 32.49 
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Peppers 34.68 34.68 34.95 35.04 34.05 29.28 29.10 29.49 29.98 29.44 
Monarch 34.12 34.51 35.04 35.24 34.51 28.36 28.46 28.91 29.31 28.78 

Lena 35.93 35.85 36.05 36.22 35.42 31.26 31.06 31.44 31.78 31.30 
Barbara 34.98 35.00 35.52 34.65 34.58 29.81 29.62 30.33 29.11 30.14 

Boat 33.92 33.91 34.08 34.08 33.71 29.12 28.93 29.23 29.46 29.15 
Baboon 30.58 30.61 30.82 30.86 30.48 24.57 24.63 24.95 25.07 24.61 
Average 34.39 34.44 34.73 34.68 34.13 29.14 29.06 29.46 29.59 29.33 

 50nσ =  100nσ =  

C. Man 26.12 26.14 26.42 27.11 26.40 23.07 22.93 23.36 23.95 23.22 
House 29.69 29.62 30.33 30.28 30.21 25.87 25.56 26.66 26.61 26.54 

Peppers 26.68 26.65 26.91 27.39 26.88 23.39 22.84 23.45 23.91 23.37 
Monarch 25.82 25.76 26.32 26.85 26.18 22.52 22.11 22.95 23.43 22.76 

Lena 29.05 28.90 29.26 29.60 29.12 25.95 25.71 26.22 26.59 26.17 
Barbara 27.23 26.99 27.79 26.38 27.55 23.62 23.20 24.37 22.72 24.18 

Boat 26.78 26.66 26.97 27.27 26.83 23.97 23.68 24.11 24.46 23.95 
Baboon 22.35 22.44 22.82 22.91 22.41 20.39 20.23 20.56 20.57 20.33 
Average 26.72 26.64 27.10 27.22 26.95 23.60 23.28 23.96 24.03 23.82 

 
Some images restored in the noise deviation =10σ n  are shown in Fig. 4. The proposed 
AWGF is worst among all the test methods in the case of small noise. In AWGF, the flat 
regions of image suffer from more fluctuation of pixel value. As we know, flat regions 
are lack of features, which only contain the direct-current component. However, AWGF 
always tries to get the smoothed components from noisy patches. Once a threshold of 
noise variation is given, it inevitably extracts some artificial smoothed components from 
noisy patches, due to these components are also under the control of noise threshold. 
Since they are something different from the direct-current component, it deteriorates the 
denoising performance of flat regions. On the other hand, our graph filter is generated 
from the traditional Laplacian matrix. This graph filter is without any optimization such 
that its used bases are not the smoothest ones for filtering. It also affects the denoised 
images with more pixel fluctuation. 

Table 2: SSIM results by different denoising methods 

 10nσ =  30nσ =  

 BM3D NCSR ARLLR DnCNN AWGF BM3D NCSR ARLLR DnCNN AWGF 
C. Man 0.9300 0.9312 0.9319 0.9361 0.9282 0.8308 0.8392 0.8338 0.8551 0.8380 
House 0.9234 0.9238 0.9244 0.9152 0.9142 0.8500 0.8487 0.8543 0.8576 0.8530 

Peppers 0.9303 0.9272 0.9321 0.9342 0.9239 0.8528 0.8501 0.8587 0.8721 0.8567 
Monarch 0.9549 0.9572 0.9592 0.9624 0.9516 0.8808 0.8855 0.8915 0.9030 0.8905 

Lena 0.9165 0.9167 0.9177 0.9201 0.9094 0.8456 0.8455 0.8519 0.8608 0.8491 
Barbara 0.9412 0.9416 0.9438 0.9406 0.9341 0.8673 0.8670 0.8801 0.8570 0.8784 
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Boat 0.8877 0.8883 0.8897 0.8904 0.8902 0.7782 0.7715 0.7791 0.7892 0.7773 
Baboon 0.8982 0.8925 0.9045 0.9073 0.9023 0.7034 0.6964 0.7305 0.7389 0.6978 
Average 0.9228 0.9223 0.9254 0.9284 0.9192 0.8261 0.8255 0.8350 0.8417 0.8301 

 50nσ =  100nσ =  

C. Man 0.7764 0.7835 0.7791 0.8005 0.7880 0.6880 0.7060 0.6934 0.7289 0.7035 
House 0.8146 0.8161 0.8244 0.8289 0.8245 0.7229 0.7407 0.7545 0.7611 0.7575 

Peppers 0.7939 0.8006 0.8020 0.8177 0.8015 0.6832 0.7054 0.6935 0.7193 0.6995 
Monarch 0.8197 0.8260 0.8342 0.8506 0.8320 0.7017 0.7120 0.7266 0.7492 0.7234 

Lena 0.8007 0.8035 0.8081 0.8211 0.8053 0.7109 0.7276 0.7294 0.7492 0.7306 
Barbara 0.7932 0.7892 0.8187 0.7722 0.8143 0.6417 0.6389 0.6838 0.6073 0.6819 

Boat 0.7042 0.6972 0.7069 0.7209 0.7067 0.5923 0.5930 0.5970 0.6195 0.5939 
Baboon 0.5506 0.5493 0.6125 0.6145 0.5573 0.3820 0.3865 0.4094 0.3991 0.3722 
Average 0.7567 0.7582 0.7732 0.7783 0.7662 0.6403 0.6513 0.6610 0.6667 0.6578 

 
Figure 4: Denoised image comparison with PSNR (dB) in the noise deviation =10σ n . 
From left to right are the noisy images and their corresponding denoised images by 
BM3D, NCSR, ARLLR and our AWGF, respectively 

5 Conclusion 
We propose an adaptive weighted graph filtering method for image denoising. Unlike the 
traditional ideal lowpass graph filtering, the proposed AWGF method adaptively shrinks 
the components in all graph frequency bands with their component significances. It 
makes the graph filtering more explainable and suitable for denoising. Moreover, we 
demonstrate the existing ARLLR method is a special form of graph filtering, which is 
under the constraint of subspace representation. It not only enriches the theory of graph 
filtering, but also builds a bridge from the low-rank methods to our graph filtering 
method. Experiments show the AWGF method achieves a comparable denoising 
performance with several state-of-the-art methods. However, AWGF is somewhat 
ineffective to tackle noisy images of small noise. It becomes our future work to overcome 
this problem by learning the optimal graph filter. 
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