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Abstract: In this paper, we studied the vibration performance, energy transfer and 
stability of the offshore wind turbine tower system under mixed excitations. The method 
of multiple scales is utilized to calculate the approximate solutions of wind turbine 
system. The proportional-derivative controller was applied for reducing the oscillations 
of the controlled system. Adding the controller to single degree of freedom system 
equation is responsible for energy transfers in offshore wind turbine tower system. The 
steady state solution of stability at worst resonance cases is studied and examined. The 
offshore wind turbine system behavior was studied numerically at its different parameters 
values. Furthermore, the response and numerical results were obtained and discussed. 
The stability is also analyzed using technique of phase plane and equations of frequency 
response. In addition, the numerical results and comparison between analytical and 
numerical solutions were obtained with MAPLE and MATLAB algorithms. 
 
Keywords: Vibration control, stability, offshore wind turbine system, energy transfer. 

1 Introduction 
During the most recent decades, the interest of world energy is constantly increasing on 
worldwide scale. Renewable energy become a standard subject of these investigations. 
Wind energy production is one of the most cost efficient conservation projects [Silva, 
Arora and Brasil (2008); Shi, Han, Kim et al. (2015)]. The effect of the wave, wind and 
earthquake forces on dynamic behavior of wind turbine, Also the method of Rayleigh’s 
energy and ANSYS FSI analysis are applied to obtain the dynamic effects of blades on 
the tower [Van der Woude and Narasimhan (2014)]. A comprehensive study is carried 
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out for the effect of different parameters on the offshore wind turbine system behavior 
and responses of soil monopile tower system [Bisoi and Haldar (2014)]. The effective 
control approach based on an active observer of a standard model of large rotating wind 
turbines is studied [Shi and Patton (2015)]. Passive control technique is investigated for 
vibrations of spar and offshore wind turbine nacelle using tuned mass dampers [Nguyen 
Dinh and Basu (2015)]. The active control strategy effects is studied for a barge floating 
wind turbine type using a hybrid mass damper [Hu and He (2017)]. Mathematical 
analysis is studied for the dynamics of wind turbines with control and time scale 
simulations [Eisa, Stone and Wedeward (2018)]. An active control study to suppress the 
structural vibrations of wind turbines has been proposed [Fitzgerald, Sarkar and Staino 
(2018)]. The effect of seismic loads and environmental forces on the behavior of the 
offshore wind tower is performed with two different approaches [Dagli, Tuskan and 
Gokkus (2018)]. An analytical solutions, chaotic dynamics and stability of some systems 
under multi excitation forces such as a simply rectangular plate, MEMS gyroscope and a 
Cartesian manipulator systems are obtained and studied by Hamed et al. [Hamed (2014); 
Hamed, EL-Sayed and El-Zahar (2016); Hamed, Alharthi and AlKhathami (2018)]. The 
analysis detailed of some dynamical systems with different forces is founded in the books 
[Cartmell (1990); Nayfeh, and Balachandran (1995)]. In the present work, the PD 
controller was applied for reducing the oscillations of the controlled system and transfer 
the energy to the offshore wind turbine tower system. The stability at worst resonance 
cases is examined. Also, the offshore wind turbine system behavior was studied 
numerically at its different parameters values. In addition, the numerical results and 
comparison between analytical and numerical solutions were obtained. 

2 Description of structure and governing equation of motion 
The structural modal of wind turbine consists of hub, tower, blade and concentrated mass. 
The hub height of the wind turbine is 65 m with diameter 6 m, the blade length is 24 m 
and the tower carried the weight of the hub, nacelle, and the rotor blades which is 83,000 
kg. The structural modal subjected to some external forces such as wind and wave forces 
( ,

a H
F F ) and earthquake force (

eqk
F ). The offshore wind turbine tower model is 

shown in Fig. 1.   
The equation of motion of the single degree of freedom system is obtained from Dagli et 
al. [Dagli, Tuskan and Gokkus (2018)] and described by the following equations: 

            

2 cos sin cos cos
a H

x x x t F t F t t       (1)  
 

    

                                  

                                                                                                                                                                                                                                                                                   

  

The initial conditions of Eq. (1) are  (0) 0.01, (0) 0.01x x  with displacement x and 

derivatives  ,x x , linear damping coefficient  , small perturbation   where 0<𝜀𝜀<<1, 

excitation wind and wave forces ,
a H

F F , Earthquake force   cos
eqk

F t  and 

natural frequency  and excitation frequency . Applying the proportional-derivative 
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(PD) controller to the motion equation of the controlled system, we get the modified 
normalized equation as follows: 

                  

2 cos sin cos cos
a H

x x x t F t F t t px dx

                                                                                                                                           (2) 

where   px dx  is the PD controller. 

2.1 Perturbation analysis  
Multi-scale disturbance technique (MSPT) [Nayfeh (1985); Nayfeh and Mook (1995)] is 
performed to obtain approximate solutions for Eq. (2). Assuming that the solution is in 
the form: 

       2 3
0 0 1 2 1 0 1 2 2 0 1 2; , , , , , , ( )x t x T T T x T T T x T T T O                        (3)                                                 

We presented the derivatives in the form: 

 

        

 

 

2
0 1 2

2
2 2 2
0 0 1 1 0 22

2 2 ...

...
d

D D D
dt
d

D D D D D D
dt

                                          (4) 

The time scales n
nT t  and the derivatives n nD T   where (n=0, 1). Substituting Eqs. 

(3)-(4) into Eq. (2) and equating the coefficients of  ε  leads to: 
 

 2 2
0 0

0D x                                                                                                  (5) 

            2 2
0 1 0 1 0 0 0

( ) 2 cos sin cos cosHa
D x D D x D x t F t F t t

 
0 0 0

px dD x                                                                                                                 (6) 

           2 2
0 2 1 0 0 2 0 0 1 1 1

2
1 0 1 10 1 00

2 2D x D x D D x D D x D x D px dD x dD xx                          
(7)

 
                                                 

The general solution of Eq. (5) has the form:  

   0 0 0 0 0
exp expx A i T A i T                                                                 (8) 

where 0
A and 0

A  are complex functions in 21
,T T . Substituting Eq. (8) into Eq. (6), 

the following are obtained: 

     2 2
0 1 1 0 0 0 0 0

2 expD x i D A A dA pA i T          

     1 0 0 0 0 0 0 0
2 exp exp( ) exp )

2
(ai D A A dA pA i T i T i

iF
T             
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   0 0 0 0
exp(2 exp( 2 exp( ex) ) ) )p(

4 2 2
H Hi T i T i T i T

F F



       (9)                                                                                                                                     

For the abounded solutions of Eq. (9), the coefficients of secular terms 
0

exp( )i T  must 
be removed and the general solution of Eq. (9) should be in form: 

  


 


 


  
1 1 0 1 0 2 02 0

exp( ) exp( ) exp( exp
2( )

() )a
iF

x A i T A i T i T i T

   0 02 0 02 2 2
) ) ) )

4( 4 ) 2(
exp(2 exp( 2 exp( exp(

)
H i T i T i T T

F
i


  

   
 




  

2
H

F


                                                                                                                               (10) 

where 
1 1
,A A  are complex functions in 21

,T T  . Substituting Eqs. (8) and (10) into Eq. 

(7) and removing the secular terms from Eq. (7), the solution to this equation is as 
follows:  

   
 

 
 

 
 


 

     
  

 


 


2 0 02 2
2

0
2 2

2
2

2 2
exp exp(

2 2 4
) exp 2a H

ip d F p i d i F
x A i T i i TT

 
 
  

 



  

 


02

2 2
4

e p(
2

x )
2

H
pp i d i

i T
F

cc  
                                 

(11) 

where 
2

A  and 
i

H , (i=1, 2, 3, 4) are complex functions in 
21

,T T  and cc are referred to  

conjugate terms. The solution of Eq. (1) is presented by: 

       2
0 0 1 2 1 0 1 2 2 0 1 2 0 1 2

; , , , , , , ( , , )n
n

x t x T T T x T T T x T T T x T T T       From 

the approximate solutions obtained, we extracted all the resonances and reported them as 
follows: 
(a) The primary resonance:     

(b) The super-harmonic resonance: 
  

2
. 

 

2.2 Stability analysis of the steady state solution 
To stability examination, the analysis is studied to the first approximation. The solution 
depends only on 

10
,T T  and the stability is analyzed and studied for the solution at the 

primary resonance   . The detuning parameter  is presented as:  

   
1

                                                                                                                (12)  

From Eq. (8) the secular terms are removed and the solvability conditions for the first 
approximation are presented as: 
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            1 0 0 0 0 0 0
2 exp exp

2
( )a

iF
i D A A dA pA i T i T        (13) 

Substituting Eqs. (12) into (13) and eliminating the secular terms leads to solvability 
conditions for the first and second-order expansions as: 

          1 0 0 0 0 1 1
2 exp( )

2
a

iF
i D A A dA pA i T               (14) 

Let’s introduce the polar form as:
 

0 1 1

1
( )exp(( ( ))

2
A a T i T                                                                                     (15) 

where a  and   are  the amplitude and phase of the motion at the steady state. Using 
Eqs. (15) into (14) to obtain the imaginary and real parts, the following equations are 
obtained as follows: 





   

2 2
cos

2
ad

a a a
F                                                      (16) 







  sin
2 2

a
Fa

a
p                                                                                     (17) 

where    
1 1
T . The steady state solution occur where 0a    , then the 

solutions at steady state can be obtained for Eqs. (16) and (17) as follows: 





 co
2

s
2 2

a
Fd

a a                                                                                         (18) 


 


 

1
sin

2 2
a

Fp
a

a                                                                                          (19) 

By squaring both sides of Eqs. (18) and (19) and adding the results, we obtained the 
frequency response equation in the form: 











               


 

22 2

1 2

2

2 2

2
1

0
4 4 24 4

a
Fp d p d

a
        (20)        

2.3 Stability of nonlinear solution  
To examine the stability of the nonlinear solutions, we takes 

0 1 1
( )a a a T     and   0 1 1

T                                                                       (21) 

where 
00

,a  and 
1 1
,a are corresponding to the nonlinear solution and perturbation terms 

respectively, where 
1 1
,a are small compared to 

00
,a . Using Eq. (20) into Eqs. (16), 

(17) and putting 
1

cos 1   and 
1 1

sin   , then 

       





      
0 1 0 1 0 1 0 01

cos
22 2

sinaa a a a a
Fd

a                 (22) 
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           





       
0 1 1 0 1 0 1 1 00

sin cos
2 2

a
Fp

a a a a             (23) 

For the steady state the Eqs. (22) and (13) become: 







 
     

    
    

1 1 10
sin

22 2
a

F
a

d
a                                                             (24) 

  


      

       
1 1 10 02

00

sin cos
22

a aa
F F

aa
                                                           (25) 

The systems (24) and (25) can be expressed in a matrix form as follows  
                     



       
1 11 12 1

1 21 22 1

aa
                                                                                     (26) 

where 
1 1
,a  are real functions of 

1
T . 

The eigenvalues of the system (26) is 

11 12

21 22

0



 


 



                                                                                            (27) 

i.e., 
2

11 22 11 22 12 21
0                                                               (28) 

where
 

        11 2
,

2
d

  


     
 


012

sin
2

,a
F

  




       
02

0

21
sin ,

2
a

F

a                 




      
 

022
0

cos
2

a
F

a
.
 

Using the criterion of Routh-Hurwitz, the necessary and sufficient conditions for the 
system to be stable that the real parts of all roots of Eq. (28) are negative.   

3 Results and discussion 
The Runge-Kutta algorithm of fourth order is used to find the analytic results numerically 
for the equation of motion (2). Also, we examined the stability of the controlled system 
using the frequency response function and the effects of some different parameters on the 
behavior of the controlled system are also studied. Finally, we compared the analytical 
results with the numerical ones. 

3.1 System behavior without control  
The System behavior is studied numerically at the obtaining resonance cases from Eqs. 
(10) and (11). The Eq. (2) is integrated numerically at the system parameters: 
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          0.04, 9.73, 2.828, 67.17, 5.129, 15, 0.5
a H

F F p d Fig. 1, 

indicate the phase plane and time histories of uncontrolled offshore wind turbine tower 
system at primary condition   . From this figure, we find that, the behavior  of the 
uncontrolled system is nearly about 75% of the wind force 

a
F , 975% of the wave force 

H
F  and  phase plane showing multi limit cycle.  

0 100 200 300 400 500

Time

-100

-50
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50

100

Am
pl

itu
de

 x

 

-80 -60 -40 -20 0 20 40 60 80

Amplitude x

-150

-100

-50

0

50

100

dx
/d

t

 
 

Figure 1: The amplitude and phase plane of the system without PD controller at primary 
resonance case    

3.2 System behavior with control 
Fig. 2 represent time histories for the offshore wind turbine tower system after applying 
the proportional-derivative (PD) controller at resonance case   , . In this figure, the 
amplitude for the controlled system is nearly 6% of the wind force 

a
F , 78% of the wave 

force 
H

F . Then, the efficiency of the controller 
a

E  (uncontrolled system amplitude 
/controlled system amplitude) is about 12.5. 
Figs. 3. and 4. show the transfer of energy between uncontrolled and controlled modes 
for the offshore wind turbine tower system due to values of wind, wave forces and super 
harmonic resonance case 

 
2

. From these figures, we observed that energy is 
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transferred from the uncontrolled system to the controlled system due to apply the PD 
controller with different values of wind and wave forces 

a
F , 

H
F and natural, excitation 

frequencies  ,  compared with its values in Fig. 1, so we can used these parameters to 

control the oscillation amplitude of the controlled system. 

0 100 200 300 400 500

Time

-6

-4

-2

0

2

4

6

Am
pl

itu
de

 x

-6 -4 -2 0 2 4 6

Amplitude x

-10

-5

0

5

10

dx
/d

t

 

 
Figure 2: The amplitude and phase plane of the system with PD controller at primary 
resonance case    
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Figure 3:  The energy transfer between uncontrolled and controlled system at 

 27.56
a

F ,  1.17
H

F   
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Figure 4: The energy transfer between uncontrolled and controlled system at 


 

2
 

3.3 Response curves of the controlled system 
In the section, we studied the different parameters effect and stability zone of the 
controlled system using frequency response curves. Also, using the numerical methods, 
the stability of nontrivial solutions is investigated for Eq. (20). In Fig. 5(a), the detuning 
parameter 1  effects on the behavior of the controlled system is shown.  Figs. 5(b)-5(d). 
show that the behavior  of the controlled system is a monotonic decreasing functions in 
the damping coefficient  , the control parameter d  and the natural frequency  , also 
the curves of the system is shifted to right with increasing the values of  the control 
parameter p  as shown in Fig. 5(e). The behavior of the controlled system is a monotonic 
increasing function in the wind amplitude force aF  as shown in Fig. 5(f). 

 

Figure 5(a): Effects of detuning parameter 1  on the system behavior 
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Figure 5(b): Effects of damping coefficient   on the system behavior 

 

Figure 5(c): Effects of control parameter d  on the system behavior 

 

Figure 5(d): Effect of natural frequency   on the system behavior 
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Figure 5(e): Effects of control parameter p  on the system behavior 

 

Figure 5(f): Effects of wind force aF  on the system behavior 

3.4 Comparison of analytical and numerical simulation  
In this subsection, the comparison of numerical simulation for the controlled system of Eq. (2) 
with perturbation solution of Eqs. (16) and (17) at different values of controller parameters 
p and d at primary resonance   is investigated as shown in Figs. 6-7. The red line 

indicates the solution of perturbation, while the blue line refers to numerical integration. In 
these figures, analytical results are well agreement with numerical simulation. 
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Figure 6: Comparison of analytical and numerical simulation of the system at  
15, 0.5,  p d  

0 50 100 150 200 250 300 350 400 450 500

Time

-150

-100

-50

0

50

100

150

A
m

pl
itu

de
 x

   Numerical Solution

   Perturbation Solution

 

Figure 7: Comparison of analytical and numerical simulation of the system at 
1, 0.01,   p d  

3.5 Comparison of numerical solution and response curve  
Figs. 8-9 indicate a comparison of the system response with applying the PD controller at 
the parameters values used for stability at primary resonance  . In these figures, the 
behavior of the controlled system is about 4 and 10 which is in a well agreement with the 
controlled system amplitude at 1 0  . 
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Figure 8: The response of the controlled system at the stability parameters values 15, 0.5,  p d  
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Figure 9: The response of the controlled system at the stability parameters values 7, 0.5,  p d  

4 Conclusions 
The behavior of the offshore wind turbine system with mixed excitations and PD 
controller is investigated. The approximate solutions, stability analysis and numerical 
integration are studied for the system behavior. The different parameters effect and 
comparison of analytical with numerical solutions are studied numerically. From this 
study, we included the following: 
1. The behavior of the uncontrolled system is nearly about 75% of the wind force 

a
F , 

975% of the wave force 
H

F  and the phase plane showing multi-limit cycle.  

2. The amplitude for the controlled system is nearly 6% of the wind force
a

F , 78% of the 

wave force 
H

F  and the efficiency of the controller 
a

E is about 12.5. 
3. The energy is transferred from the uncontrolled system to the controlled system due to 

apply the PD controller with different values of wind and wave forces 
a

F , 
H

F and 

natural, excitation frequencies  , .   

4. The behavior of the controlled system is a monotonic decreasing functions in the 
damping coefficient  , the control parameter d  and the natural frequency  . 

5.  The curves of the controlled system have a right shift to with increasing values of the 
control parameter p .  

6. The behavior of the controlled system is a monotonic increasing function in the wind 
amplitude force aF .   

7. The analytical results are well agreement with numerical simulation 
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