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Abstract: Digital images have been applied to various areas such as evidence in courts. 
However, it always suffers from noise by criminals. This type of computer network 
security has become a hot issue that can’t be ignored. In this paper, we focus on noise 
removal so as to provide guarantees for computer network security. Firstly, we introduce 
a well-known denoising method called Expected Patch Log Likelihood (EPLL) with 
Gaussian Mixture Model as its prior. This method achieves exciting results in noise 
removal. However, there remain problems to be solved such as preserving the edge and 
meaningful details in image denoising, cause it considers a constant as regularization 
parameter so that we denoise with the same strength on the whole image. This leads to a 
problem that edges and meaningful details may be oversmoothed. Under the 
consideration of preserving edges of the image, we introduce a new adaptive parameter 
selection based on EPLL by the use of the image gradient and variance, which varies with 
different regions of the image. Moreover, we add a gradient fidelity term to relieve 
staircase effect and preserve more details. The experiment shows that our proposed 
method proves the effectiveness not only in vision but also on quantitative evaluation. 
 
Keywords: Computer network security, image denoising, EPLL, adaptive parameter, edges. 

1 Introduction 
Computer network security is always a hot topic because it is closely related to our daily 
life. However, it often suffers from attack. For example, as we all know digital images can 
be used as a powerful evidence in juridical practice, but criminals may corrupt images to 
disrupt the line of sight. For solving this, many experts focus on the source of images 
because it plays an important role in image forensics practice. Investigators may track 
suspects form images that taken by particular cameras. The most popular image forensic 
approach is mainly based on sensor pattern noise [Lucas, Fridrich and Goljian (2013)]. The 
key to this approach is extracting sensor pattern noise by advanced denoising filters. 
Therefore noise removal becomes a hot issue in computer forensics, and then much effort 
has been paid to image denoising techniques to obtain the high quality image. 
A large number of methods have been proposed on image restoration in the past few 
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decades. Sparse representation is rather well-known among them [Dong, Zhang, Shi et al.  
(2011); Elad and Aharon (2006)]. The main idea of this theory is to consider image 
patches as the linear combination of some atoms based on a dictionary. The overcomplete 
dictionary can be ready-made, or it can be trained from image patches. Then low-rank 
approximation methods show amazing results on denoising [Dong, Shi, Li et al. (2014); 
Dong, Shi and Li (2013)]. It can be divided into two categories: the nuclear norm 
minimization methods [Cai, Candes and Shen (2010)], and the low rank matrix 
factorization approaches. The total variation (TV) [Beck and Teboulle (2009); Zheng, 
Jeon, Zhang et al. (2015); Zhang, Yu, Zheng et al. (2016); Zheng, Ma, Yu et al. (2017)] 
has always been active in image denoising. Building a proper image model as prior is of 
great significance in image denoising. So mixture models attract attention in image 
denoising due to its robustness, especially Gaussian Mixture Model (GMM). Then many 
meaningful explorations were devoted to learn image priors by GMM [Wang and Morel 
(2012); Yu, Sapiro and Mallat (2012); Zoran and Weiss (2011); Zhang, Liu, Li et al. 
(2017)]. Inspired by this, some further studies have been proposed [Zheng, Zhou, Jeon et 
al. (2017)]. These methods have already successfully prove their reliability. 
As a major feature of the image, edges are full of meaningful structure information. 
Preserving edges occupies an important position in image denoising. Therefore, many 
researches on edge-preserving have been applied to noise removal. Anisotropic diffusion 
is one of the most efficient algorithm. In Perona et al. [Perona and Malik (2002)], the first 
pioneering model of anisotropic diffusion came into the public’s view. The original 
Perona-Malik diffusion model mainly considered on the gradient information of the 
image. The basic idea behind the method is that gradient is an ideal indication of the edge. 
In detail, the classical P-M model smooths strongly at the homogeneous region which 
always has low gradient and stops diffusion at the inter-region edge that has large 
gradient. The number of iterations is the key to the success of the denoising result since 
too much iterations will lead to the loss of edges. Inspired by this, many further studies 
have been proposed due to its great success [Chao and Tsai (2010); Ma, Shen, Zhang et al. 
(2017); Masiseli and Gao (2016); Xu, Jia, Shi et al. (2016)], now the anisotropic diffusion 
approach has become a hot topic in image restoration [Wang, Guo, Chen et al. (2013)], 
image segmentation, texture segmentation, image enhancement [Giboa, Sochen and 
Zeevi (2004); Dang, Gao, Wang et al. (2015)], image smoothing [Lions, Morel and Coll 
(1992)] and defect detection [Malarvel, Sethumadhavan, Bhagi et al. (2017)]. However, 
there still remain tiny problems such as the huge cost of iteration and staircase effect. For 
solving the former, Tebini et al. [Tebini, Mbarki, Seddik et al. (2016)] proposed a fast 
and efficient method based on the tangent sigmoid model to obtain a higher speed of 
convergence. For solving the latter, Guo et al. [Guo, Sun, Zhang et al. (2012)] proposed 
an adaptive P-M diffusion which combined the original P-M model heat equation. Edge-
preserving methods aim to remove noise effectively and preserve inter-region edges at 
the same time. In this paper, we focus on the edge-preserving, and propose a new method 
of adaptive regularization parameter selection. Moreover, we add a gradient-fidelity term 
to relieve the staircase effect and preserve more details of image. 
In this paper, we focus on the noise removal method used in computer forensics. Good 
quality denoising methods enable experts to extract sensor pattern noise better and keep 
the accuracy of camera forensics. The noise removal method aims to enhance the security 
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of computer identification. 
This paper is organized as follows: Section 2 reviews the GMM model, and then 
introduces original EPLL algorithm briefly. Section 3 introduces the proposed method. In 
Section 4, we show experiment results as the proof of effectiveness of the proposed 
method. Section 5 makes the conclusion and summarizes the paper. 

2 Original EPLL model 
2.1 Normal denoising model 
Assuming a noisy image 0u u v= +  corrupted by additive white Gaussian noise. Our 
purpose is to achieve a pure image  from the observation. In this paper, we consider it as 
a Maximum a Posteriori (MAP) problem. MAP approach is based on Bayesian theory 
that maximizes the posteriori probability to obtain the clean image: 

( ) ( ) ( )2
0 0arg max | arg min log

2uu
p u u p u u u p uλ = − − 

 
 (1) 

The first term is a data fidelity term, and the second term is the log of the prior. First of 
all, we need to learn prior knowledge. We consider the distribution ( )p u  as the prior 
model which is independent of the data observation. Obviously, the distribution ( )p u  
directly affects the result, so how to build the prior model has become a hot issue. As we 
all know, image is a type of high-dimensional data with complex distribution, so directly 
learning the whole image prior is a giant challenge. To solve this, we can extract 
overlapping image patches with low dimension from the whole image, and naturally our 
goal is to make every patch is likely under our prior in statistics.  

2.2 Gaussian mixture model (GMM) 
Usually we can assume that one patch can be described by a specific distribution function. 
However, as is mentioned above, image is consisted of numerous independent patches 
that we can hardly describe it just by a single distribution. 

       
a                                                       b 

Figure 1: (a) Lena image (b) Gray distribution histogram of Lena image 
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As is shown in the Fig. 1, (b) represents gray distribution histogram of (a), abscissa 
represents the gray value, and ordinate represents the frequency of the gray value. Several 
peaks in (b) means one image can be considered as the superposition of several different 
Gaussian distributions, then naturally we call it Gaussian Mixture Model (GMM). GMM 
is always considered as the image prior instead of a single gaussian distribution. 
In this paper, we train the GMM model by a set of clean natural image patches 

{ }1 2, , nD a a a= ⋅⋅ ⋅ (in vectorized form). For a given patch ia , we define the GMM 
distribution as the following: 
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where K is the number of mixture components, kπ is the mixing weight for each mixture 
component, kµ and kΣ denote the corresponding mean vector and covariance matrix. 

Moreover, kπ denotes the priori probability, and 
1

1
K

k
k
π

=

=∑ . For notational simplicity, let 

{ } 1
, , K

k k k kµ π
=

Θ = Σ  denote these parameters. Θ is learned by Expectation Maximization 
algorithm (EM). 
In the E-step, we calculate the posterior probability for the component k as the following: 
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Then, for all patches, we get the likelihood function as the following: 
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In the M-step, to obtain parameters Θ , let ( ) 0
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Eq. (7) means the mean vector for each component can be estimated by weighted average 
method, the weight is the posterior probability. 

Similarly, let ( ) 0
k

LL D∂
=

∂Σ
, then we get: 
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For mixing weights kπ , considering the form of Lagrange, leading to the following: 
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where γ  is the Lagrange multiplier. 

Let the derivative of the Eq. (9) be 0kπ = , then  
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Eq. (11) means the mixing weight for each component is determined by the averaging 
posterior probability. 

2.3 Expected patch log likelihood 
EPLL [Zoran and Weiss (2011)] is an image restoration method that builds a model from 
patches to the whole image. The fundamental idea of EPLL is to make every patch have 
the highest log likelihood probability under our prior. EPLL is defined as: 

( ) ( )log i
i

EPLL u p R u=∑                                                                                                (12) 

where  is an operator that extracts the patch from the whole image at the i-th position, 
obviously  is the extracted patch we need,  denotes the regularization parameter and 
log means the likelihood of the i-th patch under the prior. 
Our purpose is to obtain a pure image by minimizing the cost function as the following: 

( ) ( )2
0 0|

2
f u u u u EPLL uλ

= − −                                                                                   (13) 

Similar to Eq. (1), Eq. (13) has two terms: the data fidelity term and the regularization 
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term. We should point out that EPLL (u) denotes the total log probabilities of all 
overlapping patches, rather than the whole image. Overlapping patches means each pixel 
will appear several times in different patches, so each patch will be denoised 
independently and each pixel will be average according to its frequency. 

3 Proposed method 
Regularization parameter affects the quality of the restored image directly. As is shown in 
Chao et al. [Chao and Tsai (2010)], when it comes to image denoising, the adaptive 
regularization parameter always plays a central role. How to maintain a balance between 
preserving edges of the image and denoising remains a big problem for us to solve. So in 
this paper, a method with adaptive selection of regularization parameter for a better 
restored image is proposed as the following: 

( ) ( ) ( ) ( )22
0 0

, ,
log

2 2 i
i

x y x y
u u u G u p R uσ

λ α 
− + ∇ −∇ ∗ − 

 
∑                                  (14) 

where the second term is the gradient fidelity term, u∇  denotes the image gradient, Gσ  is a 
Gaussian filter operator, ( ),x yλ  and ( ),x yα  are functions represents the parameter at the 
each pixel which related to the gradient of the image. They can be expressed as the following:  
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where 1k  and δ  are constants, 2k  is the threshold value, is the gradient of pixel ( ),x y , 
and ( )2 ,N x yσ is the normalized variance at the pixel ( ),x y . We introduce the variance of 
the image because variance is less affected by noise compared to gradient. In order to 
keep the variance have the same weight as the gradient, normalize the variance by: 
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where 3k  is still the threshold value, u∇  is the gradient of the image, ( )uη ∇  is set by： 

( )( )
( )2

2, 2
1 0.5 ,

u x y
u x y

η ∇ = +
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                                                                            (18) 

The regularization parameter function depends mainly on the gradient u∇  and variance 
of the image. ( ),x yλ  is small when large gradient and variance are detected at edges of 
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the image and ( ),x yα is large so that edges will be preserved. ( ),x yλ is large when 
small gradient and variance are detected in the smooth regions so as to remove noise as 
much as possible. Meanwhile, ( ),x yα  is small, which aims to maintain the similar 
structure between the observation and the restored image.  
Instead of solving the equation directly, we apply a method named “Half Quadratic Splitting 
algorithm” to the Eq. (14). A series of patches { }iz  are introduced that each one refers to the 
corresponding overlapping patch iR u  in the image, then we get the new cost function: 

( ) ( ) ( ) ( )22 2
0 0

, ,
min log

2 2 2 i i i
i

x y x y
u u u G u R u z p zσ

λ α β  − + ∇ −∇ ∗ + − −  
  

∑ (19) 

where β  is the penalty parameter, it is obvious that auxiliary variable { }iz  equals to the 
patch iR u  when β  tends to be infinite. 
For minimizing Eq. (19), firstly, we choose the Gaussian component that has the highest 
conditional mixing weight maxk  for each patch iR u , then optimize Eq. (19) by updating 

iz  and u alternately:  
1
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max max max

1 1n n
i j i j jz I R u u I

β β

−
+    
= Σ + ⋅ Σ +   
   

                                                              (20) 

 
( )( ) ( )

( )( ) ( ) ( )( )

1
0

0 0

,

, ,

n n n T n n
i i i

i

n n
xx yy xx yy

u u t x y u u R R u z

x y u u x y G u uσ

λ β

α α

+ = + ∆  − − −

+ + − ∗ + 

∑
                                            (21) 

where  denotes the time step and  is the unit matrix. 
Repeat such process for few iterations, usually 4 or 5. At each iteration, we fix the value 
of . There are two normal ways for us to apply to the choice of  values. One option is 
to optimize the value by a series of training sets, the other way is to try to estimate the 
intensity of noise from the current image, then set β . 

Generally speaking, the proposed method can be implemented as the following: 
Table 1: Proposed algorithm 

Input: corrupted image 0u , penalty parameter β ,the time step t∆ , regularization 

parameter functions ( ),x yλ ， ( ),x yα  

Step    Choose the most likely Gaussian mixing weights for each patch iR u  ; 

           Calculate 1n
iz +  using Eq. (20); 

Pre-estimate image 1nu + by Eq. (21); 
            Repeat above steps for 4-5 times. 
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4 Implementation and experiment results 
The set of 62 10×  image patches used in our experiment are sampled from the Berkeley 
Segmentation Database (BSDS300). The GMM is trained with 200 mixture components 
by those patches. Adding all the patches with Gaussian noise of zero mean and a standard 
deviation 25σ = . Parameters in our proposed method are set as the following: the image 
patch size , the penalty parameter [ ]21 / 1,2,3,4,5β σ= , 0.0042t∆ = , the constants 

1 2

1k
σ

= , 2 20k = , 3 70k = , 2δ = . The results are shown as the following:  

       
a                                                             b 

       
c                                                            d 

Figure 2: Denoising results on ‘Barbara’ image with a noise standard deviation σ=25. (a)         
Original image (b) Noisy image, (c) EPLL result (d), Proposed method 
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a                                                          b 

        
c                                                            d 

Figure 3. Denoising results on ‘House’ image with noise standard deviation σ=25. (a) 
Original image (b) Noisy image, (c) EPLL result (d), Proposed method 

Table 2: PSNR results for test images with noise standard deviation σ=25 

 EPLL Proposed method 
Barbara 28.55 28.72 
House 32.15 32.41 
Man 29.57 29.71 
Hill 29.58 29.74 
Lena 31.67 31.86 

Table 3: PSNR results for test images with noise standard deviation σ=40 

 EPLL Proposed method 
Barbara 26.01 29.29 
House 29.93 30.21 
Man 27.57 27.81 
Hill 27.75 27.99 
Lena 29.41 29.68 

As a comparison, our proposed method preserves edges better and keeps more details of 
the image. As in shown in Figs. 2 and 3, the original EPLL method may denoise well, but 
it also leads to a problem that the loss of edges and details in some regions. Fig. 2(c) 
shows that details such textures are fuzzy in EPLL result, while clearer textures can be 
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seen in proposed method. The gradient fidelity term proves its validity in preserving 
image details. Fig. 3(c) shows that the edge of house is barely visible in original EPLL 
result, while in Fig. 3(d) the edge is smoother and more real. This probably due to the fact 
that the new adaptive parameter can take a small number at edge areas so as to preserve 
edges better. 
Tabs. 2 and 3 show numerical results between two methods on different images at 
different noise deviation. At both low and high noise deviation, various images can 
obtain higher PSNR by proposed method. We can see that the proposed method can 
achieve very competitive denoising performance. It is obvious that our method is superior 
to the original EPLL method. 

5 Conclusions 
Image is a carrier of abundant information, so directly learning image priors is a big 
challenge for us. GMM has proven its power in various areas due to its robustness, so 
image denoising based on GMM has become more and more active in the past decades. 
The EPLL algorithm is such a method that builds a model from the extracted patches to the 
whole image based on GMM. Classical P-M model has achieved satisfying results, but 
there is still weakness that it focuses only on the gradient. We should realize that details in 
image may involve variation information, therefore we should make full use of variation 
along with image gradient. In this paper, we construct an adaptive regularization parameter 
function based on the image gradient and variance. In addition, we add a gradient fidelity 
term to maintain the similar structure between the degraded image and the restored one. 
Our method performs well in image denoising, especially in edge and detail preserving, and 
shows an obvious advance compared with the original EPLL algorithm. 
There is still much room for improvement. In the process of actual application, data tends 
to be symmetrical distribution from a statistical standpoint. GMM can be treated as 
deviation special distribution of the gaussian mixture distribution. Using a skew gaussian 
distribution as prior obviously will have stronger generalization ability. Moreover, we 
can consider the geometric characteristics of the image, so that the prior information 
dictionary more perfect and more accurate. 
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