Computer Modeling in Engineering & Sciences CMES, vol. 124, no.1, pp.5-21, 2020

Study on a Dual Embedded Discrete Fracture Model for
Fluid Flow in Fractured Porous Media
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Abstract: Simulation of fluid flow in the fractured porous media is very important and
challenging. Researchers have developed some models for fractured porous media. With
the development of related research in recent years, the prospect of embedded discrete frac-
ture model (EDFM) is more and more bright. However, since the size of the fractures in the
actual reservoir varies greatly, a very fine grid should be used which leads to a huge burden
to the computing resources. To address this challenge, in the present paper, an upscaling
based model is proposed. In this model, the flow in large-scale fractures is directly
described by the EDFM while that in the small-scale fractures is upscaled through local
simulation by EDFM. The EDFM is used to simulate the large- and small-scale
fractures independently two times, so the new model is called dual embedded discrete frac-
ture model (D-EDFM). In this paper, the detailed implementation process of D-EDFM is
introduced and, through test cases, it is found the proposed model is a feasible method
to simulate the flow in fractured porous media.

Keywords: Dual embedded discrete fracture model (D-EDFM), local upscaling, fractured
porous media.

1 Introduction

Fractured porous media can be found in many fields, such as subsurface water flow
[Barenblatt, Zheltov and Kochina (1960)], reservoir development process [Jiang and
Younis (2016)], CO2 sequestration [Li, Li, Yuan et al. (2019)], geothermal exploitation
[Kushnir, Heap and Baud (2018)] etc. The fluid flow simulation in the fractured porous
media has become one of the research hotspots in recent decades. The key point is to
find an accurate and efficient way to describe the fractures. Researchers have developed
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some models. The typical ones that can clearly depict the fractures’ geometry structure are
discrete fracture model (DFM) and embedded discrete fracture model (EDFM).

The discrete fracture model [Karimi-Fard, Durlofsky and Aziz (2004); Garipov, Karimi-
Fard and Tchelepi (2016)] explicitly describes the structures of fracture system, and it is
considered as the most accurate methods to describe fluid flow and heat transfer in
fractured porous media. However, the shortcoming of DFM is very obvious. Since the
grid of matrix and fractures are related/correlated with each other, unstructured grids
should be used and matrix grid refinement is necessary near the fractures. The grids
number increases significantly as the fracture number increases, which leads to large
computational cost and low computational efficiency. As a result, for complex three-
dimensional fracture network in engineering, simulation through DFM is almost
impossible [Chen, Clauser, Marquart et al. (2018)].

The embedded discrete fracture model was first put forward by Lee et al. [Lee, Lough and
Jensen (2001)] based on DFM. In EDFM, the matrix grid and fracture grid are nearly
independent. The matrix can be discretized through structured grids, and the fractures are
embedded in the matrix grid, thus avoiding the large number of unstructured grids
needed in DFM. Subsequently, Moinfar et al. [Moinfar, Varavei, Sepehmoori et al.
(2014)] proposed an improved EDFM. The improved model can simulate inclined
fractures in any direction, which means the method is feasible to describe the complexity
and heterogeneity of fractured reservoirs. Tene et al. [Tene, Bosma, Al Kobaisi et al.
(2017)] found that if the fracture coincides with the grids interfaces when the EDFM is
used to simulate fractures, the results obtained are not accurate. Therefore, Tene et al. put
forward projection-based embedded discrete fracture model (p-EDFM) to solve this
problem. Recently, EDFM is used in many research fields [Shakiba and Sepehrnoori
(2015); Xu (2015); Ren, Jiang and Younis (2016); Yu, Tripoppoom, Sepehrnoori et al.
(2018)] showing good performance.

In the actual oil, gas and geothermal reservoir, the fracture networks are usually very
complex and the size of fractures varies greatly. The computation burden could be
unacceptable to depict all the fractures even by EDFM. One of the solutions [Efendiev,
Lee, Li et al. (2015); Bosma, Hajibeygi, Tene et al. (2017); Srinivasan, Karra, Hyman
et al. (2019); Mudunuru, Karra, Kelkar et al. (2019); Mudunuru, Karra, Harp et al.
(2017); Li, Gao, Han et al. (2020)] to deal with this problem is to upscale all the
fractures as permeable matrix based on DFM or EDFM. The upscaling process is called
“flow based simulation method” [Durlofsky (2003); Long, Remer, Wilson et al. (1982);
Bogdanov, Mourzenko, Thovert et al. (2003)] which is contrary to the ‘“analytical
method” [Ahmed Elfeel and Geiger (2012)]. The “flow based simulation method”
calculates the equivalent permeability based on local simulation with particular boundary
conditions. Koudina et al. [Koudina, Garcia, Thovert et al. (1998)] studied the equivalent
permeability for three dimensional fractures with matrix permeability being ignored.
Since the flow through matrix may have influence, by DFM, Bogdanov et al. [Bogdanov,
Mourzenko, Thovert et al. (2003)] calculated the effective permeability considering the
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flow through matrix as well as the mass exchange of matrix and fractures. As it is stated
above, for complex fractures network, the DFM needs large amount of grids which can
lead to low computational efficiency. To speed up the upscaling process, Fumagalli et al.
[Fumagalli, Zonca and Formaggia (2017)] and Dong et al. [Dong, Li, Lei et al. (2019)]
used EDFM to calculate transmissibility and equivalent permeability respectively. The
model accuracy can be very low, if all large- and small-scale fractures are upscaled.
Researchers have presented the idea that “upscale the small-scale fractures while
explicitly depict the large-scale fractures”, which is known as a kind of hierarchical
model [Pluimers (2015); Hajibeygi, Karvounis and Jenny (2011); Akkutlu, Efendiev and
Vasilyeva (2016)]. In the research by Lee et al. [Lee, Lough and Jensen (2001)], the
small-scale fractures were upscaled by analytical method while the large ones were
depicted by EDFM. Li et al. [Li and Lee (2008)] classified the fractures into small,
medium and long fractures. To save the upscaling time consumption, the small ones were
upscaled through analytical method. To improve the accuracy, the medium ones were
homogenized through boundary element method. Same as Lee, the large ones were
explicitly depicted by EDFM.

From the above reviews, we can find that the upscaling methods established from flow based
simulation method still have some shortcomings, for instance, when simulating the flow in
the real large-scale fractured porous media, the current computer power cannot be afforded.
Therefore, motivated by the flow based simulation method, we proposed a new upscaling
method, named dual embedded discrete fracture model (D-EDFM). In the proposed
model, the fluid flow of large-scale fractures are depicted directly through EDFM, while
that of small-scale fractures are upscaled through local simulation by EDFM. The EDFM
is independently used to simulate the large- and small-scale fractures for two times.

The structure of this paper is organized as follows. The model description and
implementation processes of D-EDFM are introduced to the Section 2. The accuracy and
robustness of the D-EDFM is tested for Section 3. The conclusions are presented in the
Section 4.

2 Model description

In the actual fractured porous media, the fracture network is very complex and the sizes of
fractures vary greatly. To describe the fluid flow and heat transfer of large- and small-scale
fractures, a dual embedded discrete fracture model is presented in this paper. Since the
proposed model is based on the traditional EDFM, the EDFM is briefly introduced first
and the D-EDFM is subsequently introduced in detail.

2.1 Embedded discrete fracture model (EDFM)

The concept of EDFM is shown in Fig. 1. In EDFM, the matrix and fractures are considered
to be two separate media coupled with the flow between them [Li, Gao, Han et al. (2020)].
The flow through the matrix and fractures is governed by mass conservation equation and
Darcy’s law shown as Eqs. (1)-(3). The matrix and the fractures are coupled with the flow
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Figure 1: Schematic of EDFM concept

exchanged between matrix and fractures given in Eq. (4). The coupling between different
fractures is governed by flow between them described by Eq. (5).

Mass conservation equation for the matrix:

a —m

Mass conservation equation for the fractures:

fCt(P/ + prV - ( v = Pmeifr + PfQ%ifrj + 00w (2)
Darcy’s law:
v =K /u:(Vp' — p;Vz), i=mor fi )

Exchange flow Q" between the matrix and the fractures:

o =CI(p" - p") 4)

Exchange flow between different fractures:
L ()

In the above equations, the superscripts m and fi- represent the matrix and the fracture
respectively, and subscript f'is for fluid. p,is the density of fluid, kg/m’. ¢, is coefficient
of fluid compressibility, 1/Pa. ¢™ is porosity of matrix. P is pressure in the matrix, Pa.
0,, is the well source term. ¢ is porosity of fractures. k' is permeability of media i, m*.
z is depth of matrix, m. CI is the connectivity index between the matrix and fractures
(CI=0A4/d). O is the mean mobility of the fluid, defined as the fraction of permeability
and viscosity. 4 represents area of matrix grid occupied by the fracture segment, m?.
d represents the average distance from all points in the matrix grid to the fracture
segment, m, which is related to the geometry relationship between fracture segment and
matrix grid [Durlofsky (2003)]. TI is the transmissivity between different fractures.
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TI = I 5/ (I + ), £ = 267 K] /(s L) 6)

b" represents fracture aperture, m. K" represents permeability in the fractures, m?. My
represents dynamic viscosity of working fluid, Pa's. L; represents length of the fracture
segment, m.

Based on the grid in EDFM shown in Fig. 1, the above equations can be numerically solved
through finite volume method (FVM) and finite element method (FEM). The FVM is used in
this paper due to its good performance on mass conservation and convenience in
implementation, more details of which can be found in Li et al. [Li, Gao, Han et al. (2020)].

2.2 Dual embedded discrete fracture model (D-EDFM)

The concept of D-EDFM is shown in Fig. 2. The fractures are divided into small-scale
fractures (blue lines) and large-scale fractures (red lines). The distinction between large-
and small-scale fractures is related to the size of the matrix grid. This method to classify
the fracture is similar to the method proposed by Lee et al. [Lee, Jensen and Lough
(1999)]. If the fracture length is much larger than the matrix cell size (L/Ly >> 1), such a
fracture is defined as a large fracture, otherwise it is a small fracture. The large-scale
fractures are explicitly depicted through EDFM with coarse grids. Based on particular
boundary condition, the small-scale fractures are upscaled as matrix with anisotropic
permeability tensor by off-line local simulation, which is known as “flow based
simulation method” [Ahmed Elfeel and Geiger (2012)].

Reduction of DoF

| | ——b<_]

§ - L1 I

=

~L -
Fine grid \ — /K < Coarse grid
K B |:K)" K.“) :|

Off-line Local Simulation by EDFM

\/

Figure 2: Schematic of D-EDFM concept

The obtained effective permeability tensor is very crucial to D-EDFM which directly
influences the accuracy of D-EDFM. Since its value is calculated based on particular
boundary condition, the type of the boundary condition is very important. “Sealed side
boundary condition” and “Linear boundary condition” are the most used ones in related
references. In this paper, to find the proper boundary condition for upscaling procedure in
D-EDFM, both of the two types of boundary conditions are adopted and compared.
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2.2.1 Obtain the effective permeability based on sealed side boundary

Fig. 3 gives the schematic diagram of sealed side boundary condition. A fixed pressure
gradient in one direction is applied to the cell where the small-scale fractures are located
and no flow boundary condition is set in the other direction.

Sealed Boundary dP/on=0

/\
Pl PZ

/

Sealed Boundary @P/én=0

Figure 3: Schematic diagram of sealed side boundary condition

Based on the boundary conditions, the detail implementation process to obtain the effective
permeability is given as follows:

Step 1: For a cell containing small-scale fractures (shown in Fig. 3), a constant pressure

gradient on the x-direction is given. The faces on the y-direction are set to no flow
boundary. Length of the cell in x-direction is L,, and in y-direction is L.

Step 2: Solve the Eqgs. (1)-(5) by EDFM and obtain the pressure distribution in the cell.

Step 3: Calculate the flow rate Q, through a line perpendicular to the x-direction. Any line is
feasible, since the total flow along x-direction is a constant.

Step 4: Calculate the equivalent permeability K% of the x-direction flow according to
the Eq. (7):

K4 P —P
Qx == Ly 1 2
B o L

(7

Step 5: Switch the boundary conditions in the x-direction and y-direction. Then, calculate the
Keyﬁ through the similar process given in Steps 2-4.
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Step 6: Combine K% and Keyff, the effective permeability tensor is obtained shown as Eq. (8)

K0
-5 ] ®
2.2.2 Obtain the effective permeability based on linear boundary

Fig. 4 gives the schematic diagram of linear boundary condition. Similar as “sealed side
boundary condition method”, a fixed pressure gradient is given in one direction. Instead
of sealed side boundary shown in Fig. 3, the linear boundary is given in the other
direction (See Fig. 4).

Linear Boundary pP=p+B-B)/Lx

—

/

Linear Boundary p=p+B-R)/L-x
Figure 4: Schematic diagram of linear boundary condition

The detail implementation procedures to upscale the small-scale fractures as anisotropic
matrix are introduced as follows:

Step 1: Apply a constant pressure gradient for the cell shown in Fig. 4 on the x-direction.
A linear boundary condition shown in Eq. (9) is given in the upper and lower boundaries.
Py - P,
- X
Ly

P=P + )

Step 2: Solve the Egs. (1)-(5) by EDFM and obtain the pressure distribution in the cell.

Step 3: Calculate the average flux and average pressure gradient in the cell shown in Fig. 4.
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Step 4: Based on Darcy’s law,

(VPOKS + (VPOKD = (i) (10)
(VPOKS + (VPR = (i) (11)

where, the superscript x means the pressure gradient shown in Fig. 4 on the x-direction. VP
and i are the value of pressure gradient and flux at any parallel faces on the x-direction
respectively.

Step 5: Switch the boundary conditions given in Step I, two similar equations can be
obtained shown as Egs. (12) and (13).

(VPYK + <VP;>K;§' = (i) (12)
(VPR + (VP KT = () (13)

where, the superscript y means the pressure gradient given on the y-direction.

Step 6: Solve the linear equations of Egs. (10)-(13), the effective permeability tensor (see
Eq. (13)) is calculated.

K K
K=|_5 iy (14)
“lkt oy

3 Equations and mathematical expressions

In order to validate and evaluate the D-EDFM, two numerical examples are given in this
section. Example 1 is given to compare the two types of boundary conditions for
upscaling, which has 3 large-scale fractures and 14 small-scale fractures (See Fig. 5(a)).
To test the feasibility of D-EDFM for complex fracture network (See Fig. 5(b)), Example 2,
which has 10 large-scale fractures and 500 small-scale fractures, is adopted.

3.1 Comparisons of the two types of boundary conditions for upscaling (Example 1)
The geometry of the fractured porous media of Example 1 is given in Fig. 5(a). It is assumed
that fluid properties and reservoir parameters do not change with pressure. The left and right
boundary conditions are Dirichlet type, which is 1x10° Pa and 1x10° Pa respectively. The
type of the boundary conditions for the up and down boundaries is Neumann boundary
condition (no flow boundary). Tab. 1 shows the basic parameters in the model.

To compare the two types of boundary conditions for upscaling given in Section 2.2, with
coarse grids (40x40), the pressure field in steady state of Example 1 is calculated through D-
EDFM based on “sealed side boundary upscaling” and “linear boundary upscaling”
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()

Figure 5: Fracture distributions in the D-EDFM testing examples. (a) Example 1. (b)
Example 2

Table 1: Parameters of the basic model

Parameters Values

Reservoir dimensions (x, y), m 100, 100

Matrix permeability (K%, K}), m” 1.0x107"7, 1.0x107"7
Matrix porosity 0.3

Fracture permeability (K., Kfy), m? 1.0x107'%, 1.0x107"2
Fracture porosity 0.3

Fracture aperture, m 0.001

Fluid density, kg/m’ 1000

Fluid viscosity, Pa-s 0.001

respectively. To get the benchmark solution, Example 1 is also simulated by EDFM with
fine grids (100x100).

The results of D-EDFM with coarse grids and the results of EDFM with fine grids are shown
in Figs. 6(a), 6(b) and 6(c), respectively. The white lines in Figs. 6(a) and 6(b) are those small-
scale fractures which have been upscaled as matrix with anisotropic permeability tensor.

It can be shown in Fig. 6 that the results of D-EDFM based on coarse grids agree well with
the result of EDFM based on fine grids. And both sealed side boundary upscaling and linear
boundary upscaling are feasible for the D-EDFM. To quantitatively compare the accuracy of
two upscaling methods, the pressure distribution of the line from the lower left corner to the
top right corner is plotted (Y=X).

From Fig. 7, it is found that in the case of this paper, the average relative error and maximum
relative error of D-EDFM based on sealed side boundary upscaling are 0.30% and 1.73%
respectively. While those of D-EDFM based on linear boundary upscaling are 1.60% and
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Figure 6: Pressure field simulated by different methods. (a) D-EDFM model using sealed
side boundary upscaling (grids: 40%x40); (b) D-EDFM model using linear boundary
upscaling (grids: 40x40); (¢) EDFM (grids: 100x100)

4.32% respectively. The accuracy of both upscaling methods is acceptable to engineering, but
the sealed side boundary upscaling method has better accuracy and is easy in implementation.
Therefore, the sealed side boundary upscaling is recommended in D-EDFM.

3.2 Test of D-EDFM for complex fractures network (Example 2)

Through the above simple example (Example 1), a preliminary conclusion can be obtained:
the D-EDFM has good performance for simple fractures network based on sealed side
boundary upscaling. In this section, the D-EDFM is tested on a much more complex
fractures network (Example 2) which is given in Fig. 5(b).
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Figure 7: Comparison of pressure along Y=X. Sealed side B.C. and Linear B.C. represent
sealed side and linear boundary conditions in D-EDFM, respectively

In Example 2, the physical parameters of the model are identical to the parameters in
Example 1. The difference is that Example 2 is an unsteady problem which has an initial
field of 0 Pa. The simulation results of different time are given in Figs. 8-11. In this
example, the white lines also represent small fractures which have been upscaled as
matrix with anisotropic permeability tensor.

From the pressure field distributions, it can be seen that results of D-EDFM under coarse
grids agree well with those obtained by EDFM under fine grids. To further verify this,
the pressure on three straight lines (Y=10 m, Y=50 m and Y=80 m) are compared in Fig. 12.
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Figure 8: Pressure distribution at 1 day. (a) Method: D-EDFM, grids: 40%40; (b) Method:
EDFM, grids: 100x100
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Figure 9: Pressure distribution at 3 days. (a) Method: D-EDFM, grids: 40x40; (b) Method:
EDFM, grids: 100x100
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Figure 10: Pressure distribution at 5 days. (a) Method: D-EDFM, grids: 40x40; (b)
Method: EDFM, grids: 100x100

It can be clearly observed from Fig. 12 that the results of D-EDFM under coarse grids are
highly consistent with the results of EDFM under fine grids. During the whole time, the
maximum relative error of the three different positions is shown in Tab. 2. From the
above analysis, it can be inferred that with the passage of time, the calculation results of
D-EDFM become more and more accurate. Therefore, it can be concluded that the
D-EDFM is a feasible method of fractured porous media simulation.
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Figure 11: Pressure distribution at 10 days. (a) Method: D-EDFM, grids: 40x40; (b)
Method: EDFM, grids: 100x100

1.0x10° 1.0x10°
8.0x10° N\ 8.0x10° N
= ] \ O\ = N\
Q. 6.0x10 DN o 6.0x10° RN
o N D o \ \
8 v N ~ 8 B \
") A\ 10d N N > 10d
3 4.0x10° \ L 5 & 4.0x10° N\ N\¢5d
N\ 3d > T \¢3d 3
& N\t X . - \etd KO
2.0x10° > 2.0x10°
0.0 - 0.0 -
0 20 40 60 80 100 0 20 40 60 80 100
X X
(@) (b)
1.0x10°
8.0x10°
) s
o 6.0x10 X\
o N A
3 O 10d
3 4.0x10° N N\g5d
= L SN
2.0x10°
0.0
0 20 40 60 80 100
X
(©)

Figure 12: Comparison of pressure along three lines at different time. (a) The pressure of
Y=10 m; (b) The pressure of Y=50 m; (c) The pressure of Y=80 m
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Table 2: The maximum relative error of three different positions

Time Positions

Y=10 m Y=50 m Y=80 m
1 day 16.74% 15.78% 12.75%
3 days 6.77% 6.96% 6.13%
5 days 5.43% 5.51% 4.91%
10 days 4.52% 4.10% 3.35%

4 Conclusions

To simulate flow through the fractured porous media, a D-EDFM model is introduced. In
this model, the large-scale fractures are depicted through D-EDFM directly. The small-
scale fractures are upscaled as matrix with effective permeability based on local EDFM
simulation and Darcy’s law. Two main conclusions are given as follows:

(1) Through the comparisons between results calculated by D-EDFM and traditional EDFM,
the proposed D-EDFM shows good accuracy and robustness. The advantage of D-EDFM is
reflected on the good accuracy of its results with much coarser grids, the number of which is,
in the given examples, 16% of that by traditional EDFM. This will greatly improve the
simulation efficiency.

(2) The accuracy of D-EDFM depends on the upscaling process of small-scale fractures.
This paper compares the sealed side boundary upscaling and linear boundary upscaling.
It is found that both the two upscaling processes can offer accurate effective permeability
tensor. The sealed side boundary upscaling for D-EDFM is recommended in this paper,
since it has better performance and is easier to be implemented.
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