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Abstract: There are several difficulties in generalized/extended finite element
methods (GFEM/XFEM) for moving interface problems. First, the GFEM/XFEM
may be unstable in a sense that condition numbers of system matrices could be
much bigger than those of standard FEM. Second, they may not be robust in that
the condition numbers increase rapidly as interface curves approach edges of
meshes. Furthermore, time stepping schemes need carrying out carefully since
both enrichment functions and enriched nodes in the GFEM/XFEM vary in time.
This paper is devoted to proposing the stable and robust GFEM/XFEM with effi-
cient time stepping schemes for the parabolic interface problems with moving
interfaces. A so-called stable GFEM (SGFEM) developed for elliptical interface
problems is extended to the parabolic interface problems for spatial discretiza-
tions; while backward difference formulae (BDF) are used for the time stepping.
Numerical studies demonstrate that the SGFEM with the first and second order
BDF (also known as backward Euler method and BDF2) is stable, robust, and
achieves optimal convergence rates. Comparisons of the proposed SGFEM with
various commonly-used GFEM/XFEM are made, which show advantages of
the SGFEM over the other GFEM/XFEM in aspects of stability, robustness,
and convergence.

Keywords: GFEM/XFEM; parabolic; moving interface; BDF; convergence;
conditioning

1 Introduction

Numerical simulations of multi-material physical phenomena have become increasing important aspects
in computational science and engineering. The multi-material problems can be modelled by various partial
differential equations with interfaces. The interfaces are moving in time in the real world and engineering
applications, such as fluid-structure interaction, multiphase flows, free boundary problems, flows in
porous media, 3D fiber composites. See [1–4] and references therein. Conventional numerical methods
[5–7], such as finite element methods (FEM), have to update or refine meshes to match the interface
movement at every time step to get approximation accuracy. However, the mesh updating or refining
fitted to the interfaces can be extremely difficult, especially in 3D time-dependent problems.
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Much attention has been paid to develop unfitted FEM for the moving interface problems in the last
decades. The meshes in the unfitted FEM are simple, fixed, and independent of the interface movements.
The typical unfitted FEM includes immersed FEMs [8–10], discontinuous Galerkin methods [11,12],
cutting FEMs [13–16], Nitsche extended FEMs [17,18]. These methods are nonconforming, and various
stabilized or penalty techniques were proposed to control conforming errors. The penalty parameters need
determining with care and cannot be treated using a unified approach. We focus on the conforming
unfitted FEM for the moving interface problems in this paper. Generalized or extended FEMs (GFEM/
XFEM) turn to be prominent approaches to construct conforming unfitted shape functions. The GFEM/
XFEM augments the standard FEM with special functions that mimic local features of exact solutions to
solve complicated non-smooth engineering problems. These special functions are “pasted” together using
techniques of partition of unity (PU) [4,19]. Meshes in the GFEM/XFEM are typically simple, fixed, and
independent of the non-smooth features of problems. The GFEM/XFEM has been extensively applied to
a wide range of engineering problems, e.g., crack growth, material modelling, multiphase flows, and
fluid-structure interaction. We refer to the review articles [20–24] for various aspects of GFEM/XFEM.
The GFEM/XFEM was proposed to simulate elliptical and moving interface problems quite early; see
[25–37] for examples. The GFEM/XFEM can be viewed as an instance of the partition of unity methods
(PUM) [4,19]. In the rest of paper, we will use the term GFEM instead of GFEM/XFEM.

There are several essential difficulties in applications of the GFEM to the moving interface problems. In
aspect of spatial approximations, almost linear dependence between the FEM shape functions and enriched
special function causes stability issues, i.e., scaled condition numbers (SCN) of stiffness matrices of the
GFEM are much higher than those of the standard FEM. On the other hand, the SCN rapidly increases as
the interface curves get close to boundaries of elements. It gives rise to robustness issues of the GFEM.
The bad stability and robustness may cause disastrous round-off errors in elimination methods or the slow
convergence of iterative schemes to solve underlying linear systems. Many stability and robustness
techniques have been proposed for the GFEM, such as, locally adapting positions of either nodes or
interface curves to balance the ratios of the two volumes created by the intersections of the interfaces
with the elements [35,38], preconditioning the stiffness matrices or orthogonalization [39–43], and
correcting the enrichments by interpolant [25,26,31,44–49].

In aspect of temporal discretization, both basis functions and numbers of enriched degrees of freedom of
the GFEM/XFEM for the moving interface problems change in time so that conventional time integration
schemes for the standard FEM can not be directly applied to the GFEM. Time-space element methods for
the GFEM were studied in [18,32,36,50,51] for the moving interface problems. The optimal convergence
was reported in [36], and a theoretical analysis on the convergence was executed in [18]. The space-time
GFEM suffers from a substantial increase of computational cost since the time-space element methods
with one dimension higher than the spatial dimensions are used. Therefore, efficient time-stepping
schemes are very important for the GFEM of the moving interface problems [23,33,36]. We briefly
analyze major difficulties of time stepping in the GFEM. Let u(t) and uhðtÞ ¼

P
j2J cjðtÞnjðtÞ be the exact

and approximate solutions of moving interface problems, respectively, where h is a discretization
parameter, ξj’s are the GFEM shape functions. We note that ξj(t) changes with time. The derivative of
uh(t) with respect to t is

ðuhÞt ¼
X
j2J

ðcjÞtðtÞnjðtÞ þ cjðtÞðnjÞtðtÞ: (1)

When stepping schemes for (uh)t are employed, appearance of (ξj)t causes extra matrices composed of ξj
and (ξj)t, in addition to stiffness and mass matrices, see [10] for instance. Moreover, in the GFEM, we have
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ðPhuÞt 6¼ Phut; (2)

where Ph is an elliptical projection of u to the GFEM subspace, see [17,52]. It is known that the equality of (2)
is crucial for theoretical analysis on discretization errors in space and time [52]. The features (1) and (2) of the
GFEM cause complexities in employment of time stepping [23,36]. This is very similar with situations of
adaptive FEM for evolving partial differential equations [53,54]. The time stepping schemes in the
GFEM can be found out in [29,33,35,36,55,56]. The optimal convergence rate of a GFEM with backward
Euler methods was proven in [17]. To our best knowledge [17] is the first theoretical analysis on time
stepping of the GFEM, when applied to the moving interface problems.

Recently, a stable GFEM (SGFEM) was proposed to address the stability and robustness of GFEM for
elliptical interface and crack problems in [25,26,44–49,57–59]. The SGFEM (i) yields the optimal
convergence rates, (ii) is stable in that its SCNs are of same order as those of FEM, and (iii) is robust,
i.e., the conditioning does not worsen as the interface approaches the boundaries of elements. In this
paper we carry out a numerical study on time stepping in the SGFEM for parabolic interface problems
with moving interfaces. The SGFEM developed for the elliptical problems is extended to the parabolic
problems for spatial discretizations. The time stepping schemes are derived by first discretizing time other
than space because the shape functions and enrichment schemes in SGFEM are all time-dependent. The
backward difference formulae (BDF) [60,61] are proposed for the time stepping in this paper. The first
and second order BDF are referred to as the backward Euler method and BDF2 in the literature, which
typically produce the first and second accuracies in time. It is shown in the paper that the SGFEM with
the backward Euler method and BDF2 reach optimal convergence orders for mild and large contrast
parameters. We compare the proposed SGFEM with other commonly-used GFEMs, including
topological, geometric, and corrected GFEMs, and the stability and robustness advantage of SGFEM over
these methods are shown in the paper. The optimal convergence of SGFEM based on the backward Euler
method and BDF2 will be proven in a forthcoming study.

This paper is organized as follows. The model problems and their conventional GFEM and SGFEM are
presented in Sections 2 and 3, respectively. The BDF schemes are proposed in Section 4. The stability,
robustness, and convergence of the various GFEMs and SGFEM are analyzed and compared in Section 5.
The concluding remarks are presented in Section 6.

2 Moving Interface Problem

Let� � R2 be a bounded and convex domain with piecewise smooth boundary ∂Ω, and we consider the
parabolic moving interface problem with a Neumann boundary condition

@u

@t
�r � ðaruÞ ¼ f ðP; tÞ;P 2 �; t 2 ½0; T �;

a
@u

@~n
ðP; tÞ ¼ gðP; tÞ;P 2 @�; t 2 ½0;T �;

uðP; 0Þ ¼ u0ðPÞ;P 2 �;

(3)

subject to jump conditions on a moving interface Γ(t)

u½ �� ¼ 0; a
@u

@~n�

� �
�

¼ 0 on �ðtÞ; (4)

where ~n and ~n� denote the unit outward normal vectors to the boundary ∂Ω and the interface Γ(t),
respectively. The interface Γ(t), t ∈ [0, T], divides Ω into two sub-domains Ω0(t) and Ω1(t) such that
� ¼ �0ðtÞ [ �1ðtÞ, Ω0(t) ∩ Ω1(t) = [, and � ¼ �0ðtÞ \ �1ðtÞ, see Fig. 1 for an illustration. The
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interface Γ(t) varies with time t, and is smooth for any t ∈ [0, T]. The notation v½ �� is jump of a quantity v on

the interface Γ, which is defined as the difference on Γ of v values, limited to �1ðtÞ and �0ðtÞ.
For a point P ¼ ðx; yÞ 2 R2, we assume that the diffusion coefficient a(P) is a piecewise-constant

function defined by

aðP; tÞ ¼ a0; P 2 �0ðtÞ;
a1; P 2 �1ðtÞ;

�
(5)

where a0, a1 are two positive constants. The contrast ρ of the diffusion coefficients is defined by

q ¼ a0
a1

:

It is known from the interface condition (4) that the solution u to (3) is continuous, but its gradients are
not continuous on account of the discontinuity of the coefficient a(P) on the interface Γ. Such a property is
frequently termed as a weak discontinuity [23,34].

Then we pose the equivalent variational form of the parabolic interface problem (3):

Find u ¼ uðP; tÞ 2 E ð�Þ such that
@u

@t
; v

� �
þ Bðu; vÞ ¼ LðvÞ;8v 2 E ð�Þ;

uð�; 0Þ ¼ u0ð�Þ;

(6)

where

Bðu; vÞ :¼
Z
�

aru � rvdP;LðvÞ :¼
Z
�

fvdP þ
Z
@�

gvds; ðw; vÞ :¼
Z
�

wvdP; 8w; v 2 L2ð�Þ

and

E ð�Þ :¼ fv 2 H1ð�Þ : Bðv; vÞ < þ1g
is so called an energy space equipped with energy norm kvkE ð�Þ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðv; vÞp

.

3 GFEM and SGFEM

The conventional FEM has to update or refine meshes to match the interfaces since the interfaces move
in time. However, the mesh updating or refining can be extremely difficult. The GFEM augments standard

Figure 1: A sketch of domain for the moving interface problem
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FEMwith non-polynomial shape functions that are derived based on a priori knowledge about the solution of
underlying variational problem. The meshes in the GFEM are fixed, simple, and independent of interface
movements, such as Cartesian meshes. Hence, the mesh updating or refining can be avoided.

To describe the GFEM, we start with a uniform finite element mesh T h ¼ fesg, characterized by a
mesh-size parameter h. The element es can be triangular or quadrilateral, and the mesh T h is fixed and
independent of the moving interfaces. The element es is closed. Denote {Pi}i ∈ Ih to be the set of nodes
associated with the mesh T h, where Ih is the index set of nodes. For any i ∈ Ih, let ωi be a patch with
respect to Pi, which is the union of all elements sharing the common node Pi, namely,

xi ¼
[
Pi2es

es

It is clear that ωi is a closed set. Let fi be the standard linear (bilinear for the quadrilateral elements) FE
hat function, associated with the node Pi with supp{fi} = ωi. Subordinate to the cover {ωi}i ∈ Ih, {fi}i ∈ Ih
form a partition of unity (PU) [19] satisfyingX
i2Ih

fi ¼ 1; kfikL1ð�Þ � 1; krfikL1ð�Þ � Ch�1; (7)

where C > 0 is independent of i, h.

The standard FEM is used for the spatial approximation of the variational (6), and its approximation
space is defined as follows:

Sth ¼ SFEM :¼ span fiðxÞ : i 2 Ihf g (8)

As discussed above, the FEM (8) cannot approximate the solution of (6) with optimal convergence rates
since the mesh does not match the interfaces.

The approximation space of GFEM is generally defined as

Sth ¼ SFEM � StENR and StENR :¼ span fi�
t
i : i 2 I th;enr � Ih

n o
(9)

where StENR is called enrichment part of GFEM, �t
i are referred to as enrichment functions that mimic the

discontinuities in the solution of underlying variational problem, and I th;enr denotes the set of enriched
nodes. All StENR, �t

i, and I th;enr may change with time t. It is seen from (9) that the GFEM has great
potentials to improve the approximation accuracy because of introduction of the enrichment part StENR.

For the interface problems with the weak discontinuities, the enrichment function �t
i can be taken as the

absolute value of level set functions or the following distance functions D(P,t) [23,31,45]:

DðP; tÞ ¼ distðP;�ðtÞÞ:
We now describe various forms of GFEM, applied to the interface problem.

Topological GFEM: Define an index set of the enriched nodes

I�;th;enr ¼ fi 2 Ih : Pi 2 es where es \ �ðtÞ 6¼ [g;
and the topological GFEM [23,45] is defined as

Sth ¼ SFEM � StENR andStENR :¼ span fiD : i 2 I th;enr ¼ I�;th;enr

n o
: (10)

The topological GFEM has a minimal number of the enriched nodes, i.e.,
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CardfI�;th;enrg :¼ Oðh�1Þ; (11)

see Fig. 2 right plot and Fig. 9 right plot, where Card{X} is the dimensionality of a set X. It was reported in [45]
the topological GFEM only produces a sub-optimal convergence error Oð ffiffiffi

h
p Þ other than the optimal O(h).

Geometric GFEM: The optimal convergence can be restored by increasing the number of enriched nodes.
The geometric GFEM [23,45,48] enriches the nodes in a fixed neighborhood of the interface Γ(t), namely,

I th;enr ¼ IR;th;enr ¼ fi 2 Ih : distðPi;�ðtÞÞ < Rg;
where R is a constant independent of h; see Fig. 2 right plot and Fig. 9 right plot for a display of IR;th;enr.
The approximate subspace of the geometric GFEM is as follows:

Sth ¼ SFEM � StENR andStENR :¼ span fiD : i 2 I th;enr ¼ IR;th;enr

n o
: (12)

The geometric GFEM gives rise to the optimal convergence error O(h) for elliptical interface problems
[45]. However, the geometric GFEM results in much more enriched degrees of freedom (DOF), in which

CardðIR;th;enrÞ :¼ Oðh�2Þ: (13)

Furthermore, the introduction of more enriched DOFs causes bad conditioning O(h−4) for stiffness
matrices, which is much bigger than that of the standard FEM [45].

Corrected GFEM: Effects of blending elements were analyzed in [23,62], and a corrected GFEM was
proposed there to improve the approximation accuracy of GFEM. The enrichment strategy of corrected
GFEM at each time t is defined as

I th;enr ¼ IC;th;enr ¼ i 2 Ih : Pi 2
[

xj\�ðtÞ6¼[

xj

8<
:

9=
;: (14)

Figure 2: Left: a straight interface problem; Right: a display of enrichment schemes of various GFEMs
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The following approximate subspace is used in the corrected GFEM [23,62]:

Sth ¼ SFEM � StENR andStENR ¼ span figðPÞ DðP; tÞ � D Pi; tð Þð Þ : i 2 I th;enr ¼ IC;th;enr

n o
: (15)

where η(P) is called a ramp (or cutoff) function defined as

gðPÞ ¼ P
i2I�;th;enr

fiðPÞ:

Apparently, the corrected GFEM has a number O(h−1) of the enriched nodes that is slightly larger than
topological GFEM (see Fig. 2 right plot and Fig. 9 right plot), and we have

CardðI�;th;enrÞ < CardðIC;th;enrÞ < CardðIR;th;enrÞ: (16)

The corrected GFEM is able to achieve optimal convergence error O(h). However, the corrected GFEM
may not be robust with respect to the mesh because its conditioning may blow up when the interface Γ(t) gets
close to the mesh line, as shown in numerical experiments.

Stable GFEM: To address the ill conditioning of GFEM and the lack of robustness, a simple local
modification of subtracting the interpolant of the original enrichment functions was proposed in
[25,26,44–48], recently. The modified GFEM is referred to as stable GFEM (SGFEM). The approximate
subspace of the SGFEM for the interface problems at each time t is defined as

Sth ¼ SFEM � StENR andStENR ¼ span fi D� T hDð Þ : i 2 I th;enr ¼ I�;th;enr

n o
; (17)

where T hf is the FE interpolant of a continuous function f, based the preliminary FE hat functions. Clearly,
the enriched nodes in SGFEM are the same as in the topological GFEM. It was proved [45] that the SGFEM
(17) (a) yields the optimal convergence order O(h), (b) has an order of SCN around O(h−2) that is of same
order as that of FEM, and (c) is robust with respect to the mesh. These developments in the SGFEM are
achieved for the elliptical interface problems, and extensions to the moving interface problems have not
been made yet. In next section we propose time stepping schemes for the SGFEM applied to the moving
interface problems, which satisfy the features (a)–(c).

Remark 3.1: We analyze the calculation complexity of SGFEM and make comparisons with the other
methods. The mesh in SGFEM (also the other GFEMs) is simple, fixed, and independent of the moving
interfaces. Therefore, the SGFEM enjoys significant computational advantages over the FEM because the
mesh in FEM has to be updated at every time step to match the evolving interfaces. Compared with the
geometric and corrected GFEM, the SGFEM possesses the minimal number of enriched nodes, see (16).
Although the topological GFEM has the same number of enriched nodes as that of SGFEM, it cannot
derive optimal convergence errors, as illustrated in the numerical experiments. The stiffness matrix of
SGFEM is slightly bigger than that of FEM because of introduction of enriched functions. The number of
enriched nodes in SGFEM is O(h−1) (11), which is one dimension less than the number of FE nodes,
O(h−2). Therefore, the computational costs in enriched part are negligible for small h. Moreover, this is
quite trivial considering the merit of non-matching meshes in the SGFEM.

4 BDF Schemes in GFEM and SGFEM

Conventional time-space element methods and time stepping schemes have been proposed in fields of
the GFEM, see [23] for a review. The time-space GFEMs for the moving interface problems [18,32,36,50,51]
suffer from a substantial increase of computational cost since the time-space element methods with one
dimension higher than the spatial dimensions are used. Therefore, time-stepping schemes with high
accuracy are very important for the GFEM when applied to the moving interface problems. There are two
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kinds of commonly used time stepping schemes in the standard FEM: (a) if the shape functions are
independent of time, spatial discretization is first carried out to derive systems of ordinary differential
equations with respect to coefficients of the shape functions, which are then solved by finite difference
methods [52]; (b) if the interfaces evolve with time, moving meshes can be considered in arbitrary-
Lagrangian-Eulerian (ALE) frameworks, and problems of shape functions at different time levels can be
solved using mesh velocities [52,63]. However, these two approaches can not be directly applied to the
GFEM for moving interface problems because, typically, the shape functions of GFEM are time-
dependent, and the meshes are fixed relative to the interface movements. The objective of this paper is to
propose efficient time stepping schemes for the SGFEM of moving interface problems, and the resultant
GFEMs are stable and robust with regard to the interface movements, and has optimal convergence rates.

We analyze which of spatial and temporal discretizations are first carried out. In the presence of moving
discontinuity of the solution u, the approximation subspaces Sth of GFEM and SGFEM are time-dependent
because the enrichment functions D(P,t) and the enrichment schemes I th;enr are all time-dependent. Let
fniðtÞg � Sth be the basis of GFEM or SGFEM, then ξi(t) and their coefficients are all time-dependent,
see (1). If the space is first discretized, the dependence of ξi(t) on t yields blending matrices of ξj and
(ξj)t, in addition to stiffness and mass matrices, see [10] for instance. This increases computational
complexity in assembling and solving linear systems. Therefore, it is feasible to first discretize time other
than space in the GFEM and SGFEM, as discussed in [17,36].

Temporal Discretization

In this paper, we mainly focus on backward difference formulae (BDF) [60,61] for the time
discretization. For simplicity, we first divide the temporal interval [0,T] by a uniform partition {tn:tn = nτ,

0 ≤ n ≤ N} with time step size s ¼ T

N
. For any sequence of function fvn : vn ¼ vð�; tnÞgNn¼0 � E ð�Þ, we

define kth-order backward difference formulae

Dk;su
n ¼ 1

s

Xk
j¼0

dju
n�j; for 1 � n � N ; (18)

with the coefficients δj given by

dðfÞ ¼
Xk
m¼1

1

m
ð1� fÞm ¼

Xk
j¼0

djf
j: (19)

They are used to generate kth-order time semi-discrete schemes, based on the weak formulation (6).

Approximating time derivative ut at time t = nτ by Dk,τ u
n yields

Semi-discrete scheme:

Find un 2 E ð�Þ; 8 1 � n � N ; such that

ðDk;su
n; vÞ þ Bnðun; vÞ ¼ LnðvÞ; 8v 2 E ð�Þ;

u0 ¼ u0:

(20)

where

Bnðun; vÞ :¼
Z
�

aðP; tnÞrun � rvdP; LnðvÞ :¼
Z
�

f ðP; tnÞvðPÞdP þ
Z
@�

gðs; tnÞvðsÞds:
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Spacial discretization

The semi-discrete scheme (20) are approximated by the various GFEMs and SGFEM presented in Section
3. In order to guarantee symmetric and positive definite systemmatrices, the test and trial function space should
be chosen at the same time step (the current time step tn). For any unh 2 Stnh , 0 ≤ n ≤ N, let

Dk;sunh ¼
1

s

Xk
j¼0

dju
n�j
h ; for 1 � n � N ;

and based on the various GFEMs and the semi-discrete scheme (20), we suggest fully discrete formulation
for parabolic problem with moving interface as follows,

Fully discrete scheme

Find unh 2 Stnh ; 8 1 � n � N ; such that

ðDk;su
n
h; vhÞ þ Bnðunh; vhÞ ¼ LnðvhÞ; 8vh 2 Stnh ;

u0h ¼ u0h;

(21)

where u0h is an approximation to u0.

Remark 4.1: In this paper, we only consider the first and second order accuracies in time, i.e., k = 1, 2 in
(21) since we construct the GFEM or SGFEM using the linear (or bilinear) elements, which produce the first
and second order accuracies in space for H1 and L2 errors, respectively. The cases k ≥ 3 can be treated
similarly, and we do not present them here. Taking k = 1, 2 gives us

Find unh 2 Stnh ; 8 1 � n � N ; such that

ðunh; vhÞ þ sBnðunh; vhÞ ¼ sLnðvhÞ � ðun�1
h ; vhÞ; 8vh 2 Stnh ;

u0h ¼ u0h;

(22)

and

Find unh 2 Stnh ; 8 1 � n � N ; such that

ðunh; vhÞ þ
2

3
sBnðunh; vhÞ ¼

2

3
sLnðvhÞ þ 4

3
ðun�1

h ; vhÞ � 1

3
ðun�2

h ; vhÞ; 8vh 2 Stnh ;

u�1
h ¼ u0h;

(23)

respectively. The formulations (22) and (23) are referred to as backward Euler and BDF2 methods in the
literature, respectively. We mention that in the BDF2 we take u�1

h ¼ u0h so that calculating u1h of the first
time step t1 is reduced to the backward Euler method with time step length 2

3 s. The various GFEMs and
SGFEM with the backward Euler method (22) and BDF2 method (23) are analyzed numerically in next
section, where their convergence, stability, and robustness are examined and compared.

In the end of this section, we define the scaled condition number (SCN) of stiffness and mass matrices of
GFEMs, which will be computed below to show the conditioning and robustness of various GFEMs and
SGFEM. Denote a stiffness or mass matrix by A, associated with the approximation space of GFEM
Sth ¼ SFEM � StENR, and it is of the form

A ¼ A11 A12

AT
12 A22

� �
; (24)

where A11 and A22 are the sub-matrices associated with the FEM part SFEM and enrichment part StENR of
GFEM respectively, while A12 is the sub-matrix associated with the cross-terms between SFEM and StENR.
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Consider a diagonal matrices D with Dii ¼ A�1=2
ii , and define Â ¼ DAD. The scaled condition numbers

(SCN) of A, A11 are defined by

K :¼ j2ðÂÞ; K FEM :¼ j2ðÂ11Þ; (25)

respectively, where κ2(·) is the condition number based on the Euclidean vector norm || · ||2.

In next section, we will show numerically that the proposed SGFEM with backward Euler method and
BDF2 achieves optimal convergence orders, and is stable and robust in that its SCN K is of same order as
that of FEM, and K will not blow up as the interfaces are close to the edges of mesh. The geometric and
corrected GFEMs are not stable, and the topological GFEM only has sub-optimal convergence. The
stability and robustness of GFEM are relevant for the moving interface problems because linear systems
are solved frequently according to various possible relative positions of interfaces and edges of meshes.

5 Numerical Studies and Discussion

In this section, numerical examples of parabolic problem with moving interfaces are solved to
investigate performances of various GFEMs and SGFEM with the backward Euler and BDF2 methods.
Situations of straight and curved interfaces are considered. A domain ω = [a,b]2 is discretized using a

uniform mesh T h ¼ fesg of M × M bilinear quadrilateral elements with mesh-size parameter h ¼ b� a

M
.

The set of FE nodes is denoted by {Pi}i ∈ Ih, where Ih is the index set. Let an interval [0,T] = [0,1] be

uniformly spaced, i.e., tn = nτ, n = 0, 1, …, N, where the time step length s ¼ 1

N
. Based on the backward

Euler and BDF2 methods, we will test and compare the following spatial discretization methods:

� FEM: standard bilinear FEM based on T h;

� GFEMTopo: topological GFEM (10) with enrichment D and enriched nodes in I�;th;enr;

� GFEMGeo: geometric GFEM (12) with enrichmentD and enriched nodes in IR;th;enr, where R is independent of h;

� GFEMCor: corrected GFEM (15) with enrichment η(P)(D(P,t) −D(Pi,t)) and enriched nodes in I
C;t
h;enr, where

η(P) is a ramp function;

� SGFEM: SGFEM (17) with modified distance function D�I hD and enriched nodes in I�;th;enr.

Integration for Nonsmooth Enrichments: We describe the numerical integration formulae for the
moving interface problems. For an element not cut by the interface, the standard 4 × 4 Gaussian rule is
adopted. For an element passed by the interfaces of one or two time layers, we first replace the interface
curves with straight lines by connecting intersection points of the interfaces and the boundaries of
element. In this way, the element is divided into several sub-polygons, each one of which is decomposed
into triangles, and 6 × 6 Gauss quadrature rule in each triangle is employed. Such an integration rule is
easy to implement and commonly used in the GFEMs for moving interface problems. We refer to [23,41]
for more discussions about the numerical integration of non-smooth enrichments.

We will compute the relative errors at the final time step tN in L2 and energy norms and SCNs to compare
and analyze the various GFEMs and SGFEMwith backward Euler and BDF2 methods. The SCN of stiffness
or mass matrix is defined in (25), and the relative errors are defined as follows:

kekL2ð�Þ ¼
kuNh � uð�;TÞkL2ð�Þ

kuð�;TÞkL2ð�Þ
; kekE ð�Þ ¼

kuNh � uð�; TÞkE ð�Þ
kuð�; TÞkE ð�Þ

;

where uNh and u(·,T) are the numerical and exact solutions at the final time point, respectively.

In all the computations below, we test two contrast parameters, mild one ρ = 100 (a0 = 100, a1 = 1) and
large one ρ = 1000 (a0 = 1000, a1 = 1). The uniformM ×Mmeshes withM = 2i+1, i = 1, 2,…, 7 are employed.
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5.1 An Interface Problem with Straight Interfaces
Let Ω = [0,1]2 with a straight interface Γ(t) = {P ∈ Ω: γ(P,t) = 0}, where

cðP; tÞ :¼ 1

2
x� yþ 1

2
ð0:1þ 0:7 sin tÞ ¼ 0 is a moving straight line with a fixed slope of

1

2
. Then we set

Ω0 := {P ∈ Ω: γ(P,t) < 0} and Ω1: = {P ∈ Ω: γ(P,t) > 0} as illustrated in Fig. 2 Left. Note that the straight
interface moves with time. In Fig. 2 Right, the enrichment schemes of various GFEMs are displayed at
time t = 1, where R = 1/3 for geometric GFEM.

We consider a manufactured solution of (3) given by

u ¼
1

a1
e
x
2�y cos t þ 1

a0
� 1

a1

� �
� e�

0:1þ 0:7 sin t

2 cos t; P 2 �1;

1

a0
e
x
2�y cos t; P 2 �0;

0
BBB@

where the right hand side f of (3), the boundary function g, and the initial value u0 are determined by the exact
solution u through Eq. (3).

5.1.1 Convergence Studies
We first take τ = h, and the log-log plots of L2 and energy errors with respect to h for the various GFEMs

and SGFEMwith the backward Euler and BDF2 methods are presented in Figs. 3 and 4, respectively. For the

backward Euler scheme, a L2 convergence error O(h2 + τ) and an energy convergence error O(h + τ) are
expected. Since we take τ = h, these two errors are all O(h). Fig. 3 Left shows the L2 error O(h) for all
GFEMs and SGFEM, whereas the energy optimal error O(h) is only obtained by the SGFEM and
GFEMCor in Fig. 3 Right. The GFEMTopo and GFEMGeo based on the backward Euler scheme can not
produce the optimal energy convergence errors. The optimal spatial convergence error O(h2) in L2 norm
is not obtained for the various GFEMs and SGFEM because the backward Euler scheme is of first order
in time (remembering that τ = h is taken). The optimal L2 spatial convergence error O(h2) can be

Figure 3: Relative errors of backward Euler method: Left: L2 norm; Right: energy norm
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observed in the BDF2 method since it produces the time discretization of second order. For the BDF2, the
optimal L2 errorO(h

2 + τ2) and energy errorO(h + τ2) are expected. Therefore, these error areO(h2) andO(h),
respectively, since we take τ = h. It is pointed in Fig. 4 that the SGFEM and GFEMCor with the BDF2 yield
optimal convergence errors O(h2) in L2 and energy norms O(h) for both mild and large contract parameters.
Again, these optimal rates can not attained by the GFEMTopo and GFEMGeo.

In sum, the GFEMTopo and GFEMGeo can not reach the optimal convergence rates for the BDF schemes.
The SGFEM and GFEMCor, based on the backward Euler and BDF2 schemes, converge with the optimal
rates in both L2 and energy norms for mild and large contrast parameters.

We note that even though both the proposed SGFEM and GFEMCor exhibit excellent convergence, the
SGFEM has fewer DOFs than the GFEMCor. Moreover, we will see that the SGFEM is stable and robust,
compared with the GFEMCor, in the following conditioning studies.

5.1.2 Conditioning of Stiffness/Mass Matrices and Robustness Test
We first lay an emphasis on the SCN of stiffness/mass matrices of various methods, which indicates the

stability of GFEMs. The SCNs K A of stiffness matrices with respect to h at time t = 0.25 and t = 0.50 are
plotted in Fig. 5. It is clear that growths of K A for GFEMTopo, GFEMCor, and SGFEM are of order O(h−2),
which is of the same order as that of the standard FEM. However, K A of GFEMGeo grows with an order
about O(h−4), which is much bigger than that of FEM. This is caused because of introduction of too
many enriched DOFs in GFEMGeo.

The SCNsK M of mass matrices with respect to h at time t = 0.25 and t = 0.50 are shown in Fig. 6. It is
noted that K M of GFEMTopo, GFEMCor, and SGFEM are of order O(1) that is the same as that of the
standard FEM, while the growths of K M in GFEMGeo are of order O(h−4), which is significantly higher
than other methods.

We next study the robustness of various GFEMs when the interfaces approach the boundaries of
elements. To this end, we consider an interface Γ represented by equation y = 0.5 + δ, and the
discontinuous coefficient a(P) is set by

aðPÞ ¼ a0; y 	 0:5þ d;
a1; y, 0:5þ d:

�

Figure 4: Relative errors of BDF2 method: Left: L2 norm; Right: energy norm
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The domain Ω = [0,1]2 is divided with a fixed 32 × 32 uniform mesh, and the enrichment schemes of
various GFEMs are displayed in Fig. 7. We investigate the conditioning of various GFEMs and SGFEM as
the interface Γ approaches the mesh line y = 0.5, namely, δ decreases to zero. We take

d ¼ 1

64

 10�j; j ¼ 0; 1; � � � ; 10 for the fixed mesh (h = 1/32) such that ratio

d
h
decreases from 0.50 to

0.50 × 10−10. We do not present features of the GFEMGeo in this case because h is fixed and not refined.

The SCNs of the stiffness and mass matrices against δ above with ρ = 100 and ρ = 1000 are plotted in
Fig. 8. It shows that the FEM, SGFEM and GFEMTopo are robust in a sense that their SCNsK A andK M do
not vary as δ decreases. However, K A and K M of GFEMCor cause massive increases as δ decreases.
Therefore, it indicates that GFEMCor is not robust, while the SGFEM remains robust with respect to the
relative position of interface and boundaries of elements.

Figure 5: SCNs of the stiffness matrices for straight interface: Left: t = 0.25; Right: t = 0.50

Figure 6: SCNs of the mass matrices for straight interface: Left: t = 0.25; Right: t = 0.50
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We emphasize that the robustness is relevant for the GFEMs of parabolic moving interface problems,
because various relative positions of interfaces and meshes may occur when the meshes are fixed and the
interfaces move. Detailed studies on the robustness of GFEMs are relatively new, we refer to [26,45,47,49]
for more details. These numerical results illustrates that among the GFEMs tested in this section, the
SGFEM is the only one who both achieves the optimal convergence orders and is stable and robust.

5.1.3 More Relations between τ and h
In the subsection 5.1.1 we verify the optimal L2 error O(h

2 + τ) and energy error O(h + τ) of backward
Euler method, and the optimal L2 errorO(h

2 + τ2) and energy errorO(h + τ2) of BDF2 scheme by taking τ = h.

Figure 7: Enrichment schemes of various GFEMs for a straight interface problem where the interface line is
close to the boundaries of mesh

Figure 8: SCNs as the interface line gets close to the boundaries of mesh: Left: stiffness matrices; Right:
mass matrices
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In this subsection we further test these optimal rates for the SGFEM by taking more relations between τ and h.
We keep all the settings in the subsection 5.1.1, including the domain, equation, exact solution, mesh, and so

on. We take τ = 4h2 for the backward Euler method and s ¼ ffiffiffi
h

p
for the BDF2 scheme. The L2 errors of

SGFEM with backward Euler method and the energy errors of SGFEM with BDF2 scheme against

h ¼ 1

2iþ1
; i ¼ 1; 2; � � � ; 6 are given in Tab. 1. It can be seen in Tab. 1 that the optimal spatial L2 error of

SGFEM with backward Euler method O(h2) is derived. This coincides with the optimal L2 error O(h
2 + τ)

of backward Euler method because of τ = 4h2. We mention that the spatial L2 error O(h
2) is not observed

in the subsection 5.1.1. In Tab. 1 we also see the optimal spatial energy error O(h) of SGFEM with
BDF2 scheme. This again verify the optimal energy error O(h + τ2) of SGFEM with BDF2 scheme since

s ¼ ffiffiffi
h

p
.

5.2 An Interface Problem with Curved Interfaces
We next show that the behaviors of convergence and conditioning of SGFEM in the case of straight

interfaces are maintained when the interfaces are curved. We consider a domain Ω = [−1,1]2 with an

Table 1: Relative errors of SGFEM with BDF methods for the straight interface problem at time T = 1

h Backward Euler method (τ = 4h2) BDF2 (s ¼ ffiffiffi
h

p Þ
ρ = 100 ρ = 1000 ρ = 100 ρ = 1000

||e||L2(Ω) order ||e||L2(Ω) order kekE ð�Þ order kekE ð�Þ order

1/4 1.8293E − 1 1.8211E − 1 6.4856E − 2 7.1018E − 2

1/8 4.3731E − 2 2.0646 4.3454E − 2 2.0673 3.2563E − 2 0.9940 3.4065E − 2 1.0599

1/16 1.0809E − 2 2.0164 1.0735E − 2 2.0171 1.6544E − 2 0.9769 1.6806E − 2 1.0193

1/32 2.6946E − 3 2.0041 2.6757E − 3 2.0043 8.2685E − 3 1.0006 8.3311E − 3 1.0124

1/64 6.7318E − 4 2.0010 6.6842E − 4 2.0011 4.1736E − 3 0.9863 4.1899E − 3 0.9916

1/128 1.6827E − 4 2.0003 1.6707E − 4 2.0003 2.0845E − 3 1.0016 2.0894E − 3 1.0038

Figure 9: Left: a curved interface problem; Right: a display of enrichment schemes of various GFEMs
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evolving circular interface Γ(t) = {P ∈Ω: γ(P,t) = 0}, where γ(P,t): = (x − xc)
2 + (y − yc)

2 − r(t)2 = 0 is the circle
of center O(xc,yc) and time-dependent radius r(t). LetΩ0: = {P ∈ Ω: γ(P,t) > 0 } andΩ1: = {P ∈Ω: γ(P,t) < 0}
as shown in Fig. 9 Left. We use (xc,yc) = (0,0) and rðtÞ ¼ r0 � sin tþ3

4 with r0 ¼ p
6:28 in the computations.

Besides, the parameter of enriched region is taken as R ¼ 1
3 rðtÞ at time t for the GFEMGeo. In Fig. 9

Right, the enrichment schemes of various GFEMs are displayed at time t = 1, where R ¼ 1
3 rð1Þ for the

GFEMGeo.

We consider a manufactured solution of (3) given by

u ¼
1

a0
ðx2 þ y2Þ

5
2 cos t þ 1

a1
� 1

a0

� �
rðtÞ5 cos t; P 2 �0;

1

a1
ðx2 þ y2Þ

5
2 cos t; P 2 �1;

0
BB@

where the right hand side f of (3), the boundary function g, and the initial value u0 are obtained from the exact
solution u using Eq. (3).

Fig. 10 Left shows that the SGFEM with the backward Euler scheme produce the optimal convergence
errors in L2 and energy norms for the mild and large contrast parameters (the L2 error is O(h) because of τ =
h). Likewise, Fig. 10 Right demonstrates that the SGFEM based on the BDF2, a time discretization of second
order, is of optimal convergence for the mild and large contrast parameters, and the errors in L2 and energy
norms are O(h2) and O(h), respectively. These observations agree with the situations of moving straight
interfaces. Therefore, the SGFEM based on the backward Euler and BDF2 schemes show the optimal
convergence and robustness with the high contrast parameters, which are advised to applied to the space
and time discretizations of parabolic moving interface problems.

More Relations between τ and h

As in the subsection 5.1.3, we test the optimal convergence rates for the case of curved interfaces by
taking more relations between τ and h. We take τ = 4h2 for the backward Euler method and s ¼ ffiffiffi

h
p

for
the BDF2 scheme. The L2 errors of SGFEM with backward Euler method and the energy errors of
SGFEM with BDF2 scheme against h ¼ 1

2iþ1 ; i ¼ 1; 2; . . . ; 6 are given in Tab. 2. We see the optimal
spatial L2 error O(h2) of SGFEM with backward Euler method and the optimal spatial energy error O(h)
of SGFEM with BDF2 scheme in Tab. 2. These again account for the optimal L2 error O(h2 + τ) of
backward Euler method (τ = 4h2) and the optimal energy error O(h + τ2) of BDF2 scheme (s ¼ ffiffiffi

h
p

),
respectively.

Conditioning of Stiffness and Mass Matrices

We present the SCNs of SGFEM against h with the contrast parameters ρ = 100, 1000 at time points t =
0.25 and t = 0.50 in Fig. 11. It is clear that the SCNs of stiffness and mass matrices grow with orders aroundO
(h−2) andO(1), respectively, which are the same as those of FEM.Moreover, the SCNs are independent of the
relative positions between interfaces and boundaries of elements. These results are in accordance with the
case of moving straight interfaces. This means that the SGFEM is indeed a stable and robust GFEM for
the moving interface problems.
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Figure 10: Relative errors of BDF methods: Left: backward Euler; Right: BDF2

Table 2: Relative errors of SGFEM with BDF methods for the curved interface problem at time T = 1

h Backward Euler method (τ = 4h2) BDF2 (s ¼ ffiffiffi
h

p Þ
ρ = 100 ρ = 1000 ρ = 100 ρ = 1000

||e||L2(Ω) order ||e||L2(Ω) order kekE ð�Þ order kekE ð�Þ order

1/4 1.0907E + 0 1.2677E + 0 2.4351E − 1 3.6864E − 1

1/8 2.2671E − 1 2.2663 3.2271E − 1 1.9739 1.2489E − 1 0.9633 2.3841E − 1 0.6288

1/16 5.4999E − 2 2.0434 1.1574E − 1 1.4793 6.2818E − 2 0.9914 1.3298E − 1 0.8422

1/32 1.3239E − 2 2.0547 3.2219E − 2 1.8449 3.1372E − 2 1.0017 6.3977E − 2 1.0556

1/64 3.2102E − 3 2.0440 6.5126E − 3 2.3066 1.5592E − 2 1.0086 2.7272E − 2 1.2301

1/128 7.9460E − 4 2.0144 1.1747E − 3 2.4710 7.7765E − 3 1.0037 1.2188E − 2 1.1620
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6 Conclusions

The SGFEM is shown to be stable and robust for the elliptical interface problems in [25,26,44,45],
namely, its SCNs are of the same order as those of FEM, and do not blow up as the interfaces approach
boundaries of elements. The stability and robust of SGFEM are of significantly importance for moving
interface problems where various possible relative positions between interfaces and meshes may occur
because the meshes are fixed, and the interfaces are moving. Since the shape functions of SGFEM are
time-dependent, the time stepping schemes need carrying our carefully. In this paper, we proposed the
BDF schemes for SGFEM when applied to the parabolic moving interface problems. The first and second
order BDF (the backward Euler method and BDF2) are employed to establish the first and second order
schemes in time, respectively. The numerical experiments indicated that the SGFEM with the backward
Euler method and BDF2 produces the optimal convergence rates for mild and large contrast parameters.
We compared the SGFEM with other conventional GFEMs, such as topological, geometric, and corrected
GFEMs in aspects of convergence and conditioning. The SGFEM exhibited its advantages of
convergence, stability, and robustness over these GFEMs for the parabolic moving interface problems
indeed. The optimal convergence of SGFEM with the backward Euler method and BDF2 will be proven
in future. The SGFEM with certain time stepping schemes for nonlinear moving interface problems will
also be an interesting direction.
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