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Abstract: Detecting moving objects in the stationary background is an important
problem in visual surveillance systems. However, the traditional background sub-
traction method fails when the background is not completely stationary and
involves certain dynamic changes. In this paper, according to the basic steps of
the background subtraction method, a novel non-parametric moving object detec-
tion method is proposed based on an improved ant colony algorithm by using the
Markov random field. Concretely, the contributions are as follows: 1) A new non-
parametric strategy is utilized to model the background, based on an improved
kernel density estimation; this approach uses an adaptive bandwidth, and the
fused features combine the colours, gradients and positions. 2) A Markov random
field method based on this adaptive background model via the constraint of the
spatial context is proposed to extract objects. 3) The posterior function is maxi-
mized efficiently by using an improved ant colony system algorithm. Extensive
experiments show that the proposed method demonstrates a better performance
than many existing state-of-the-art methods.
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1 Introduction

Moving object detection has been widely applied in fields such as video surveillance [1], human-
machine interaction [2], and autonomous navigation of robots [3] in the last two decades. Background
subtraction is a typical method used to detect moving objects in visual surveillance systems, and it is
considered as the first step in the detection algorithms for multiple moving objects [2,4,5]. For a
relatively static background, background subtraction is a simple and effective method for motion
segmentation. However, a stationary camera does not reflect a completely stationary scene in the real
world, and dynamic scenes containing lights, rains, swaying trees, and fountains change gradually.
Therefore, the background subtraction method should be improved to adapt to such scenes.

To apply the background subtraction technique, building the background model is a key step to describe
the outdoor scenes. Two types of methods can be used for building a background model: parametric and non-
parametric models. The parametric background model usually builds the scene as a particular distribution.
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However, the background varies gradually, and thus, it cannot be modelled appropriately using the
parametric background model. Wren et al. [6] proposed a single Gaussian background modelling method
and assumed that the pixel values of each pixel in the background obey the Gaussian distribution with the
change in time. This method exhibits excellent performance in certain scenarios; however, it cannot adapt
to outdoor dynamic scenes. Stauffer et al. [7] proposed a mixture Gaussian background modelling
method. This algorithm establishes multiple Gaussian distribution models and updates the relevant
parameters to achieve real-time fitting of the multimodal distribution in complex scenes simultaneously.
However, the detection result of this method is determined by the selection of the parameters, and the
robustness of the algorithm needs to be improved. As a result, the parametric background model
approach fails to obtain sensitive detection results when the scene contains gradual changes and high-
frequency variations.

Another type of background model is the non-parametric background model, which does not build the
scenes as having a particular distribution, and this non-parametric model can describe the scenes robustly.
Although the non-parametric models appear to be a reasonable choice for background modelling, it is
difficult to choose the suitable bandwidth of the kernel density estimation (KDE) [8], and the approach is
usually too costly to perform in real time. Long-term and short-term KDE methods are used to obtain the
background and foreground models in reference [8], respectively. However, because it is difficult to
define the appropriate bandwidth of the KDE, such KDE methods are also time-costly algorithms.

In the past two decades, the background subtraction approach has been widely used for object detection
and segmentation. However, the existing background subtraction methods still face the following
disadvantages.

1. The parametric background modelling method usually requires that the pixels in the background obey the
underlying distribution model, and this method thus cannot adapt to arbitrarily complex data distributions,
thereby requiring explicit estimation parameters.

2. The non-parametric method in the background subtraction approach also has some drawbacks. The
dynamic features for the background modelling are difficult to be selected as bandwidths. In addition,
in the object extraction, the objects are detected considering the threshold, which is not accurate.

To address these problems, our method is inspired by the statistical probability model methods and
multimodal features. The fusion of multiple features helps model the visual scenes. A novel Markov
random field framework is proposed to seek the optimal labels of the image pixels. An improved ant
colony system algorithm is employed to maximize the posterior function. In particular, Fig. 1 shows the
outline architecture of the proposed method, and the distinctive features of this method are as follows:

1. For the background modelling, an adaptive non-parametric method with KDE is proposed, which has
variable bandwidths. The colours and gradients are combined with the positions and utilized as the
features in a higher-dimensional space to model the visual scenes, which is also used for describing
the foreground model.

2. For extracting the objects, we consider that the label of a pixel is associated with its neighbourhoods
during the decision step regarding the labels of the pixels. In addition, because the Markov random
field method is a process seeking the optimal labels of the image pixels, a Markov random field
framework is computed to make decisions by using the foreground and background models.

3. The optimal resolution is acquired by using an improved ant colony system algorithm, and the method is
implemented for the ACS in the Markov random field framework.

This reminder of this paper is organized as follows: Section II provides a brief description of the
literature pertaining to the background subtraction technique. Section III describes the modelling of the
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background via non-parametric methods. Section IV presents the Markov random field algorithm. In Section
V, the improved ant colony method is proposed for optimizing the posterior function. Section VI describes
the experiments performed on different sequences, which demonstrates the performance of the proposed
method compared to that of several traditional and new methods. Finally, Section VII provides the
conclusions and scope for future work.

2 Related Works

The background subtraction and foreground extraction techniques are the methods most commonly used
to detect moving objects in video sequences [9]. The simplest approach to detect moving objects involves
using the inter-frame difference method [10]. This approach mainly subtracts two image pixel values in
two adjacent frames or several frames in the video stream and extracts the motion region in the image by
manual thresholding. However, this technique can only be used for static cameras and it is extremely
sensitive to changes in the dynamic scenes. Therefore, as reported in the related literature, the background
subtraction method has been improved to adapt to complex dynamic scenes.

In the context of this problem, the existing models based on background subtraction may be classified as
being based on either the parametric or non-parametric background models. The parametric background
model usually builds the scene as a particular distribution such as a multiple Gaussian distribution [11],
Gaussian mixture distribution [12] hidden Markov approach [13] or other probabilistic models [14,15,16]
for foreground detection. The single Gaussian distribution [17] background model is suitable for single-
modal scenes, in which the model is established considering a single Gaussian distribution for the colour
distribution of each image point. To solve the problem of random image noises, the Gaussian mixture
distribution model is proposed for multiple modes, and it can obtain satisfactory results when the scenes
are slightly dynamic. However, if the background varies gradually, it cannot be modelled appropriately by
using the parametric background model. An accurate background model is generated using the approach
reported in [1,18] even when unclear or blurred frames are present. The region-based MoG (RMoG) [19]
considers the pixels near the objects to model the background. Generally, the method of the parametric
background model fails when the scene contains gradual changes, because the variations in the scenes
cause high frequency variations.

To solve the various problems of the parametric background model in dynamic complex scenes, non-
parametric methods were developed as an alternative approach to model the backgrounds. The most
attractive non-parametric method for modelling the distributions of the background is the kernel density
estimation (KDE) technique [8], which performs the processes using Gaussian kernels to improve the
building of the background model. This method can be improved to adapt to complex scenes. The
Codebook algorithm [20] uses the three-dimensional colour model to calculate the matching degree
between the current pixel and the corresponding Codebook model, which considerably reduces the
computational time. However, these algorithms cannot update and detect the number of moving targets
when the background changes. To improve the sensitivity and adaptability of the algorithm in complex
scenes, SuBSENSE [21] combines the feedback mechanism of the ViBe [22] method, and the pixel-based
adaptive segmenter (PBAS) [23] is used to perform a pixel-level segmentation based on the non-
parametric statistical distribution model. However, the algorithm has a high complexity and high memory
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Figure 1: Architectural outline of the proposed method
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usage. Background and foreground models were formulated in [8] by using a developed KDE method
in the long term and short term, respectively. However, because it is difficult to define the appropriate
bandwidth of the KDE, KDE approaches are also time-costly algorithms. The background and foreground
were both modelled in [2] to reduce the computational complexity. In addition, Zhang [24] proposed
the setting of a threshold for each pixel according to the dynamic nature of the pixel, based on the
KDE adaptively. In [25], the differences between the Gaussian and non-parametric method were used for
object detection.

To model dynamic backgrounds adaptively, deep learning methods [26,27,28] and RGB-D data
[3,29,30] have been used for background segmentation. Convolutional networks are powerful visual
models in the field of target detection and combine semantic information from a deep, coarse layer with
appearance information from a shallow, fine layer to produce accurate and detailed detection results.
Convolutional-network-based methods exhibit a better accuracy and robustness than those of traditional
methods for detecting moving targets in complex scenes. The RGB-D data can provide the geometric
position information, and the depth values can represent the distance between each pixel and the depth
camera in the real world. The colour information combined with the depth position information can
effectively solve the occlusion problem and improve the accuracy and robustness of the moving target
segmentation. In general, establishing an accurate background or foreground model is essential for
background subtraction when the background involves high-frequency variations.

In other words, detecting or extracting moving objects in a complex environment is still a challenging
problem. To solve such problems, the proposed method is different from the abovementioned methods in the
following three contexts: 1) The background and foreground models are established by using the non-
parametric KDE method; 2) the posterior function is constructed in the MRF; 3) the posterior function is
maximizing via an improved ACS.

3 Modeling the Background

For modelling the multi-variate probability distributions in dynamic scenes, the non-parametric kernel
estimation can acquire the probability distribution with no fixed assumptions. Consider that at the current
time t, the background set is represented as �b. For the pixel x at time t, the estimator is defined as in
[31] to obtain the probability of background:

p̂ðxj�bÞ ¼ 1

n

Xn
i¼1

1

Bk k1=2ð2pÞd=2
expð� 1

2
ðx � xiÞTB�1ðx � xiÞÞ (1)

We propose a method for selecting the bandwidth B and features of the measurements in Eq. (1). The
variable bandwidth B is determined by the uncertainties in the sample measurement xi and the estimated
measurement x. Next, seven features of the measurements are utilized: two features for the colours, three
features for the gradients and two features for the positions.

To model the background accurately, the bandwidth should reflect the variable local variances. The
optimal value of B is larger in the region having sparse data and smaller in the region having dense data.
Consequently, we introduce an approach of choosing the bandwidth matrix that changes with the
distributions of the sample set and the estimation set. Based on the method proposed by Mittal [32], we
define the bandwidth matrix as Bðxi; xÞ ¼ Sxi þ Sx. The non-parametric estimator can be described as:

p̂ðxj�bÞ ¼ 1

nð2pÞd=2
Xn
i¼1

1

Sxi þ Sxk k1=2
expð� 1

2
ðx � xiÞTðSxi þ SxÞ�1ðx � xiÞÞ (2)

where Sxi is the covariance matrix of the sample measurement xi, and Sx is the covariance matrix of the
estimated measurement x. However, in a practical system, since the estimated pixel x is only a vector in

132 CMES, 2020, vol.124, no.1



the feature space, Sx would not be computed. Based on the mathematical explanation in [32], which proves
that Eq. (2) represents the distributions of the sample measurements in the background, Sx can be computed
from the set �

0
b ¼ f�b; xg.

The selection of the features should be considered after introducing the general non-parametric kernel
estimation. Here, we describe the methods for obtaining such measurements and reducing the computation.

Because colours have the advantage of being invariant to a change in the illumination, r and g, which
represent the chromaticity coordinates are used. To reduce the computation, the different components are
assumed independently. The uncertainties in the normalized features are

�r;g ¼ r2xrc 0
0 r2xgc

� �

where r2xrc and r2xgc are the variances in the different component using the chromaticity coordinates (r, g).

In addition to the colour information, we also use the gradients to describe the pixel features.
Consequently, the uncertainty based on the gradient is

�gra ¼
r2gr 0 0
0 r2gg 0

0 0 r2gb

2
64

3
75

where r2gr, r
2
gg, and r2gb are the gradient variances of the chromaticity coordinates (r, g, b).

The pixel positions are also useful for detecting objects. Because the position of a pixel can be stable
when the pixel is labelled as a foreground or background pixel, the positions of a pixel containing x and
y coordinates can also be utilized as features:

Sp ¼ r2xx 0
0 r2xy

� �

The pixel is thus described as xi ¼ ð xrc xgc xgr xgg xgb xxx xxy Þ (i = 1, 2,……, n.). xrc and xgc
are the colour values of the pixel; xgr, xgg, and xgb are the gradients; and xxx and xxy are the positions.
Assuming the colour and gradient features are independent, the covariance �x may be estimated:

Sx ¼
Sr;g 0 0
0 Sgra 0
0 0 Sp

2
4

3
5

�xi can also be represented on sample data as �x, which is the value for the variance in the colour
channels, gradient components, and position components.

Therefore, the pixel x is classified using the presetting threshold T as a foreground or background pixel:

p̂ðxj�bÞ < T (3)

The parameter T is the presetting manual threshold, which can be used for segmentation. All the pixels
are segmented as foreground or background pixels suitably in this step. Because the threshold is not robust
for extracting objects, these detected results are used only as the first step to extract the object regions
preliminarily, which can also reduce the computation complexity. The adaptive optimal algorithm
presented in the next section is used to obtain more accurate detection results.
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4 Markov Random Field

The direct threshold method is evidently not robust for a practical system. Furthermore, this method
ignores the spatial context, which rarely exists among proximal sites. To solve this problem, we consider
the Markov random field method to determine the pixel labels. Based on the mathematical foundation, we
cast the classification problem into a Markov random field for estimating the labels of pixels.

The image label set is defined as L ¼ fl1; l2;…; lng, where ln represents the pattern class containing the
background or foreground. Subsequently, the ln value of a pixel has two values: ln ¼ 0 (background), or
ln ¼ 1 (foreground). D is a random field denoted by D ¼ fdx : x 2 I ; dx 2 Lg. dx ¼ ln means that the label
ln is assigned to the pixel x. Let gij � I represent the neighbourhood of a pixel in the location (i, j),
which satisfies the condition that no pixel belongs to neighbourhood of this pixel, and the neighbourhood
systems are independent. Let C be the set of cliques c associated with gij.

The maximum a posteriori (MAP) [33] can be used to define the real label of pixel x:

argmaxPðDjxÞ
x2I

(4)

where PðDjxÞ can be expressed using the Bayesian rule:

PðDjxÞ ¼ PðxjDÞPðDÞ
PðxÞ (5)

In Eq. (5), when the image is confirmed, PðxÞ is ignored which is considered to be a constant term. The
optimal labels for the pixels can be computed as

argmax ððPðxjDÞPðDÞÞ
x2I

(6)

4.1 Conditional Probability
As mentioned above, the probability of the pixels belonging to foreground objects can also be described

similar to in the background model via the adaptive kernel density estimation; that is, the foreground object at
time t can be detected using the sample set �f ¼ ff1; f2;…; fng of the foreground.

Using the method to estimate the foreground probability in Eq. (2), the foreground probability in the
proposed system can be expressed as

p̂ðxj�f Þ ¼ 1

nð2pÞd=2
Xn
i¼1

1

Sxi þ Sxk k1=2
expð� 1

2
ðx � xiÞTðSxi þ SxÞ�1ðx � xiÞÞ (7)

where PðxjDÞ is the conditional density presented based on the conditional independence assumption of x:

PðxjDÞ ¼
Y
x2I

PðxjdxÞ ¼
Y
x2I

p̂ðxj�f Þln p̂ðxj�bÞ1�ln (8)

4.2 Prior Probability
The Markov random field can describe the relationships among the contexts in the image sequences.

Evidently, the contexts are particularly important cues for detecting objects in the videos of complex
scenes. Therefore, we propose that the method of the Markov random field is applied for object detection.
The prior probability can be completely described by a Gibbs distribution:
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PðD ¼ dÞ ¼ 1

Z
e�UðdÞ=T (9)

where Z is a normalized constant called the partition function, T is the temperature, and UðdÞ is the energy
function:

UðdÞ ¼
X
c2C

VcðdÞ (10)

where Vc is a function of the cliques around the site under consideration. Some traditional forms of the MRF
model exist, and the Ising model presented in [33] considers the spatial context owing to its discontinuity
preserving properties:

PðDÞ / expð
X
i2I

X
j2C

�ðlilj þ ð1� liÞð1� ljÞÞÞ (11)

where � is set between 0 to 1 as a constant.

Consequently, by substituting Eqs. (8) and (11) into Eq. (6), the maximum a posterior can be defined as

argmaxðlnðPðxjDÞPðDÞÞ

¼ argmaxð
X
i2I

ðli � ln
p̂ðxj�f Þ
p̂ðxj�bÞ þ ln p̂ðxj�bÞÞ þ

X
i2I

X
j2C

�ðlilj þ ð1� liÞð1� ljÞÞÞ (12)

where ln p̂ðxj�bÞ is a constant term, and it can be ignored.

Furthermore, we provide the explanation for Eqs. (11)–(12) and the implementation method for Eq. (12).
Based on the analysis, the detailed implementation of Eq. (12) is as follows:

Step 1: Initializing the labels for pixels: Using Eq. (3), the objects are detected the first time to initialize
the labels.

Step 2: In the current frame t, the energy value of pixel x is computed based on Eq. (12):

li � ln
p̂ðxj�f Þ
p̂ðxj�bÞ þ

X
j2c

�ðlilj þ ð1� liÞð1� ljÞ (13)

where lj is obtained from the frame t-1. li ¼ 0 (assuming that pixel x is in the background) or li ¼ 1
(assuming that pixel x is in the foreground).

Step 3: Maximizing Eq. (12): The optimal algorithm described in Section 4 is used to maximize
Eq. (12).

5 Solution Optimization by Using the Improved Ant Colony Algorithm

The traditional algorithms for optimizing such a model exhibit an inferior quality; these algorithms
contain the iterated condition modes (ICM) and simulated annealing (SA). The SA algorithm involves
long processes for reducing the temperature, and determining the solutions is thus computationally
expensive. The solutions via the ICM are very sensitive to the initialization values. Consequently, our
paper creatively adopts the ant colony optimization algorithm to solve the MAP-MRF problem in the
multi-moving object detection. Recently, the ant colony algorithm has been used for many image
segmentation problems [34]; however, it has not been applied for the optimal detection of objects.

In this algorithm, a colony of artificial ants search for a globally optimum solution, that is, the image
pixels’ labels are the “food sources” and maximizing the energy function is the target optimal function,
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such as “the shortest path” represented in a TSP problem. Next, the ants, that is, the pixels, trace a solution
that assigns the labels 0 (background) or 1 (foreground) to the image pixels. To reduce the computational
complexity, we remove the pixels recognized as the background in the first detection step.

In the TSP problem, an ant constructs the solution according to the “path” that has the strongest
pheromone trail. Therefore, the decisional basis associates the label pixel and the labels. The pheromone
trail is computed as

sx;ln ¼
1

N � Ux
(14)

where sx;ln denotes the choosing label ln for pixel x, and Ux is the local energy function defined as

Ux ¼ ln � ln
p̂ðxj�f Þ
p̂ðxj�bÞ þ

X
j2c

�ðlnlj þ ð1� lnÞð1� ljÞ (15)

where ln denotes the label for the current pixel, which is set to be 0 or 1.

To reduce the probability of obtaining a local optimizing solution, we define the transforming probability
by the following pseudo-random-proportional rule, which dynamically adjusts the assignment of the pixel
labels in the search process:

l ¼
argmax ss;l

l2L
if q � q0

Ps;l otherwise

(
(16)

where q0 is a fixed value defined as q0 2 ð0; 1Þ, and q is a random number lying between (0, 1). When
q � q0, the ants assign the label l to pixel x according to the highest pheromone trail sðx; lnÞ; otherwise,
the choice is made with the transforming probability Ps;l represented as

Px;ln ¼
sx;lnP

ln2L
sx;ln

(17)

The transforming probability is a function using only the pheromone trail because the pheromone trail
not only contains the pheromone concentration via the local energy, which is the basis of constructing the

Algorithm 1: Ant colony optimization algorithm based on the MAP-MRF framework

Step 1: Initialize the foreground set �f

(the initial foreground set is set to a null set) and background set �b.
Step 2: Starting from the current frame (t-frame)

1) Calculate the background probability p̂ðxj�bÞ.
2) Determine the threshold of and initialize the labels of the pixels.
Step 3: Calculate the foreground probability p̂ðxj�f Þ.
Step 4: Detect the objects via the Markov random field in consecutive frames.
Step 5: Calculate the pixel initial energy value, and initialize the pixels’ pheromone values.
Step 6: Optimize the posterior energy function using the improved ant colony algorithm.
Step 7: Update the background and foreground models.
Step 8: If t < N (N is the total number of frames in the video sequence), t = t + 1; if t = N, the algorithm is

terminated.
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solution, but it also reflects the heuristic choice corresponding to the foreground-background ratio, which is
contained in the first term of local energy Eq. (15).

The steps of the abovementioned ant colony optimization algorithm can be presented as follows:

Step 1: Initialize the pixels’ pheromone values. The ants visit the proper foreground pixels in parallel,
and each visiting process is treated with STEP iterations.

Step 2: The solution is computed by an ant, using Eq. (16).

Step 3: Local pheromone update occurs

sðx; lnÞ ¼ ð1� qÞ � sðx; lnÞ þ q� s0 (18)

where s0 is the initialized value.

Step 4: Global pheromone update occurs

sðx; lnÞ ¼ ð1� aÞ � sðx; lnÞ þ a� Dsðx; lnÞ (19)

where

Dsðx; lnÞ ¼
1

UðxgÞ if ðx; lnÞ 2 xg

0 otherwise

8<
: (20)

The proposed multi-moving object detection approach using the ant colony optimization algorithm is
based on the MAP-MRF framework, as presented in Algorithm 1. Fig. 2 shows the block diagram of the
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proposed moving object detection approach. The pixels classified as the foreground are used to update the
foreground model �f , and all the pixels are used to update �b to allow the consideration of the variations in
the scenes.

6 Experimental Results and Analysis

In this section, to evaluate the performance of the proposed multi-moving object detection algorithm, we
present a set of experiments performed on the published and available CDW-20121 datasets and the video
sequences devoted to the background/foreground segmentation employed in this study. The system
configuration for the experiments is as follows: 2.80 GHz Intel(R) Core(TM) i7-8400U processor with
16 GB RAM, and the programming language is MATLAB 2018a. For a fair comparison, the values of T
(Eq. (3)) and r of the Gaussian distribution are chosen as 1.0 � 10−5 and 2, respectively, and they are
fixed during our experiments.

This section is divided into three parts: 1) In the first part, we provide the qualitative analysis results
pertaining to the CDW-2012 datasets with those of other existing background subtraction methods. 2) In
the second part, we present the quantitative evaluation on the CDW-2012 datasets with different
quantitative rules; 3) In the third part, to verify the validity of our algorithm in the real world, the
algorithm is applied to the considered video sequences.

The performance of the proposed multi-moving target detection algorithm can be analysed from both
qualitative and quantitative aspects. The qualitative analysis is mainly determined by the human visual
perception but is subjectively influenced by the individuals. Different people draw different conclusions
from different angles. Therefore, this approach is not conducive to the fairness of the algorithm
evaluation, and it can only be used as an evaluation reference for the algorithm performance. The
quantitative analysis is a superior evaluation of the algorithm performance through certain rules or
quantitative criteria. The five criteria [35,36], that is, the precision, recall, F-measure, true positive rate
(TPR), and false positive rate (FPR) are used to evaluate the detection results and ground truth:

Precision ¼ TP

TP þ FP
; Recall ¼ TP

TP þ FN

F‐measure ¼ 2

1=Precisionþ 1=Recall

TPR ¼ TP

TP þ FN
; FPR ¼ FP

FP þ TN

where TP (true positives), TN (true negatives), FP (false positives), and FN (false negatives) denote the
number of positive samples correctly detected as positive samples, number of negative samples correctly
detected as negative samples, number of negative samples incorrectly detected as positive samples, and
number of positive samples incorrectly detected as negative samples, respectively.

To validate the proposed method, different algorithms are used, including 1) a Gaussian mixture
containing five-components [14] (5-MoG); 2) non-parametric kernel density estimator with a fixed
bandwidth matrix [8] (FB-KDE); 3) probabilistic superpixel Markov random fields [37] (PSP-MRF); 4)
low memory and non-parametric based background subtraction algorithm [10] (LMBS); 5) generalized
fused lasso [28] (GFL) and 6) background-foreground interaction [4] (BFI). The experimental results for
these methods and our method are presented in Figs. 3–10 and Tabs. 1–4. To verify the robustness and
accuracy of our algorithm, we choose several complex dynamic scenes in the datasets, which makes the
selected scene more similar to the real-world scenes. The performance of the approach is evaluated by

1http://www.changedetection.net/
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Figure 4: ROC curves under different video categories: (a) “shadow” category, (b) “camera jitter” category,
(c) “dynamic background” category, (d)“illumination changes” category
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Figure 5: P-R curves for the different video categories: (a) “shadow” category, (b) “camera jitter” category,
(c) “dynamic background” category, (d)“illumination changes” category
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Figure 6: Moving object detection results for the video sequence Waving Tree: (a) original frame, (b)
ground truth, (c) 5-MoG, (d) FB-KDE, (e) PSP-MRF, (f) LMBS, (g) GFL, (h) BFI, (i) our approach
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some typical complex dynamic scenes of the shadow category, camera jitter category, dynamic background
category and illumination changes category in the video sequences. Each category contains four or six video
shots, which make the algorithm evaluation datasets richer and closer to the real world.

Frame 
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(a) (c) (d) (e) (f) (g) (i)(h)(b)

Figure 7: Moving object detection results for the video sequence Water Surface: (a) original frame, (b)
ground truth, (c) 5-MoG, (d) FB-KDE, (e) PSP-MRF, (f) LMBS, (g) GFL, (h) BFI, (i) our approach
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Figure 8: Moving object detection results for the video sequence Indoor Shadow: (a) original frame, (b)
ground truth, (c) 5-MoG, (d) FB-KDE, (e) PSP-MRF, (f) LMBS, (g) GFL, (h) BFI, (i) our approach
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Figure 9: Moving object detection results for the video sequence Outdoor Illumination Changes: (a) original
frame, (b) ground truth, (c) 5-MoG, (d) FB-KDE, (e) PSP-MRF, (f) LMBS, (g) GFL, (h) BFI, (i) our
approach
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6.1 Qualitative Analysis
In recent years, multi-moving object detection algorithms have developed rapidly and performed well on

various types of videos. The published and available change detection.net2 datasets constitute a benchmark
database and are popularly used for moving object detection/segmentation in dynamic scenes including
sudden illumination changes, environmental conditions, background/camera motion, shadows, and
camouflage effects. This dataset contains 11 video categories with 4 to 6 videos sequences in each
category. Fig. 3 shows the moving object detection results of the four complex scenes in the published
available datasets. The first row shows a fountain video sequence in the dynamic background category.
This scene is challenging for the background model because the motion caused by the fountain in the
background is very dramatic. Only the proposed method effectively tackles the challenging problems, and
the 5-MoG, FB-KDE, PSP-MRF, and LMBS methods are susceptible to the dynamic background, which
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Figure 10: Histogram of the average precision, recall and F-measure values for our datasets: (a) Waving
tree, (b) Water surface, (c) Indoor shadow, (d) Outdoor illumination changes

2http://www.changedetection.net/
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causes a false detection of the detection results. The second row shows a traffic video sequence in the camera
jitter category. In this scene, the camera shakes slightly and the branches shake because of the strong wind.
All the methods demonstrate a satisfactory performance in terms of the detection of the moving objects with a
large resolution; however, when detecting the targets with a small resolution, the contours detected by our
method are clearer. The third row shows a bus station video sequence in the shadow category. This
sequence involves a large shadow area. The proposed method in this case can completely detect the
moving target without losing the target information. The four row shows a browse video sequence in the
illumination changes category. In this scene, background changes due to outdoor sunlight and indoor
lighting. The GFL, BFI and the proposed method demonstrate a satisfactory performance without losing

Table 1: Average precision, recall, F-measure and FPS values for the “Shadow” category

Method Precision Recall F-measure FPS

5-MoG [14] 0.65 0.55 0.596 15

FB-KDE [8] 0.71 0.79 0.748 86

LMBS [37] 0.80 0.85 0.824 54

PSP-MRF [10] 0.83 0.88 0.855 30

GFL [28] 0.88 0.92 0.890 18

BFI [4] 0.90 0.89 0.895 21

Proposed 0.89 0.95 0.919 25

Table 2: Average precision, recall, F-measure and FPS values values for the “Camera Jitter” category

Method Precision Recall F-measure FPS

5-MoG [14] 0.61 0.79 0.688 12

FB-KDE [8] 0.70 0.80 0.747 80

LMBS [37] 0.81 0.83 0.820 50

PSP-MRF [10] 0.83 0.88 0.854 26

GFL [28] 0.87 0.92 0.894 15

BFI [4] 0.88 0.90 0.890 19

Proposed 0.89 0.88 0.888 18

Table 3: Average precision, recall, F-measure and FPS values values for the “Dynamic Background” category

Method Precision Recall F-measure FPS

5-MoG [14] 0.60 0.64 0.619 19

FB-KDE [8] 0.68 0.77 0.722 90

LMBS [37] 0.85 0.83 0.840 66

PSP-MRF [10] 0.89 0.85 0.870 36

GFL [28] 0.87 0.91 0.889 26

BFI [4] 0.87 0.90 0.885 23

Proposed 0.88 0.91 0.895 30
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the target information. Fig. 3 shows that the proposed algorithm exhibits a superior performance compared to
that of the other six existing methods.

6.2 Quantitative Evaluation
In addition to the quantitative analysis, we also quantitatively evaluated our method on the available

datasets. The human visual perception is the best evaluator of any vision system, but it lacks in terms of
the quantitative performance assessment. Hence, the aim of this part was to compare the existing methods
in terms of the five criteria in different complex scenarios. The average precision, recall, F-measure and
FPS values for the “shadow”, “camera jitter”, “dynamic background” and “illumination changes”
categories are listed in Tabs. 1–4 respectively. The precision and recall values in some cases exhibit
contradictory trends, and the F-measure is the weighted harmonic average of the precision and recall.
When A higher F-measure corresponds to a more effective test method. From the scores in Tabs. 1 and 3,
the average precision, recall and F-measure of our methods are superior to those of the other six methods.
The precision and recall scores for the proposed approach exhibit an increase of 0.01 and 0.03,
respectively, compared to those of the GFL method in Tab. 1, and the proposed method demonstrates the
most superior performance in terms of the F-measure (0.919). In the “camera jitter” category, due to the
high frequency of the scene changes, the performance of our method is slightly lower than those of the
GFL [28] and BFI [4]. Compared with the precision and recall scores of the 5-MoG and FB-KDE
methods listed in Tab. 2, our method exhibited significantly increased values by 0.28 and 0.09,
respectively. In the “dynamic background” category, compared with the non-parametric methods
(FB-KDE [8] and LMBS [37]), our method exhibited increased precision scores by 0.20 and 0.03,
respectively, and the recall scores were increased by 0.14 and 0.08, respectively. We also compared our
method with the probabilistic model (PSP-MRF [10]) and fast parametric-flow algorithms (GFL [28] and
BFI [4]). The proposed method outperformed the three competing methods by 0.025, 0.006 and 0.010 in
terms of the F-measure, respectively. From the scores in Tab. 4, the average precision, recall and
F-measure of our methods are superior to those of the other six methods. Compared with the GFL [28],
BFI [4] methods, our method exhibited increased precision scores by 0.01 and 0.02, respectively, and the
recall scores were increased by 0.01 and 0.01, respectively.

To further examine the quantitative performance of our method, the complexity of our method, reflected
by the FPS score is demonstrated in Tabs. 1–4. The FPS of our method is lower than those of the FB-KDE
[8], LMBS [37], and PSP-MRF [10] methods, but our method is better than 5-MoG [14], GFL [28] and BFI
[4] because our method achieves more accurate results.

For a detailed analysis, we also evaluated the effectiveness of the proposed algorithm by two typical
performance evaluation methods: the ROC curve and P-R curve [38–41]. Fig. 4 displays the ROC curves

Table 4: Average precision, recall, F-measure and FPS values values for the “Illumination Changes” category

Method Precision Recall F-measure FPS

5-MoG [14] 0.70 0.74 0.719 23

FB-KDE [8] 0.78 0.77 0.775 107

LMBS [37] 0.86 0.85 0.855 63

PSP-MRF [10] 0.89 0.88 0.885 43

GFL [28] 0.91 0.90 0.905 22

BFI [4] 0.92 0.90 0.910 23

Proposed 0.93 0.91 0.919 28
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for the different video categories, corresponding to the proposed methods and other existing methods.
Compared with the other competing methods, our detection algorithm demonstrated the best mean TPR
scores of 0.926. The ROC curve visually shows the relationship between the FPR and TPR. The closer
the curve is to the upper left, and the larger the area is under the ROC curve, the better is the
performance of the proposed algorithm. Fig. 5 shows the P-R curve for the different video categories,
corresponding to the proposed methods and other existing methods. Compared with the GFL methods,
our methods improved the mean precision scores by 0.013, 0.011 and 0.008, and the mean recall scores
by 0.020, 0.019 and 0.011. The P-R curve visually shows the relationship between the precision and
recall. The closer the curve is to the upper right, the better is the robustness of the proposed algorithm.
These measures indicate that the proposed method works well, exhibited superior detection performance
compared to that of the other six existing methods.

6.3 Results for Our Datasets
To demonstrate the real-life application of the proposed algorithm and the consistency of the detection

effect on long as well as short video sequences, the performance evaluation of the approach on our datasets is
presented in this section. In terms of the time constraint, we show the detection results on four video
sequences. The selected video sequences are: (1) waving tree, (2) water surface, (3) indoor shadow, and
(4) outdoor illumination changes. In Figs. 6–9, the number of different frames in the scene video
sequences is shown on the leftmost axis. The first column corresponds to the original image in the
sequences, the second column shows the ground truth in the sequences, the third column corresponds to
the results detected using the 5-MoG method, the fourth column illustrates the results derived using FB-
KDE method, the fifth column shows the detection results obtained using the PSP-MRF method, the sixth
column shows the results by the LMBS method, the seventh row presents the segmentation results by the
GFL method, the eighth column shows the detection results obtained using the BFI method, and the last
column shows the detection results obtained using our method.

The first sequence shows a site with swaying trees, rain and varying illumination, which are challenging
aspects for object detection. The waving tree sequence is a long video sequence of 5 min, containing 5863
frames. Fig. 6 shows the results obtained using by the proposed algorithm compared with that of the other
existing methods. Evidently, since the distribution of the natural dynamic texture is complex and variable,
parametric methods such as the mixture of Gaussian approachs and non-parametric methods with the
fixed bandwidth matrix handled the dynamic texture of the scene in an inferior manner. However,
considering the effects of the movement of the tree leaves, rain and shadows, the proposed algorithm
overcame such challenges and detected the moving person accurately.

The second sequence involved two people walking, who were extremely far from the camera across, and
a car moved in the frame rapidly. The water surface sequence is a short video sequence of 25 s, containing
503 frames. Two challenges for detection existed: 1) The natural dynamic texture containing water waves,
swaying trees, and shadows of the objects, and 2) the low resolution of the two people. As shown in Fig. 7,
the proposed algorithm overcame the two difficulties and accurately detected the car moving across the frame
and the person walking far from the camera.

The algorithm was tested on the third sequence in the presence of a global illumination and indoor
shadow. The indoor shadow sequence is a short video sequence of 20 s, containing 396 frames. Three
people moved in the room. The results indicate that the 5-MoG and FB-KDE methods can solve the
challenge of the varying illumination to a certain extent but cannot recognize the objects in a shadow
effectively. Our method deals with the varying illumination and shadow adaptively.
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An outdoor surveillance scene was considered in the fourth sequence, involving clouds, bushes and
global illumination changes. The outdoor illumination change sequence is a long video sequence of
4 min, containing 3396 frames. Fig. 9 also shows that our method outperforms the other methods.

The proposed scheme was successfully tested on both the long and short video sequences, as shown in
Figs. 6–9. In the waving tree video sequences, the effects of the 5-MoG and FB-KDE methods was
considerably affected by the swaying leaves, and the LMBS and GFL methods could not detect the
moving object clearly. The proposed method overcome all the shortcomings of the above mentioned six
methods and could accurately detect the moving object. Furthermore, the resolution of the moving target
was incredibly low. The GFL and BFI methods overcome the influence of the dynamic scene, and the
detection accuracy of the moving target is also considerably improved; however, compared to that
obtained using our method, part of the information of the detecting object was missing, as shown in
Fig. 7. The LMBS method could detect the target object, but the information of the target object was
critically missing. The proposed method can overcome the shortcomings of the other methods and
accurately track the target object, as shown in Fig. 8. Our method could segment occlude the pedestrians
and was less susceptible to illumination, as shown in Fig. 9. The shortcoming of this method is that it
cannot accurately identify the number of pedestrians and the time complexity is high. At the same time,
the key objective of future work is to improve the speed of the proposed algorithm.

To understand the global results, we analysed the performance of these algorithms for four video
sequences in terms of the average precision, recall and F-measure values. It was observed that the F-
measure obtained by the proposed method increased to 0.92 on our datasets, compared to the values of
0.60, 0.75, 0.82, 0.85, 0.89 and 0.90 pertaining to the 5-MoG method, FE-KDE method, LMBS method,
PSP-MRF method, GFL method and BFI method, as shown in Fig. 10(a). In the water surface dynamic
scene (Fig. 10(b)), although the recall rate of the proposed detection method was slightly lower than that
of the GFL method, the F-measure of the proposed method was 0.92, and that of the GFL method was
only 0.89. The average precision, recall and F-measure values of the proposed method were the most
stable and relatively high, as shown in Figs. 10(c) and 10(d). The detection accuracy of the proposed
algorithm was 0.98, which is 0.33 higher than that of the 5-MoD method, as shown in Fig. 10(d). In
general, from the result analysis discussed above, the proposed method exhibits a better performance in
the dynamic and challenging scenes.

7 Conclusion

An effective algorithm named the improved non-parametric method in the Markov random field is
proposed in this paper to help realize object detection in complex surveillance scenes. The proposed
method has several significant contributions that are in contrast from those of existing background
subtraction methods.

For modelling the background, an adaptive kernel density estimation method based on the variable
bandwidth is presented to realize adaptive detection. A Markov random field framework is improved
based on the model, and the optimal solution is acquired by using an improved ant colony algorithm. We
present the detailed steps to implement the ant colony algorithm in the Markov random field. A series of
experiments were conducted considering complex scenes, and the results indicated that the proposed
method can adapt to the dynamic changes and improve the detection results. The superiority of the
proposed method was established in terms of three performance evaluation measures, namely, the
precision, recall and F-measure.

In the future work, for reducing the computation complexity, more accurate varying kernel density
estimators can be defined for the probability estimation, and other optimization methods can be estimated
for maximizing the a posterior solution. Furthermore, it may be interesting to further research the object
detection in dynamic scenes by using deep learning methods and RGB-D data.
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