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Abstract: In this study, a new bond-based peridynamic model is proposed to
describe the dynamic properties of ceramics under impact loading. Ceramic mate-
rials show pseudo-plastic behavior under certain compressive loadings with high
strain-rate, while the characteristic brittleness of the material dominates when it is
subjected to tensile loading. In this model, brittle response under tension, soften-
ing plasticity under compression and strain-rate effect of ceramics are considered,
which makes it possible to accurately capture the overall dynamic process of cera-
mics. This enables the investigation of the fracture mechanism for ceramic mate-
rials, during ballistic impact, in more detail. Furthermore, a bond-force updating
algorithm is introduced to perform the numerical simulation and solve the derived
equations. The proposed model is then used to analyze the dynamic response of
ceramics tiles under impact loading to assess its validity. The results of damage
development in ceramic materials are calculated and compared with the experi-
mental results. The simulation results are consistent with the experiments, which
indicates that the proposed rate-dependent peridynamic model has the capability
to describe damage propagation in ceramics with good accuracy. Finally, based on
a comparison between simulation and experimental results, it can be concluded
that the damage results are in better agreement with experimental results than
non-ordinary state-based peridynamic method.
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1 Introduction

Ceramic materials are known to work well in protective armor systems such as armored vehicles, body-
armor for soldiers, and spacecraft modules. Specifically, they provide effective protection against the
penetration of high-speed projectiles. Their unique low-density and high compressive-strength make them
also suitable for lightweight protective structures [1]. However, ceramics are inherently brittle and exhibit
low fracture-toughness compared to metals. In addition, extensive fragmentation of the ceramic material
occurs when subjected to impact from a projectile at high speed. It is necessary to investigate this
fragmentation process.
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The failure events are not necessarily localized to the immediate impact zone [2]. When a projectile
penetrates a ceramic plate, the compressive shock waves are generated at the projectile/ceramic interface,
and propagate from the front surface to the rear surface of the tile. When the compressive waves reach
the rear surface of the ceramic tile, they will turn into tensile waves due to the reflection at the free
surface, and initial cracks occur because of the interaction of high tensile stress. Then, the ceramic tile
fractures due to nucleation, propagation, and interaction of the cracks during the penetration.
Consequently, there is a comminuted fracture zone in the ceramic tile, which has the shape of a conoid
[2]. To design and optimize armor applications, it is essential to have a deep understanding of the
dynamic responses of ceramics under impact loading, especially their fracturing behavior.

Until now, many studies that involved experimental observation, theoretical considerations and
numerical simulations were conducted to improve the understanding of the dynamic behavior of brittle
materials. However, these experimental observations were limited by the accuracy of measurements over
very short periods as well as the ability to link experimental observations with meaningful interpretations
[1]. Furthermore, theoretical considerations can currently only solve certain simple scenarios and models.
Therefore, several researchers developed different numerical techniques to model and predict the dynamic
response of brittle materials. Several computational methods can now capture the characteristics of
dynamic fracture in brittle materials-but each method has their benefits and drawbacks [3].

Hughes et al. [4] used the finite element method to solve a class of contact-impact problems, which
requires finding the solution to a nonlinear algebraic system of equations. In classical continuum
mechanics, the material properties are assumed to remain continuous. Crack propagation plays an
important role in the failure analysis of brittle materials [5]. However, the spatial partial derivatives
become unsuitable along the crack, where the displacement field is discontinuous [6]. Currently-available
numerical continuum methods, which use a mesh or grid structure (such as Finite Difference Methods
(FDM), Finite Element Method (FEM)) cannot handle discontinuous problems effectively. Thus, modified
methods like the Extended Finite Element Method (XFEM) were developed to deal with discontinuous
problems. The XFEM, developed by Belytschko et al. [7] and Moёs et al. [8], allows cracks to pass
through the finite element. This is a relatively accurate method to model cracks of arbitrary geometries
using the finite method without remeshing. However, it fails to predict experimentally-observed crack-
propagation speeds without adjustment of the energy release rate. The mesh-free methods to solve such
problems, e.g., the Smoothed Particle Hydrodynamics (SPH) and Element-free Galerkin (EFG), are more
efficient but may suffer from instabilities and low efficiency when handling more complicated problems.
Although significant progress has been made in computational mechanics, the simulation of the dynamic
response of ceramics has been a great challenge for a long time. This is due to the complexity of the
involved failure mechanism.

In recent years, a non-local continuum theory, called peridynamics (PD), was proposed by Silling [9] to
handle discontinuous problems such as the crack propagation and damage. In contrast to the classical
continuum theories, peridynamics reformulates the basic equation of continuum in the form of integration
rather than differential equation, which can be better suited to simulate discontinuities. In PD theory, the
solid domain is discretized into material points, and the material point interacts with other material points
within a finite distance called horizon—a domain associated to the material point. Peridynamic
formulations can be divided, generally, into two distinct branches, bond-based peridynamics and state-
based peridynamics.

Most past research effort concentrated on the state-based formulation because it is possible to use very
general material models and accommodate any constitutive relations, using a classic continuum framework.
A non-ordinary state-based peridynamic model was developed for the fracture analysis of brittle materials, in
which the modified Johnson Holmquist (JH-2) model [10] was used to characterize the plastic softening
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behavior of ceramic materials [11]. Wu et al. [12] proposed a non-ordinary state-based peridynamic model to
investigate the failure and damage of concrete materials under impact loadings. An improved stated-based
peridynamic lattice model (SPLM) which coupled elasticity, plasticity and damage was proposed [13].
The improved SPLM could simulate concrete structures accurately and efficiently with less computational
effort. Gu et al. [14] presented an effective approach to integrate peridynamics with an open source
software. This integrated method can capture the complex process of crack propagation of elastoplastic
material by combining the state-based peridynamic program with 3D plastic constitutive models. State-
based peridynamics was also adopted to study the thermal shock problems in ceramics, including crack
propagation [15]. However, in the case of both quasi-static and dynamic loading, the non-ordinary state-
based peridynamic method reveals numerical oscillations, especially when severe deformation gradients
were present due to cracks [16]. The zero-energy mode is also associated with the non-ordinary state-
based peridynamic method, which would lead to the inaccurate calculation of the deformation gradient.

The bond-based peridynamic method is proved to be stable when simulating the crack-growth problems.
While the bond-based peridynamic formulation is generally more suitable for brittle fracture analysis, it has
also been successfully used to study dynamic fracture in brittle materials [17]. Gerstle et al. [18] developed a
new model using bond-based peridynamics by adding pairwise peridynamic moments to simulate linear
elastic materials with a varying Poisson’s ratios. The new model is called the “micropolar peridynamic
model” and can simulate damage and cracking in concrete structures using an implicit rather than an
explicit algorithm. This model can efficiently explain a number of different microcracking (damage) and
fracture mechanisms observed in concrete. The peridynamic theory has also been applied successfully to
simulate impact damage and failure analysis in composite laminates [19,20]. Modeling of fracture
problems related to crack growth in brittle materials represents an active ongoing challenge in
computational mechanics [21]. It is required that the computation algorithm has the capacity to deal with
the fracture pattern and crack-propagation paths in the ballistic application to produce accurate results
[11]. Ha et al. [3] reproduced various characteristics of dynamic brittle fractures like crack-branching,
crack-path instability, and asymmetries of crack paths, using the bond-based peridynamic model. In many
applications, it is necessary to discrete the computational model with changing horizon sizes. Spurious
wave reflections occur in original peridynamics when use different horizon sizes [22]. A new
peridynamic approach called dual-horizon peridynamics (DH-PD) was developed to solve the issue of
varying horizons and ghost force [22,23]. The capabilities of DH-PD to deal with the issue of spurious
wave reflection, multiple material problems and crack stability problems on random particle arrangement
were proved [22]. Later, a dual-support smoothed particle hydrodynamics (DS-SPH) inspired by the DH-
PD is developed [24]. The DS-SPH can compute the unbalanced interactions between the particles with
different smoothing strengths correctly. Researchers also investigated the ballistic problems by combining
the peridynamics with other numerical methods, and good progress has been made so far. Houfu [25]
accomplished coupling the peridynamic model with a modified SPH model to simulate the fragmentation
for buried explosive loads, and the simulation results generally agree with the experimental data. Bo et al.
[26] proposed an explicit dynamics implementation of the bond-based peridynamic formulation to
simulate the dynamics of the fracture-process via the Discontinuous Galerkin method, using the classic
peridynamic governing equation. This model was capable to capture the 3D dynamic crack process in
brittle materials effectively. Sun et al. [27] presented an approach which coupled the peridynamic theory
with the numerical substructure method (NSM) to model structures with local discontinuities. This
approach takes advantage of the strong capacity of the peridynamics for dealing with discontinuities and
high computational efficiency of the NEM. Giannakeas et al. [28] proposed a numerical model by
combining the finite element method and peridynamics to simulate cracks in ceramics after severe
thermal shock. A mesh-free method known as peridynamic differential operator (PDDO), of which the
concept comes from peridynamic theory, was adopted to investigate incompressible inviscid fluid flow
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with moving boundaries [29]. There are many attempts to overcome the limitation of Poisson’s ratio for
original bond-based peridynamics [30,31]. For example, Wang et al. [30] proposed a numerical method
that takes into account the interacting forces between two material points along the horizon, which are
not only related to bond stretching but also to the rotation of the conjugated bond angles. The author also
developed a coupled thermo-mechanical bond-based peridynamic model to simulate thermal fracturing in
ceramic nuclear systems [32]. Furthermore, fatigue is a major cause of failure in many material structures
and prediction of fatigue crack propagation is a challenging problem. Bazazzadeh et al. [33] adopted
bond-based peridynamics to simulate fatigue crack propagation. Yang et al. [34] proposed a new damage-
model based on the bond-based peridynamic formulation to investigate crack propagation in concrete.
Cheng et al. [4] proposed a bond-based peridynamic model to analyze the dynamic fracture of shale
material. The bond-based peridynamic model was also introduced to simulate dynamic brittle fracture in
functionally graded materials [35]. It can be seen that bond-based peridynamics has the capacity to
capture the dynamic fracture of brittle Materials accurately.

The capacity of the numerical method to simulate impact problems of brittle materials also depends
heavily on the constitutive models. Suitable constitutive relations are needed to describe the fracture and
damage properties of brittle materials accurately. In the last two decades, a few constitutive relations have
been proposed to simulate and predict the fracture characteristic of brittle materials. Fahrenthold [36]
provided a constitutive model that includes a continuum damage mechanics description to simulate the
impact of brittle materials. The model was used to estimate the effects of both damage accumulation and
brittle fracture on the penetration of ceramic by simulating the penetration of spherical projectiles of a
steel plate. Rajendran et al. [37] proposed a constitutive model based on an internal state variable to
describe the shock and high strain rate properties of some ceramics under impact loading conditions.
Simha [38] developed a computation model based on the bar impact and plate impact data for a
penetration-response test of AD-99.5 alumina. Deshpande et al. [39] presented a mechanism-based
constitutive model for the inelastic deformation and fracture of ceramics, considering the effects of
microstructural parameters. One of the most widely used constitutive models to simulate the fracture
response of brittle materials under impact loads was proposed by Johnson et al. [10]. This model, called
JH-2 [10], considers strength softening, damage accumulation and rate-dependence of ceramic materials,
and was fairly accurate in predicting the dynamic behavior of ceramics. In the classical JH-2 model,
ceramics are treated as elastic materials before damage occurs, and the material begins to soften when the
damage begins to accumulate and they are regarded as intact material whose strength varies with the
cumulative damage. Because the bond-based peridynamic method can naturally solve the discontinuity
associated with cracks, the aim of this work is to develop a new bond-based peridynamic model that
takes into account strength softening, damage accumulation and the rate-dependence, which were
described in classical JH-2 model, of brittle materials for the fracture analysis.

In this paper, we first construct a rate-dependent bond-based peridynamic formulation for ceramic
materials. The Prototype Microelastic Brittle (PMB) model, which was introduced in bond-based
peridynamic theory by Silling [40], assumes that the bond between material points breaks, when stretched
beyond a predefined elastic limit. In this work, the PMB model is modified to take into account the
unique pseudo-plastic properties of each bond under compression. In this model, the different responses
under tension and compression of ceramics are considered, and tensile damage and compressive damage
are shown respectively. Finally, numerical examples are presented to verify the implementation with the
analytical solutions. The proposed rate-dependent bond-based peridynamic formulation is used to
simulate the crack evolution and damage process of the ceramics.

This paper is organized as follows: in Section 2, we briefly review the mathematical formulation of
bond-based peridynamics, especially the PMB model. In Section 3, the dynamic responses during each
stage of the brittle materials are described in detail. Furthermore, the rate-dependent bond-based

154 CMES, 2020, vol.124, no.1



peridynamic model is introduced to describe the dynamic response of ceramics under impact. Then, the
numerical techniques that include the constitutive update algorithm and contact algorithm are given in
Section 4. In Section 5, the numerical implementation and examples are provided to verify the proposed
peridynamic model for ceramics, and the results are compared with the experiment. Finally, the
conclusions are summarized in Section 6.

2 Formulation of Bond-Based Peridynamics

Bond-based peridynamics is a nonlocal numerical method, which reformulates the basic equations of
motion in integral form, instead of a differential formulation. Thus, it can be used to analyze the dynamic
mechanical behavior of brittle materials, which is inherently discontinuous. In bond-based peridynamic
theory, a continuum solid Ω is separated by a set of individual material points xi with associated mass
density ρi and volume Vi, where i = 1, 2, …, n is the index of each material particle. A material particle
xi only interacts with particles xj within a finite distance δ, which makes up a region called Horizon Hxi
of xi, see Fig. 1. Interaction between material points is described directly by a pairwise force function f of
the bond, which contains all of the constitutive information associated with the material. The equation of
motion for a material point xi at time t in the reference configuration is given as

qi€u½xi; t� ¼
R
Hxi

fðg; nÞdVj þ b½xi; t� 8x 2 R (1)

where u[xi, t] and ü[xi, t] denote the displacement vector field and accelerating vector field of the material
point xi at time t respectively, and b[xi, t] is the body force density. Vj denotes the volume of material point xj
within the horizon of xi, and the pairwise bond force vector is a function of the relative positive vector ξ in the
reference configuration and the relative displacement vector η in the current configuration, which are
expressed, respectively, as

n ¼ xj � xi; g ¼ u½xj; t� � u½xi; t� (2)

Here, ξ + η is the current relative position vector of the material point xi and xj, and, according to bond-
based peridynamic theory, for the PMB model, the pairwise force function f(ξ, η) can be expressed as

fðg; nÞ ¼ cðn; dÞsðg; nÞ nþ g
nþ gk k (3)

Here, ξ represents the original bond-length in the reference configuration, and η the current length of the
bond after deformation. Eq. (3) implies that the pairwise force vector is parallel to the current relative position
vector. c(ξ, η) is the micro-elastic modulus function and represents the stiffness of the pair-wise bond, which
can be expressed as c(ξ, δ) = c(0, δ)g(ξ, δ). The accuracy of the simulation is highly dependent on the micro-
modulus function c(ξ, δ), which contains all information about the material. In the original PMB model, the

Figure 1: Illustration of the bond-based peridynamic model
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function c(ξ, δ) is reduced to a constant c(0, δ) = 18 K/πδ4 for 3D case, in which K is the bulk modulus of the
material, by simplifying the kernel function g(ξ, δ) to [17]

gðn; dÞ ¼ 1 n � d
0 n > d

�
(4)

Moreover, s(η, ξ) is the scalar bond stretch, which is defined as

sðg; nÞ ¼ gþ nk k � nk k
nk k (5)

For the PMB model, it is assumed that the bond breaks when the corresponding stretch s exceeds the
critical stretch s0 and no longer sustains a force. The linear damage model is shown in Fig. 2. The critical
stretch s0 of the PMB material is determined by the fracture energy of material G0. It is given by

s0 ¼
ffiffiffiffiffiffiffiffiffi
5G0

9Kd

r
(6)

The damage at a material point is defined as [40]

’ðx; tÞ ¼ 1�
R
Hx
lðx; t; nÞdVnR

Hx
dVn

(7)

Here, μ(x, t, ξ) is a history-dependent scalar function that takes on values of either 1 or 0, and expressed as

lðx; t; nÞ ¼ 1 if sðt0; nÞ for all 0 � t0 � t
0 otherwise

�
(8)

It is worth noting that 0 ≤ μ ≤ 1, with 0 representing the intact material, while 1 represents complete
disconnection of a point with all of the points within its horizon [40].

3 Basic Formulation of the Rate-Dependent Peridynamic Model

In this Section, we first summarize the damage and fracture process for ceramic materials under dynamic
loading. Then, the rate-dependent bond-based peridynamic model for ceramics is proposed to describe the
dynamic response.

Figure 2: Bond force as a function of bond stretch in the PMB material model [40]
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3.1 Dynamic Response of Ceramics During Ballistic Penetration
Composite armor consists mainly of a ceramic front plate and a ductile back plate such as steel,

aluminum nitride, or fiber reinforced composite. The ceramic tile plays an important role in making
armor bulletproof. The reason why a ceramic tile can be bulletproof is because it can absorb most of the
kinetic energy of an armor-piercing projectile.

The energy absorption mechanism can be divided into three stages: Firstly, the initial stage, when an
armor-piercing projectile hits a ceramic tile, it produces a strong compression wave on the projectile/
ceramic interface area, which generates compressive stress both inside the projectile and the ceramic
plate. The compressive stress increases quickly due to the high hardness and compressive strength of
ceramics. Plastic deformation occurs in ceramic tile when the compressive stress exceeds the yield
strength. At this time, initial conical and radial cracking forms in the ceramic tile, which absorbs much
energy. Next, during the erosion stage, the blunt or broken bullet-projectile continues to penetrate into the
ceramic tile and is eroded by the ceramic target simultaneously. Cracks in the ceramic tile begin to
propagate and a successive fragmentation layer forms, which will further absorb the kinetic energy of the
projectile. Finally, during the comminuted conoid stage, with the penetration of the projectile, the cracks
in the ceramic tile continue to propagate and form a ceramic comminuted conoid, the apex of which is
the tip of the projectile. The comminuted conoid pushes on the ductile back plate and distributes the
impact load over a large area of the ductile back plate, provided the ceramic tile is supported by a ductile
panel. The associated fracture pattern is illustrated in Fig. 3.

Considering the process described above, it clear that both the initiation and evolution of the cracks in
the ceramics play an important role during the penetration. Ceramics are inherently brittle and have very high
compressive strength, especially under confinement and a high loading-rate, but they have low tensile
strength [41]. The failure mechanism of brittle materials is significantly different under quasi-static
conditions and dynamic loads. In fact, the fracture strength of the brittle materials is highly rate-sensitive,
which increases with increasing strain-rate under compression. Under quasi-static loads, the brittle
material is fractured, or crushed due to micro-cracks, which propagate to form macro-cracks, and almost
no plastic deformation occurs. However, this process represents a unique inelastic response characteristic
that is different from the plastic flow of ductile materials. The unique inelastic behavior of ceramics under
compression can be explained by the micro-crack formation and crystal plasticity [39,42].

To capture this process accurately, we summarize the damage features according to the damage patterns
for different loadings and stages, based on existing research as follows: The penetration mechanism under
impact loading of brittle materials is complex and can be generally divided into three successive loading
stages [43].The three successive stages described above are shown in Fig. 4. The first stage, the elastic

Figure 3: Schematic of the damage for a ceramic target, during penetration by a projectile
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stage, is marked as OB in Fig. 4. The shock waves, which are compressive waves initially, propagate through
the target, and dynamic compressive loading is generated simultaneously. The pressure increases in the
ceramic and may exceed the Hugoniot Elastic Limit (HEL), point B in Fig. 4, which defines the second
stage, the damage stage (see BC in Fig. 4). Important pseudo-plastic behavior, which is different from
ductile materials, can be observed during this period [44]. Then, the material begins to soften with
increasing plastic strain, which allows for gradual decreasing in strength. The shock waves are reflected
and spread, along the thickness of the ceramic plate, to the projectile. The waves become tensile waves
upon reaching the rear surface of the ceramic target and radial cracks occur. Dynamic tensile loads,
caused by the radial cracks, produce extensive fragmentation. A fractured (cone shaped) zone is
generated due to the interaction of the radial cracks with the conical cracks. Different from the
compressive damage, the material fails immediately because the tensile elastic limit is exceeded and
cannot withstand any tensile loads (only compressive loads). The last stage, the fractured stage, is shown
in the CD Section in Fig. 4. The projectile penetrates the damaged ceramic, which fails completely during
this period. The fractured ceramic can withstand compressive loads with constant strength.

To capture the damage process at each stage accurately, it is critical to develop an appropriate and
effective numerical model for brittle materials. Several constitutive models were proposed to describe the
damage characteristics and fracture pattern of brittle materials—see Section 1. In this work, the properties
described above, which were considered in the Johnson-Holmquist (JH-2) model, are taken into account
to develop a rate-dependent bond-based peridynamic model for ceramics. This model considers that the
material begins to soften when the damage starts to accumulate. The proposed model is developed to
capture the pseudo-plastic properties of a ceramic under compression.

3.2 Rate-Dependent Peridynamic Model for Ceramics
The original linear damage model called PMB model in bond-based peridynamic theory is suitable for

brittle materials describing the materials characterized brittle. Ceramic materials are inherently brittle, and it
is known to have a brittle response under tensile loading, but they have an intrinsic strain-softening behavior
under compression. Ceramics can have significant strength after failure under pressure, but the compressive
strength of damaged ceramic is lower than that of the intact ceramic. This characteristic of ceramic materials
under compression can be described as plastic softening behavior. During projectile impact a ceramic
material experiences both tensile loading and compression [42]. Therefore, the plasticity of ceramics such
as strength softening and damage accumulation should be taken into account. These mechanical
properties, which were introduced above, are considered in the bond-based peridynamic constitutive
model (see Fig. 5). Ceramics are generally brittle materials and exhibit brittle behavior under tensile
loading. In other words, the material fails, when the tensile elastic limit is reached—see Section OA in

Figure 4: E�r curve of three stages for brittle materials under compression

158 CMES, 2020, vol.124, no.1



Fig. 5. Hence, the failure mechanism is identical to the PMB model when the bond is stretched. In this work,
the unique pseudo-plastic features of ceramics are considered in the description of the PD bond
under compression—see Section OBCD in Fig. 5. Because the effect of Poisson’s ratio is not significant
for problems that involve dynamic cracks, the response of the materials is mainly governed by
the fracture mechanism here [34], and the correction of Poisson’s ratio is not considered in this model.
The constitutive relations of the bond, under tensile and compressive loading, are given, individually,
as follows:

3.2.1 Tensile Loading
When the bond is stretched, the constitutive relation describing the bonds follows the original PMB

model:

fðg; nÞ ¼ f ðg; nÞ nþ g
nþ gk k (9)

f ðg; nÞ ¼ csðg; nÞ 0 � sðg; nÞ � s0
0 sðg; nÞ > s0

�
(10)

Here, f(η, ξ) represents the scalar-valued pairwise force, c and s0 are parameters that relate to the
material introduced in Section 2. The form of damage, when the bond stretches, is considered in the PMB
model—see Eqs. (7) and (8).

3.2.2 Compressive Loading
When under compressive load, the form of the constitutive relation refers to the JH-2 model, and both

material softening and rate-dependence are considered. The strength of the bond between two material points
is considered via

p ¼ pi � Dðpi � pf Þ; (11)

where D is the accumulate damage of the bond under compression, which is given by

D ¼
P

Dsp
s1 � se

; (12)

in which Δsp is the relative plastic deformation increment during a time step, and sp ¼
P

Dsp represents the
accumulate plastic deformation. s1 is the critical fracture deformation of the bond and se is the elastic

Figure 5: Constitutive relation for each bond
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deformation limit under compression. pi and pf represent the intact strength (D = 0) and fracture strength (D =
1) of the bond, respectively, which are given by

pi ¼ p0ð1þ c ln _sÞ (13)

pf ¼ bp0ð1þ c ln _sÞ; (14)

where p0 is the static strength without considering rate-dependence, and _s is the deformation rate of the bond
without considering rate-dependence. Furthermore, β and γ are material constants. A method to identify these
parameters is shown in Section 3.3. Using Eq. (5), the _s is given by [20]

_s ¼ _g � nþ gð Þ
nk k � nþ gk k (15)

Because the pseudo-plastic behavior of the bond is considered under compression, the pairwise force is
given by

f ¼ cðs� spÞ (16)

3.2.3 Yield Criterion
Note that the force of the bond can never be higher than the current yield strength. However, it can be

lower if unloading occurs. Furthermore, the function is defined to evaluate whether the bond force reaches
the maximum value. This is called the yield condition—referring to the continuum mechanics. It is given by

’ðs; sp; _sÞ ¼ f ðsÞ � pðsp; _sÞ ¼ f � ½1� ð1� bÞD�pi (17)

Using Eq. (17), it can be formulated as follows

’ðf ; sp; _sÞ ¼ f � 1� ð1� bÞsp
s1 � se

� �
pi (18)

Referring to the consistency condition, we can write

_’ðf ; sp; _sÞ ¼ @’

@f
_f þ @’

@sp
_sp ¼ _f þ ð1� bÞPi

s1 � se
_sp ¼ 0 (19)

Here, the second derivative term of s is neglected, implying that the bond force must remain at the yield
strength value to consider any decrease due to softening. Using the time derivative of Eq. (16) as
_f ¼ cð_s� _spÞ, the plastic deformation rate can be found as

_sp ¼ c

c� H
_s; (20)

where H ¼ ð1� bÞpi
s1 � se

.

3.3 Determination of the Parameters
In this Section, we determine the parameters p0, β and γ, which relate to the pseudo-plastic properties

proposed in Section 3.2.2, are introduced. It is assumed that a homogeneous sphere, whose radius equals
to the horizon δ, is subjected to isotropic pressure p (see Fig. 6). During the elastic stage, the bond-force
is f = cs, which satisfies

cs � V � 4
3
pd3¼P � 4pd2 (21)

Then, we can obtain the relation for bond-relative deformation s and the pressure P
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P¼ 1

3
cs � Vd (22)

In the original JH-2 model, intact strength and fracture strength of the materials are given, respectively, as

ri ¼ A
rHEL
PHELð ÞN P þ Tð ÞN (23)

rf ¼ B
rHEL
PHELð ÞM Pð ÞM ; (24)

where A, B, N,M, σHEL and T are material constants (see [10]). For this condition, we assumed previously that
relative deformation of the bond equals to the compressive strain during the elastic stage. Hence, the elastic
compressive limit se can be derived as

se ¼ ri
E

(25)

Here, E is Young’s modulus. Combining Eqs. (22)–(25), the elastic compressive limit se can be obtained,
when reaching the elastic limit. Consequently the compressive strength is

p0 ¼ cse � V (26)

For the proposed model, the reduction factor β, due to the fracture of the material can be calculated using

b ¼ rf
ri

(27)

Because the relative bond deformation is similar to the strain, the deformation-rate factor γ is equal to the
original JH-2 model.

4 Numerical Implementation

4.1 Solving Method
In order to better implement numerical formulations in the program introduced in Section 3, the

computational body is normally discretized into material particles. After the spatial discretization, the
motion equation, Eq. (1), can be replaced by a discretized form:

Figure 6: A sphere under confined pressure
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qi€u
n
i ¼

X
p

f unp � uni ; xp � xi
� �

Vp þ bni (28)

where f is the pair-wise bond force, n is the time-step number, and the subscripts denote the node number
which can be expressed as uni ¼ u xi; tnð Þ. Vp is the volume of node p, which represents the nodes in the
horizon of node i. An explicit central difference-technique is used for the acceleration:

€uni ¼
unþ1
i � 2uni þ un�1

i

Dt2
(29)

Thus, the displacement of material point i at the next time step (n + 1) can be obtained by

unþ1
i ¼ Dt2

q

X
p

f unp � uni ; xp � xi
� �

Vp þ bni

" #
þ 2uni � un�1

i (30)

When the bond stretches, the pair-wise force f can be calculated using Eq. (10). When the bond shortens,
the plasticity of the bond is included, in which case the bond-force updating algorithm is needed to calculate
the compressive bond force. The bond-force updating algorithm will be introduced in Section 4.3. The flow
chart for the calculation is shown in Fig. 7. This flow chart helps clarify the numerical implementation of the
proposed model.

Figure 7: Flow chart for the program implementation
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4.2 Kernel Function
Since the kernel function g(ξ, δ), mentioned in Section 2, describes the effect of a spatial distribution of

the materials on the bond force, the form for the kernel function g(ξ, δ), which is used in this work was
proposed by Huang [17]:

gðn; dÞ ¼ 1� n
d

� 	2
 !2

n � d

0 n. d

8><
>: (31)

4.3 Bond-Force Updating Algorithm
In this part, the bond-force updating algorithm is given to solve the numerical formulations, which takes

into account the pseudo-plastic behavior, when the bond under compression.

To ensure consistency with the yield condition for each incremental time step, the incremental nature of
the computational process is taken into account in this algorithm. Such a procedure is similar to the return-
mapping algorithm. To calculate the real bond force at each stage, we first assume the deformation for a time
step is purely elastic, which can be formulated as:

snþ1 ¼ lnþ1 � lpn
lpn

; (32)

where the subscript n and n + 1 also represent the time step number at times t and t + 1, respectively. ln+1 is the
relative distance of the material points connected by a bond during time increment Δt, and lpn is the permanent
length with existing plastic deformation. The force of the bond at time t + 1 is given by Eq. (33). The
superscript trial is given because of the assumption of pure elasticity. If sn+1 > 0, the bond tends to
become tensile and no plastic deformation occurs. As a result, the actual force is equal to the trial force,
i.e., ft ¼ f trialtþ1 . Otherwise the force should be updated as plastic deformation occurs:

f trialtþ1 ¼ ft þ c � snþ1 (33)

Whether or not plastic deformation occurs depends on substituting the trial bond force into the yield
criterion-as given in Eq. (18). If ’ðf trialtþ1 ; sp; _sÞ < 0, the deformation of the bond is elastic. Otherwise, we
need to calculate the real elastic-deformation increment, the plastic-deformation increment, and the true
force of the bond. Referring to the return-mapping algorithm, the current force of the bond is computed
as below.

Using Eq. (20), the plastic stretch increment Δsp during time increment Δt, can be obtained by

Dsp ¼ c

c� H
_s � Dt (34)

Then, the accumulated plastic damage is given by

D ¼ Dþ Dsp
s1 � s0

(35)

Now, we can calculate the current strength associated with the damage

p ¼ pi � Dðpi � pf Þ (36)

The force of the bond is updated according to Eqs. (37) and (38) until ’ðf ðkÞtþ1; sp; _sÞ < 0 is satisfied, and
the real bond force is given Eq. (39)
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f ð1Þtþ1 ¼ f trialtþ1 (37)

f ðkÞtþ1 ¼ f ðk�1Þ
tþ1 � c � Dsp k ¼ 1; 2; � � � ; n (38)

ftþ1 ¼ f ðkÞtþ1 (39)

A flow diagram for bond-force updating algorithm is shown in Fig. 8.

4.4 Contact Algorithm
For ballistic applications, impact and penetration are the most common dynamic processes [11]. The

contact algorithm used in this work was introduced in [45]. There is initially an interpenetration of material
points after contacting occurs, between the projectile and the target material. The projectile is assumed to be
rigid and is not deformable at any distance, when moving at its own velocity, and the target material is
deformable and governed by the peridynamic equation of motion. The material points inside the projectile
are relocated to their new positions outside the projectile. The new locations are selected to satisfy the
condition for the closest distance to the surface of the projectile. This process is illustrated in Fig. 9, and
will create a contact surface between the projectile and material points at the target at time t.

The velocity of such a material point xi, in its new location at the next time step t+Δt, can be calculated as

�vtþDt
i ¼ �utþDt

i � uti
Dt

(40)

where �utþDt
i is the modified displacement vector at time t+Δt, and uti is the displacement vector at time t, and

Δt is the time increment. At time t+Δt, the contribution of the material point xi to the reaction force, from the
target material to the projectile, FtþDt

i , can be computed as

Figure 8: Flow chart of the bond force updating algorithm
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FtþDt
i ¼ �1� qi

ð�vtþDt
i � vtþDt

i Þ
Dt

Vi; (41)

where vtþDt
i is the velocity vector at the time before relocating the material point xi. Furthermore, ρi and Vi

represent density and volume, respectively. Summation of the contributions of all material points inside the
projectile produces the total reaction-force on the projectile at time t + Δt, which can be expressed as

FtþDt ¼
X
i

FtþDt
i �tþDt

i (42)

where

�tþDt
i ¼ 0 inside projectile

1 outside projectile

�
(43)

5 Numerical Simulations

In this Section, the damage process of the ceramic under different impact loadings is investigated using
the proposed rate-dependent bond-based peridynamic model for brittle material. Firstly, the sensitivity of the
results to variations of the main discretization parameters is analyzed. Then, a numerical example is
presented to validate the feasibility and accuracy of the proposed model for brittle material. Simulations
have been conducted to demonstrate the capability of the proposed rate-dependent bond-based
peridynamic model. The damage characteristic of the ceramics under different impact velocities is
provided to analyze the fracture mechanism of ceramics in more detail. Finally, the numerical result,
using the proposed bond-based peridynamic model, is compared with the experiments. The results of the
proposed bond-based peridynamic model are in better agreement with the experiment than for the non-
ordinary state-based peridynamic method.

5.1 Analysis on Convergence
In this section, a drop-ball test using the proposed rate-dependent peridynamic model is simulated to

analyze two types of convergence: the m-convergence and the δ-convergence. The configuration of the
Al2O3 ceramic plate is 10 × 10 × 1 mm3, see Fig. 10, whose density ρ and Young’s modulus E are 3740
kg/m3 and 310 GPa respectively. The drop ball is steel and assumed to be rigid with a diameter of
2.5 mm and a density of 7800 kg/m3. Initial velocity of 300 m/s is assigned to the drop ball. In the
m-convergence the horizon δ is a constant, and take different values of m = δ/Δx. In this example, we
consider the horizon δ = 2.0 × 10–4 m fixed, and three different values of m and Δx are used as m = 2, 3,
4 and Δx = 1.0 × 10–4, 6.67 × 10–5, 5.0 × 10–5 m respectively, see Fig. 11. The crack pattern on rear
surface of ceramic plate is shown in Fig. 12. For a fixed horizon, when m increases, the crack path is
more obvious and more consistent with the phenomenon described in literature [46]. Since the cone

Figure 9: Relocation of material points inside a target material to represent contact with the impact [45]
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cracks and radial cracks can be captured whenm = 3 or 4, m = 3 is employed for the rest examples in terms of
the computational efficiency.

In the case of δ-convergence, m is fixed while the value of δ is different and the grid spacing Δx = δ/m.
We consider the value m = 3 fixed and take three different values of horizon size δ = 3.0 × 10–4, 1.5 × 10–4,
1.0 × 10–4 m and Δx = 1.0 × 10–4, 5.0 × 10–5, 3.33 × 10–5 m, see Fig. 13. The crack pattern on rear surface of
ceramic plate is shown in Fig. 14. To capture the cone cracks and radial cracks efficiently with less
computational cost, δ = 2.0 × 10–4 m is a good choice with 200 × 200 × 20 particles in this example.

Figure 10: Schematic diagram of the Al2O3 ceramic impact-loading

Figure 11: m-convergence with a fixed horizon d

Figure 12: Crack pattern of ceramic plate (rear surface)
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5.2 Verification
The validation example studied here is presented by Johnson et al. [10] in the JH-2 model. A cube with

sides of 1.0 m is considered, which is characterized as brittle, and displacement in three directions of the
bottom face is constrained, while the four faces on the side are constrained with respect to their normal
directions—see Figs. 15 and 16. A normal displacement is slowly applied to the top face, until it reaches
0.05 m. Then it is slowly released until a zero stress-state is reached. In the peridynamic implementation
in this work, the cube is discretized into 5 × 5 × 5 particles, as given in Fig. 17. The displacement
boundary condition is imposed by prescribing constraints through the material points on the displacement
field of a “fictitious material layer” Rc according to [45]:

u x; tð Þ ¼ U0; for x 2 Rc (44)

The time step Δt = 10–6 s was chosen. For case C, the material was defined as having fractured strength
and allowed to accumulate plastic strain. Furthermore, the comparison of the damage result between this
work and the original JH-2 model is shown for a force vs. displacement, as displayed in Fig. 18. The
response is complex. From points 1 to 2 the material loads elastically until the intact strength is
encountered at point 2. From points 2 to 3 the material flows plastically from the intact strength at point
2 to the fractured strength at point 3. At the same time, the damage goes from D ¼ 0 at point 2 to
D ¼ 1:0 at point 3. From points 3 to 4 the material continues to flow plastically. The loading direction is
reversed at point 4 and material unloads elastically from points 4 to 5. From points 5 to 6 the elastic
unloading continues and unloads plastically from points 6 to 7. The simulation is generally consistent
with the solution in the JH-2 model. Since case C includes the entire process of damage evolution for
brittle materials, considering the rate sensitivity and strain softening, the consistency of the results

Figure 13: d-convergence with a fixed m ratio

Figure 14: Crack pattern of ceramic plate (rear surface)
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Figure 15: Dimensions of the cube

H=1 m

Figure 16: Boundary-condition diagram for the cube

Figure 17: Particle distribution for the validation model
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confirms the validity of the proposed rate-dependent bond-based peridynamic model and its ability to capture
the complete process of damage during loading and unloading. In addition, there is still a slight discrepancy
between simulation and theory. This may be for two reasons: One reason could be that it is due to the fixed
Poisson ratio in the bond-based peridynamic model. Because the structure is under quasi-static loading in this
example, the effect of Poisson’s ratio is clearer. The second reason may be that the identification of the
parameters in Section 3.3 is relatively simple and requires further optimization in the future.

5.3 Drop-Ball Test
In this section, a drop-ball test is modeled using the proposed rate-dependent peridynamic model to

investigate the dynamic response of the ceramic plate under impact loading. Firstly, the crack evolution
of the Al2O3 ceramic plate under impact loading with time is derived to analyze the damage and fracture
pattern of ceramics. Then, different damage patterns under different impact velocities are investigated.

5.3.1 Initiation and Propagation of Cracks
As shown in Fig. 10, the configuration of the Al2O3 ceramic plate is 10 × 10 × 1 mm3, whose density ρ and

bulk modulus K are 3700 kg/m3 and 231 GPa respectively. The drop ball is steel and assumed to be rigid with a
diameter of 2.5 mm and a density of 7800 kg/m3. Impact velocity of the drop ball is assigned to be 300 m/s.

In the following example, the target plate is discretized into 200 × 200 × 20 material points, for a particle
spacing of Δx = 0.05 mm. The peridynamic horizon is chosen proportionate to the grid spacing (i.e., δ = mΔx,
for some m ≥ 1). In these example, the horizon size of the material point is chosen to be three times the particle
spacing and therefore m = δ/Δx = 3. The time-step size used in this example is Δt = 1.0 × 10–9 s. The time-step
size is chosen to ensure that details are being captured during the simulation without loss of efficiency,
considering the minimum discretization size of the system and the maximum velocity of the particles. We
also take the effect of the material intensity into account, using the kernel function in Eq. (31). The time
evolution of conical and radial cracking at the front surface, rear surface, and cross-section of the ceramic
tiles is shown in Tabs. 1–3. The particle distribution under impact loading is shown in Tab. 4.

Using the crack changes as a function of time, it can be seen that the conical cracks form at the front face
firstly, due to the propagation of the shock waves. At the front face of the tile, no radial cracks formed until t =
4 μs, which is caused by the tensile waves that were reflected from the rear surface. There is almost no
compressive damage on the back of the tile. The radial cracks, which are caused by tensile stress, are

Figure 18: Comparison between the result of this work and the JH-2 model (force vs. displacement)
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Time Tensile damage Compressive damage Total damage 

t = 1 µs 

   

t = 2 µs 

 

t = 3 µs 

 

t = 4 µs 

   

t = 5 µs 

  

t = 6 µs 

   

Table 1: Tensile, compressive and total damage as a function of time (front surface)
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Time Tensile damage Compressive damage Total damage 

t = 1 µs 

t = 2 µs 

t = 3 µs 

t = 4 µs 

t = 5 µs  

t = 6 µs 

Table 2: Tensile, compressive and total damage as a function of time (rear surface)
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DamageTime

t = 1 µs

t = 2 µs

t = 3 µs

t = 4 µs

t = 5 µs

t = 6 µs

Table 3: Damage evolution of the cross-section with time

DamageTime

t = 1 µs

t = 2 µs

t = 3 µs

t = 4 µs

t = 5 µs

t = 6 µs

Table 4: Particle distribution (v = 300 m/s)
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initiated at the rear face of the ceramic tile and propagated from the center toward the edges [47]. Based on
the damage feature at the front and rear surfaces shown in Tabs. 1 and 2, the cracks on the rear surface appear
later than those on the front surface. This is because it takes time for the shock waves to propagate from the
impact point to the rear surface of the tile. When the shock waves propagate to the rear surface, radial cracks
appear due to tensile stress. From the damage distribution of the cross-section shown in Tab. 3, fractured cone
forming in the ceramic tile under impact loading can be observed clearly. In this work, we can obtain tensile
damage and compressive damage separately, which facilitates a more detailed analysis of the damage and
fracture mechanism for ceramic materials. The initiation and evolution of cracks in the tiles can be
captured using the proposed rate-dependent bond-based peridynamic model.

5.3.2 Damage Pattern under Different Impact Velocities
In this part, the different damage features under different impact velocities are investigated to capture the

characteristics of rate sensitivity, which is considered in the proposed model based on the fracture mechanism
of brittle materials. The development of conical and radial cracks, as a function of impact velocity, at the rear
face of the ceramic target is shown in Tabs. 5 and 6. It is compared to the experimental results given in [46].
By comparing, it can be seen that the proposed bond-based peridynamic model in this work can capture the
cone and radial cracks of ceramics, for low to high impact velocities, well. In [46], three numerical models
were used to simulate the evaluation of damage and compared with experimental results. A comparison of
radial and conical cracking between the simulation and experiment is shown in Tab. 5. It can be seen that the
crack evolution, which is observed in the experiment, is captured accurately using the proposed rate-
dependent bond-based peridynamic model from low to high impact-velocities. The radial cracks form
from the periphery of the cone crack and extend outwards. The damage results, using the proposed rate-
dependent peridynamic model, suggest that the number of radial cracks in the plate increases with
increasing impact velocity. This tendency was observed in the experiments. The radial cracks are more
pronounced for higher impact velocities. The damage results for the cross-section are given in Tab. 6. It
can be seen that a fragment of the ceramic tile can be captured by the proposed rate-dependent PD model
in this work.

5.4 Edge-On Impact
The Edge-On impact (EOI) technique can observe the dynamic fracture of brittle materials directly. It is

convenient to compare the numerical simulation with the results from EOI results [11]. In the EOI test, a

Projectile 
velocity(m/s)

100 200 300 500 770 

Experiment 

Peridynamic 

Model 

Table 5: Comparison of damage results for the back side of the tile given in [47] under different impact velocities
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projectile impacts the sample edge, as illustrated in Fig. 19, and damage propagation is observed with a high-
speed camera. In this section, the experimental set-up is numerically simulated using the proposed bond-
based peridynamic model. The simulation result is compared with the experimental result and the
numerical result, which was calculated using the non-ordinary state-based peridynamic model [11]. The
properties of the sample and the projectile are as described in [11]. The configuration of the target is 100
× 100 × 10 mm3. The projectile is a solid cylinder and assumed to be rigid with a mass density of 8060
kg/m3. The numerical results are shown in Fig. 20. By comparing the damage results between the
simulation and experimental results, we can see that the result using the proposed bond-based
peridynamic model agree better with the experiments than the non-ordinary state-based peridynamic model.

Projectile
velocity(m/s)  

100 200 300 500 770 

Experiment 

Peridynamic 

Model 

Table 6: Comparison of damage results for the cross-section of the tile given in [47] under different impact velocities

Figure 19: Configuration of edge-on impact
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6 Conclusion

A bond-based PD model that considers strength-softening and rate-dependence of ceramic materials is
proposed in this work. A bond-force updating algorithm is introduced to solve the pseudo-plastic feature of
ceramic materials in the numerical model. This rate-dependent bond-based PD model was used to simulate
the complete damage- and fracture-process under impact loading for ceramic materials. Using this model, it
is possible to capture, accurately, both the brittleness (tensile loading) and pseudo-plastic behavior
(compressive loading). The damage features under different impact velocities were simulated and
compared with the experiment and other numerical models. The results, using the proposed model in this
work, are in good agreement with the experiments. The Edge-On impact test of glass was simulated in
this work and compared with the experimental result. Based on our simulations, the following
conclusions can be drawn:

1. The proposed bond-based PD model can capture the entire damage process, from loading to unloading,
including the fracture feature of ceramic materials. This was validated by implementing the example
given in the original JH-2 model. The results of the proposed model are consistent with the results
giving in the JH-2 model.

2. This model can accurately capture the dynamic response during ballistic impact. The entire process,
including the initiation and evolution of the cracks, can be observed clearly with the proposed model.
Both tensile- and compressive-damage are described in this model, which enables a deep analysis of
the damage and fracture mechanism in ceramic tiles.

3. This model can capture the damage and fracture process of ceramic materials under impact from low- to
high-velocity. The results are in good agreement with the experiment. The simulation results also show
that the splash of the ceramics can be observed clearly.

4. The Edge-On impact test was simulated using the proposed bond-based peridynamic model in this work.
A comparison between the simulation and experiments indicates that the bond-based peridynamic model
is in better agreement with the experimental results than the non-ordinary state-based peridynamic model.

In general, the rate-dependent bond-based peridynamic model, which is proposed in this work, can be
used to simulate the damage and fracture behavior of ceramic materials.
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Figure 20: Comparison of the damage results. (a) Experiment [11]. (b) Bond-based peridynamic model
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