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Abstract: Under different conditions, gene regulatory networks (GRNs) of the
same gene set could be similar but different. The differential analysis of GRNs
under different conditions is important for understanding condition-specific gene
regulatory relationships. In a naive approach, existing GRN inference algorithms
can be used to separately estimate two GRNs under different conditions and iden-
tify the differences between them. However, in this way, the similarities between
the pairwise GRNs are not taken into account. Several joint differential analysis
algorithms have been proposed recently, which were proved to outperform the
naive approach apparently. In this paper, we model the GRNs under different con-
ditions with structural equation models (SEMs) to integrate gene expression data
and genetic perturbations, and re-parameterize the pairwise SEMs to form an inte-
grated model that incorporates the differential structure. Then, a Bayesian inference
method is used to make joint differential analysis by solving the integrated model.
We evaluated the performance of the proposed re-parametrization-based Bayesian
differential analysis (ReBDA) algorithm by running simulations on synthetic data
with different settings. The performance of the ReBDA algorithm was demon-
strated better than another state-of-the-art joint differential analysis algorithm for
SEMs ReDNet obviously. In the end, the ReBDA algorithm was applied to make
differential analysis on a real human lung gene data set to illustrate its applicability
and practicability.

Keywords: Gene regulatory networks; structural equation models; joint
differential analysis; Bayesian analysis

1 Introduction

A GRN is usually a directed network that depicts a set of genes and the regulatory interactions between
them. Under different conditions, for example, in different tissues or in diseased and healthy individuals, the
GRNs of the same gene set may differ slightly from each other. Identifying inconspicuous changes between
condition-specific GRNs is of great significance for discovering molecular mechanisms and biological
processes of genes, which helps to understand gene functions and find pathogenic genes [1,2].
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A number of models and corresponding computational methods have been developed to infer GRNs
from gene expression data and other related data sources under a single condition, such as Boolean
networks [3], information theory based networks [4,5], differential equation models [6], Bayesian
networks [7,8] and Gaussian graphical models [9]. Our main concern is on GRNs modeled with SEMs,
which are inferred from gene expression data and genetic perturbations (e.g., eQTL data). A series of
algorithms have been developed to infer GRNs modeled with SEMs successively [10–13].

While it is possible to adopt these existing algorithms to infer condition-specific GRNs separately and
then identify their differences from the estimated GRNs, such an approach is not optimal because it doesn’t
exploit the similarities between the pairwise GRNs [14]. Danaher et al. [15] and Mohan et al. [16] proposed
joint inference methods for multiple GRNs modeled with Gaussian graphical models. Danaher et al. [15]
proposed the joint graphical lasso to estimate multiple graphical models that share certain characteristics.
They formulated the joint graphical lasso problem by introducing penalized log likelihood with a fused
lasso penalty or a group lasso penalty and used an ADMM algorithm to maximize the penalized log
likelihood. The fused lasso penalty encouraged similar GRN structure and edge values, whereas the graph
lasso penalty encouraged a weaker form of similarity. Mohan et al. [16] considered similarities shared
across GRNs due to the presence of common hub nodes and differences between GRNs driven by
individual nodes that are perturbed across conditions, and formulated two convex optimization problems
corresponding to the two problems respectively by using a row-column overlap norm penalty function.
Gaussian graphical models can only identify undirected networks, and only exploit gene expression data.
Wang et al. [17] developed an efficient proximal gradient algorithm for differential GRN inference based
on linear regression models. However, although a linear model can support directed graph, it still models
and infers GRNs only from gene expression data.

SEMs provide a systematic framework for GRN inference integrating gene expression data and genetic
perturbations conveniently, and can yield more accurate predictive network structure. Motivated by this, we
mainly study joint differential analysis method of GRNs modeled with SEMs. Ren et al. [18] proposed a re-
parametrization-based joint differential analysis algorithm for SEMs named ReDNet. In the ReDNet
algorithm, they re-parameterized two pairwise structural equations (corresponding to two GRNs under
different conditions) as an integrated SEM, the commonality and difference are both incorporated into the
integrated model. The simulation studies in [18] demonstrated that ReDNet outperforms the naive
approach that independently constructs the pairwise GRNs.

In this paper, we introduce a novel joint differential analysis algorithm named ReBDA. In the first stage,
we incorporate the two pairwise SEMs into an integrated SEM to consider not only the sparsity of the
individual GRN but also the difference between GRNs under different conditions; And then in the second
stage, following the Bayesian inference method for sparse SEMs developed by Dong et al. [19], the
individual GRN and differential GRN can be directly inferred from the re-parameterized integrated
model. The overview of the proposed ReBDA algorithm can be found in Fig. 1.

Tab. 1 lists the detailed comparison between our proposed ReBDA algorithm and other previous
proposed related methods around three properties: if the similarities between GRNs under different
conditions are considered; if directed networks could be supported; if the genetic perturbations could be
incorporated into models. We see that only the ReDNet algorithm supports the joint differential analysis
of directed GRNs incorporating genetic perturbations. Therefore, computer simulations are conducted to
compare the performance of our proposed ReBDA algorithm and another state-of-the-art joint differential
analysis algorithm for SEMs ReDNet. The results demonstrates that ReBDA has apparently better
performance for both directed acyclic graphs (DAGs) and directed cyclic graphs (DCGs) in various settings.
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2 Models and Methods

2.1 GRNs Modeled with SEMs
Consider expression levels of p genes and genotypes of q cis-eQTLs under two different conditions

(k = 1, 2). Let YðkÞ ¼ ½yðkÞ1 ; yðkÞ2 ;…; yðkÞp � be an n × p gene expression matrix denoting gene expression

levels of p genes measured from n individuals under condition k, and let XðkÞ ¼ ½xðkÞ1 ; xðkÞ2 ;…; xðkÞq � be an

n × q cis-eQTL matrix denoting genotypes of q cis-eQTLs measured from n individuals under condition
k. As in [5,24], we assume each gene has at least one unique cis-eQTLs to ensure the unique identifiable
of GRNs, which means q ≥ p. Then the two GRNs can be modeled with the following SEMs,

YðkÞ ¼ YðkÞBðkÞ þ XðkÞFðkÞ þ EðkÞ; k ¼ 1; 2; (1)

where p × p matrix BðkÞ ¼ ½bðkÞ1 ; bðkÞ2 ;…; bðkÞp � defines the structure of GRN under condition k, bðkÞij represents

the regulatory effect of the ith gene on the jth gene; q × p matrix FðkÞ ¼ ½f ðkÞ1 ; f ðkÞ2 ;…; f ðkÞp � is composed of the

regulatory effects of the q cis-eQTLs, f ðkÞij is the regulatory effect of the ith cis-eQTL on the jth gene; n × p

matrix EðkÞ is the error matrix, the entry eðkÞij is often assumed as the ith error term of the jth gene

independently normally distributed with mean zero and variance r2.

Model GRNs under 
different conditions 

with two SEMs

Gene expression data and 
cis-eQTL data

An integrated SEM involving the 
individual and differential GRN 

matrices

Re-parameterize

The re-parameterization 
stage

Input

The Bayesian inference 
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Estimates of the 
individual GRNs and 
the differential GRN 

Gibbs sample

Figure 1: Overview of the ReBDA algorithm

Table 1: Comparison between the proposed method and previous related methods

Similarities Directed networks Genetic perturbations

Naive approach × √ √

Danaher et al. [15] √ × ×

Mohan et al. [16] √ × ×

Wang et al. [17] √ √ ×

Ren et al. [18] (ReDNet) √ √ √

Our proposed algorithm (ReBDA) √ √ √
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As mentioned in [12,13], it is assumed that there is no self-loop in the GRN, which implies bðkÞii = 0 for
i = 1,…, p. We further assume that the q cis-eQTLs have been identified by an existing eQTL mapping
method, but the regulatory effects are still unknown, this is to say, there are q unknown nonzero entries

with known locations in FðkÞ. The known row index set of nonzero entries in f ðkÞi , i = 1,…, p is
represented as si. Therefore, the main task of this paper is to estimate the differential GRN matrix ΔB =
Bð1Þ � Bð2Þ, and passingly, the individual GRN matrices BðkÞ and the unknown nonzero entries in FðkÞ

could also be estimated.

With the above definitions, BðkÞ and FðkÞ can be estimated column by column by decomposing the model
in Eq. (1) into

yðkÞi ¼ YðkÞ
�i b

ðkÞ
i;�i þ XðkÞ

si f
ðkÞ
i;si þ eðkÞi ; i ¼ 1; 2; …; p (2)

where (p−1) × 1 vector bðkÞi;�i is obtained by excluding the ith entry of b
ðkÞ
i ; the n × (p−1) matrix YðkÞ

�i refers to

the submatrix of YðkÞ excluding the ith column yðkÞi ; f ðkÞi;si is a reduced form of f ðkÞi excluding the rows whose

indices are not in si; XðkÞ
si is a submatrix of XðkÞ obtained by only extracting the columns whose indices are in

si; e
ðkÞ
i is the ith column of EðkÞ.

2.2 The Re-Parametrization Stage
Since our main concern is the differential structure of two GRNs under different conditions, that is ΔB =

Bð1Þ � Bð2Þ. The original model as in Eq. (2) can be re-parameterized to incorporate ΔB into the model. There
are several different kinds of re-parametrization methods to construct such model, here we propose a novel
one, for all i = 1, 2,…, p, we define

yi ¼ yð1Þi þ yð2Þi ; ei ¼ eð1Þi þ eð2Þi ;

Y�i ¼ Yð1Þ
�i þ Yð2Þ

�i ; Y
ð1Þ
�i

h i
; bi ¼ bð2Þi;�i; b

ð1Þ
i;�i � bð2Þi;�i

h i
; (3)

Xi ¼ Xð1Þ
si þ Xð2Þ

si ; X
ð1Þ
si

h i
; f i ¼ f ð2Þi;si ; f

ð1Þ
i;si � f ð2Þi;si

h i
;

Then model (2) can be rewritten as an integrated model as follows for differential analysis of GRNs,

yi ¼ Y�ibi þ Xif i þ ei; i ¼ 1; . . . ; p: (4)

By estimating the 2(p−1) × 1 parameter vector bi from the above re-parameterized integrated model for
all i = 1,…, p, the GRN matrix Bð2Þ and the differential GRN matrix ΔB can be easily obtained, and then the
GRN matrix Bð1Þcan be directly computed with Bð1Þ = ΔB + Bð2Þ.

Note that the unknown parameters to be estimated are all contained in vector bi; f i½ �T , we further rewrite
the integrated model in Eq. (4) as a linear-type model,

yi ¼ Zibi þ ei; i ¼ 1; . . . ; p: (5)

where Zi ¼ ½Y�i;Xi�, bi ¼ bi; f i½ �T . Assume the dimension of f i is qi (qi ≥ 1), meaning that the expression of
gene i is affected by qi cis-eQTLs, so the dimension of bi can be denoted by pi = 2(p−1) + qi. With the
estimate of bi inferred from Eq. (5), bi can be easily recovered according to the re-parametric process.

2.3 The Bayesian Inference Stage
Based on biological characteristics, GRNs or more general biochemical networks are considered sparse

[20–22], and the structures of GRNs under different conditions generally differ slightly from each other
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[14,18,23,24], that is to say, bi ¼ bi; f i½ �T is sparse. So a sparse inference method for linear regression
models can be adopted to infer the individual GRNs and differential GRN. A series of sparse inference
algorithms for linear regression models have been developed, such as the lasso [25], the fused lasso [26],
the elastic net [27], the SCAD [28], the adaptive lasso [29] and the Bayesian lassos [30,31].

Dong et al. [19] proposed an iterative scheme named LRBI using Bayesian inference to estimate
parameters of linear regression models based on SEMs. Proved by simulation studies in [19], the
Bayesian inference method in the LRBI algorithm was effective and efficient for inference of GRNs
modeled with SEMs. Motivated by this, in what follows, we apply the Bayesian inference method in
LRBI on model (5) to deduce our hierarchical conditional posterior distribution to estimate bi consistently
and rapidly.

We assume the entries in ei are independently identically normally distributed with mean zero and
variance r2i , then the likelihood can be expressed as yijZi; bi; r

2
i � Normal Zibi; r

2
i In

� �
. As in LRBI, an

efficient Normal-Gamma prior for bi as follows can be assumed,

bijr2i � Normalpi 0; r
2
i Ipi

� �
,

r2i � Inverse� Gamma ai0; bi0ð Þ; (6)

where ai0; bi0 are hyper parameters that should be preset to fixed values.

Then the conditional posterior distribution can be deduced,

bijyi; Zi � Normalpi ai; r
2
i Ai

� �
,

r2i jyi; Zi � Inverse� Gamma ai0 þ n

2
; bi

� �
; (7)

where

Ai ¼ ZT
i Zi þ I

� ��1
,

ai ¼ Ai Z
T
i yi þ bi

� �
; (8)

bi ¼ bi0 þ yTi yi þ bTi bi þ aTi A
�1
i ai

2
.

According to the above conditional posterior, the posterior mean estimate of bi can be obtained via Gibbs
sampling with the preset hyper parameters (like ai0 ¼ n

5
; bi0 ¼ 1).

3 Results

3.1 Computer Simulations
In this section, simulations are run on synthetic data with different settings to compare the performance

of the proposed ReBDA algorithm and another joint differential analysis algorithm based on re-
parametrization: ReDNet [18]. The performance of GRN inference is usually evaluated via power of
detection (PD) and false discovery rate (FDR). PD measures the percentage of correctly identified edges
in all true edges, and FDR measures the percentage of false identified edges in all detected edges. Let Nt

be the number of edges in the reference network, Nd be the number of edges in the estimated network,
Ntp be the number of correctly identified edges, Nfp be the number of false identified edges. Then PD can
be calculated by Ntp/Nt, and FDR is obtained by Nfp/Nd.

We generate DAGs and DCGs with 30 genes under two different conditions referring to the settings in
[13]. The sample size n varies from 80 to 600. The average number of edges of each node ne determines the
degree of sparseness, we set it as 1 or 3. Each gene is assumed to have 2 effective cis-eQTLs, that is to say,
q = 2p. The regulatory effects of all cis-eQTLs are set to 1. The adjacency matrix Að1Þ of a DAG or DCG
with specified setting is first generated for the GRN under condition 1, the GRN matrix Bð1Þ is generated
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by changing the nonzero entries in Að1Þ to a random value sampled from a uniform distribution over
(−1, −0.5)∪(0.5, 1). Then the GRN matrix Bð2Þ is generated based on Bð1Þ by randomly modifying a small
number of entries in it. In this part, the total number of entries to be modified is set as 30% of p, among

which the following three modification patterns share the same proportion: (1) bð1Þij ¼ 0 but bð2Þij ≠ 0; (2)

bð1Þij ≠ 0 but bð2Þij = 0; (3) bð1Þij ≠ 0 and bð2Þij ≠ 0, but bð1Þij ≠bð2Þij . The genotypes of the cis-eQTLs are
simulated from an F2 cross. Values 1 and 3 are assigned to two homozygous genotypes, respectively, and
value 2 is assigned to heterozygous genotypes. Then ternary random variables Xð1Þ and Xð2Þ are generated
by sampling from {1, 2, 3} with probabilities {0.25, 0.5, 0.25}, respectively. Fð1Þ and Fð2Þ are simulated

by randomly permuting the rows of matrix ½Ip; Ip�T , where Ip represents p-dimensional identity matrix.

Next, the error terms Eð1Þ and Eð2Þ are independently sampled from random variables normally distributed
with mean zero and variance r2 = 0.01 or 0.1. Finally, Yð1Þ and Yð2Þ are directly calculated via
YðkÞ ¼ YðkÞBðkÞ þ XðkÞFðkÞ þ EðkÞ; k ¼ 1; 2.

For each setting, 20 replicates are generated, ReBDA and ReDNet are applied on each replicate, then the
averaged PD and FDR of ½Bð1Þ; Bð2Þ� and ΔB can be calculated to compare and evaluate the performance.
What’s more, because the Bayesian penalized regression does not exactly produce zero estimates, a
decision threshold t is preset to go from a posterior distribution to a sparse point estimate. We set t = 0.2
in the following simulations, that is, all entries in the estimated Bð1Þ and Bð2Þ whose absolute value are
smaller than t = 0.2 are set to 0.

The results of ReBDA and ReDNet for DAGs with 30 genes, ne = 1 or 3 and r2 = 0.01 or 0.1 are
depicted in Fig. 2. Let’s first see the performance of ½Bð1Þ; Bð2Þ�, which are shown in the upper panel of
Figs. 2(a)–2(d). The PD of ReBDA are slightly lower than that of ReDNet (nearly reach 1 for all
settings), and the FDR of ReBDA are obviously lower than that of ReDNet. The performance of ΔB can
be found in the lower panel of Figs. 2(a)–2(d). The PD of ReBDA are a little better than that of ReDNet
for sparse networks and obviously better than that of ReDNet for dense networks. As for FDR, ReBDA
significantly outperform ReDNet expect for the networks with r2 = 0.1 at sample size 80 and 100.

The results of ReBDA and ReDNet for DCGs with 30 genes, ne = 1 or 3 and r2 = 0.01 or 0.1 are depicted
in Fig. 3. Similarly, the performance of ½Bð1Þ; Bð2Þ� are shown in the upper panel of Figs. 3(a)–3(d). ReBDA
offers similar PD with ReDNet for sparse networks, and visible better PD than ReDNet for dense
networks. The FDR of ReBDA are near or equal to zero for networks at most settings, which are
lower than that of ReDNet obviously. The performance of ΔB are depicted in the lower panel of
Figs. 3(a)–3(d). ReBDA still exhibits better PD than ReDNet, and the difference between them are
more significant in dense networks. When it comes to FDR, ReBDA performs much better than
ReDNet expect when r2 = 0.1 and n = 80.

3.2 Real Data Analysis
Lu et al. [32] measured gene expression levels and genotypes of SNPs in 42 lung tumor tissues and 42

adjacent normal tissues of non-smoking female patients with lung adenocarcinomas with 54,675 probe sets
from Affymetrix Human Genome U133 Plus 2.0 arrays and 906,551 SNP probes from Affymetrix
GenomeWide Human SNP 6.0 arrays. We preprocessed this data set following the way in [14] with R
package affy [33] and MatrixEQTL [34], 1455 genes were found to have at least one cis-eQTLs at FDR
< 0.1. Because the number of genes is too much larger than the number of available samples, which may
result in less reliable estimates, we further filtered the data set with the GIANT database [35], 15 genes
were identified to interact with at least one other genes with high confidence (>0.8), namely: PPP4R2,
DBI, DKC1, HSF1, PSMA2, RPS6, USP10, PPP4R3A, ATP5G3, CDC123, MAPKAPK2, PSMD6,
RPS16, BTF3, G3BP2.

308 CMES, 2020, vol.124, no.1



We applied ReBDA to make differential analysis on the filtered data set. 15 genes and 60 regulatory
edges were identified in the resulted differential GRN. To evaluate the significance of the identified
edges, we re-sampled 100 bootstraps with 42 samples from the original data set and applied ReBDA on
each bootstrap data set. As shown in Fig. 4, 4 genes and 2 regulatory edges were identified in over 90%
of the differential GRNs inferred from the 100 bootstrap data sets. The weight of each edge was
calculated by averaging the results of the 100 bootstraps.

In the above differential GRN inferred from the filtered real data set, 4 highly confidence genes were
found to be related to lung tumor. Some previous literature based on experimental approaches have
demonstrated that most of these genes are related to lung cancer or other cancers. Lin et al. [36]
discovered and demonstrated that USP10 suppresses tumor cell growth through potentiating both SIRT6-
and p53-mediated suppression of the oncogene c-myc. The results of [37] unravel the existence of a
negative feedback loop of PP4R2 on IKK/NF-κB signaling, that suppresses lung cancer migration/
invasion capability. BTF3 was confirmed abnormality in various cancer tissues (such as gastric cancer)
[38,39]. Moreover, HSF1 was demonstrated to be associated with gastric cancer [40], breast cancer and
two of the studied SNPs correlated significantly with cancer development [41].

Figure 2: Performance of ReBDA and ReDNet for DAGs with 30 genes

CMES, 2020, vol.124, no.1 309



4 Discussion and Conclusion

In the ReDNet algorithm, Ren et al. [18] proposed a re-parametrization-based differential analysis
method for SEMs, they re-parameterized the pairwise SEMs to form a joint model, and then applied
adaptive lasso to estimate the summed structure and differential structure simultaneously. In this paper,
we developed a novel differential analysis method for GRNs under different conditions based on re-
parametrization named ReBDA. The ReBDA algorithm was also developed for GRNs modeled with

Figure 3: Performance of ReBDA and ReDNet for DCGs with 30 genes

USP 10
PPP4R2

-0.87

HSF1BTF 3 -1.02

Figure 4: The differential GRN constructed by regulatory edges identified in over 90% of the 100 bootstraps
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SEMs, which are widely used for GRN inference integrating gene expression data with genetic perturbations.
At the first stage, the original two pairwise SEMs corresponding to the condition-specific GRNs are re-
parameterized as an integrated SEM incorporating individual GRN and differential GRN. The re-
parameterization method in this stage is different from that in ReDNet, which could get effective
improvement on the predictive accuracy. Then at the second stage, a Bayesian inference method
following the idea in LRBI [19] is developed to solve the re-parameterized integrated SEM. In ReDNet,
Chen et al. [42] adopted a two-stage penalized least squares (2SPLS) method to solve its re-parameterized
SEM. We compared the performance of LRBI and 2SPLS on SEMs with synthetic data, the results
demonstrates that LRBI has better PD than 2SPLS and slightly better FDR in most cases, only when the
sample size is relatively smaller (e.g., less than 100), the FDR of LRBI may be a little worse than that of
2SPLS. Therefore, we adopt LRBI to infer the re-parameterized SEM in our ReBDA algorithm to further
improve the performance.

Computer simulations have proved that the ReBDA algorithm outperforms the ReDNet algorithm for
networks with different settings in terms of both PD and FDR in general. The analysis of a real data set
with 15 genes measured from 42 lung tumors and 42 adjacent normal tissues further demonstrated the
availability and efficiency of ReBDA in practical biological applications.

Although the ReBDA algorithm could offer better inference accuracy in the differential analysis of
GRNs, it still has several limitations: Firstly, it is mainly developed for differential analysis of pairwise
GRNs, some extensive method could be explored to make comparison of more than two GRNs.
Secondly, when with very limited samples and relatively higher r2, the FDR of ReBDA may be not
that well, it is worthwhile to try some other different priors such as spike and slab prior to further
improve the FDR. Thirdly, The reparameterization method adopted in ReBDA only supports pairwise
datasets with the same sample size, in our future work, a more general re-parameterization method may
be more applicable.
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