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Abstract: During the late months of last year, a novel coronavirus was detected in Hubei, 
China. The virus, since then, has spread all across the globe forcing Word Health 
Organization (WHO) to declare COVID-19 outbreak a pandemic. In Spain, the virus 
started infecting the country slowly until rapid growth of infected people occurred in 
Madrid, Barcelona and other major cities. The government in an attempt to stop the rapssid 
spread of the virus and ensure that health system will not reach its capacity, implement 
strict measures by putting the entire country in quarantine. The duration of these measures, 
depends on the evolution of the virus in Spain. In this study, a Deep Neural Network 
approach using Monte Carlo is proposed for generating a database to train networks for 
estimating the optimal parameters of a SIR epidemiology model. The number of total 
infected people as of April 7 in Spain is considered as input to the Deep Neural Network. 
The adaptability of the model was evaluated using the latest data upon completion of this 
paper, i.e., April 14. The date range for the peak of infected people (i.e., active cases) based 
on the new information is estimated to be within 74 to 109 days after the first recorded case 
of COVID-19 in Spain. In addition, a curve fitting measure based on the squared Euclidean 
distance indicates that according to the current data the peak might occur before the 86th 
day. Collectively, Deep Neural Networks have proven accurate and useful tools in handling 
big epidemiological data and for peak prediction estimates. 

Keywords: Coronavirus, deep neural network, machine learning, Monte Carlo simulation, 
SIR model.  

1 Introduction 
Just a few days before the beginning of this year, a novel coronavirus (nCoV) with 
highest medical significance was detected in Wuhan, capital of the province Hubei, 
China. As later classified, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) [Gorbalenya, Baker, Baric et al. (2020)], is a single stranded positive sense RNA virus 
[(+)ssRNA virus], causing respiratory disease which is called coronavirus disease 2019 
or COVID-19. Because of the severity of the symptoms and the high degree of 
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contagiousness, the World Health Organization (WHO) declared COVID-19 outbreak, 
first as a Public Health Emergency of International Concern (on 30/01/2020) and 
subsequently as a pandemic on March 11th, 2020 [WHO (2020a)].  
Since then, COVID-19 has spread all across the globe infecting almost two million 
people4 (1,434,167 as of April 7, 2020), with nearly 82,063 patients having succumbed to 
the disease and more than 302,218 showing a recovery. Considering also that the basic 
reproduction number (𝑅𝑅0) of the virus has been estimated at 2.2, strict measures are 
necessary to prevent health systems reach their capacity, an occasion where difficult 
decisions will need to be made such as prioritization of patients to be treated. Briefly, 
R0=2.2 means that if no population immunity and no preventive measures are taken, 
from each single infection 2.2 new infections are expected [Li, Guan, Wu et al. (2020)]. 
However, due to the nature of this virus, the infectivity rate and as a result the 
reproduction rate can be controlled through social distancing as suggested by Kwok et al. 
[Kwok, Wong, Wei et al. (2020)]. 
Beside the high social impact that this new pandemic is causing (including high number of 
deaths, distress and panic), the measures that were put in force to halt the spreading of the 
virus also affect the global economy indicating a “domino” effect that can last even longer 
than the probable eradication of COVID-19. In particular, according to a study conducted 
by Verikios et al. [Verikios, Sullivan, Stojanovski et al. (2015)] economies depending on 
tourism are expected to be affected the most due to travel restrictions, while in addition 
based on a study by Haimar et al. [Haimar and Santos (2014)] regarding the H1N1 
pandemic, government agencies can suffer great losses despite low inoperability. 
Estimating the evolution of COVID-19 is imperative for enhancing the efficiency of 
health systems. In addition, during a pandemic allocating resources like masks and 
respirators is vital for reducing infectivity among clinicians and paramedics. A study 
conducted to assess the impact of the H1N1 pandemic amidst 2009 with respect to 
resource availability revealed that protective gear can become insufficient both in 
national and international level [Murray, Grant, Bryce et al. (2010)].  
In the battle against COVID-19 pandemic, machine learning (ML) and artificial 
intelligence (AI) analytical approaches are necessary tools in the researchers’ “faretra”, 
with multiple applications as recently reviewed by Bullock et al. [Bullock, Luccioni, 
Hoffmann et al. (2020)] including among others, improved diagnostic methods [Jiang, 
Coffee, Bari et al. (2020); He, Yu, Hong et al. (2017)], applications in drug development 
(discovery and drug re-purposing) [Réda, Kaufmann and Delahaye-Duriez (2019)] as 
well as epidemiological predictions [Koo, Liew, Mohamad et al. (2013)]. For instance, 
the applications of neural networks in modelling and analyzing the dynamics of diseases 
have been well studied demonstrating their effectiveness over conventional methods 
[Hamamd, Abdel-Wahab, De Claris et al. (1996)]. 
In this report, an AI approach, based on Deep Neural Networks (DNN), is designed to 
predict the evolution of COVID-19 active cases in Spain. The method consists of a data 
generation process based on Monte Carlo simulations of SIR epidemiology models, the 
development, optimization and validation of a DNN prediction model. At first, a brief 
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summary of the virus evolution in Spain is provided, along with a description of the 
methodology that formed the basis of the peak prediction. Subsequently, the results are 
discussed along with conclusive statements, referring to the Spanish population. 

2 Evolution of the COVID-19 in Spain 
The first case of SARS-CoV-2 in Spain was detected on January 31st and was an isolated 
case in Las Islas Canarias, where the virus began to spread, with six cases reported by 
February, 24th. A second incidence was reported in Baleares on February 9th. By March 
24th there has been no official registration of SARS-CoV-2 infection outside the Spanish 
islands, however on the following day several SARS-CoV-2 cases were detected in 
Spain’s largest cities, i.e., Madrid, Catalonia and Valencia. Subsequently, from then on, 
the number of SARS-CoV-2 cases within Spain started to grow steadily. 

 

Figure 1: COVID-19 infections in Spain and Spanish provinces 

The evolution of COVID-19 is depicted in Fig. 1, for each Spanish region separately. 
According to the underlying data (Fig. 1), Madrid and Catalonia are the two provinces 
that COVID-19 has spread more radically possibly due to the high number of inhabitants 
and population density. Fortunately, the number of recovered patients is constantly 
increasing in Madrid and Cataluña. 
In this work, the COVID-19 peak estimation is considered for the national level, 
therefore only the data shown in the upper left graph are used. Data are available online 
by the Spanish Ministry of Health [Gobierno de España (2020)] for all provinces, which 
are update it regularly with information about the new cases, recoveries and deaths. 
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3 Methodology 
3.1 The SIR model 
A widely used mathematical tool for analyzing the spread of a virus is called SIR 
(Susceptible-Infected-Recovered) model. In its simplest form SIR model is based on a 
few strong assumptions [Weiss (2013); Weisstein (2020)]. Firstly, the number of 
population is constant for the duration of the analysis, meaning that we assume that there 
are no natural births and natural deaths occurring. Secondly, the incubation period (latent 
period) is zero, meaning that individuals become infectious directly at the time of their 
infection. Thirdly, SIR assumes a homogeneous mixing (mass-action principle), where 
populations of susceptible and infected individuals are homogeneously distributed and do 
not mix mostly in any smaller subgroups [Weisstein (2020)]. Yet, despite these 
assumptions, this model can provide good estimates on the evolution of an epidemic.   
Briefly, the model consists of three coupled Ordinary Differential Equations (ODE), 
namely 𝑆𝑆(𝑡𝑡) representing the susceptible people, 𝐼𝐼(𝑡𝑡) for the infected and 𝑅𝑅(𝑡𝑡) for the 
recovered, all as function of time  𝑡𝑡 . Using numerical integration techniques, these 
equations are solved for a pre-specified period of time, as in Eqs. (1)-(3) where 𝛽𝛽 and 𝛾𝛾 
are the infection and recovery rate parameters, respectively. The ratio defined by Eq. (4) 
is known as the epidemiological threshold (𝑅𝑅0) and is a key indicator about the evolution 
of a disease. The initial fixed population is parameter 𝜂𝜂, which represents the fraction of 
the population in a country, such as Spain considered in SIR. 
�̇�𝑆 = −𝛽𝛽𝑆𝑆𝐼𝐼  (1) 
𝐼𝐼̇ = 𝛽𝛽𝑆𝑆𝐼𝐼 − 𝛾𝛾𝐼𝐼 (2) 
�̇�𝑅 = 𝛾𝛾𝐼𝐼 (3) 

𝑅𝑅0 =
𝛽𝛽
𝛾𝛾

 (4) 

3.2 Development of monte Carlo database 
Based on the hypothesis that a SIR model can approximate COVID-19, Monte Carlo 
simulations [Theodoridis (2015)] are implemented for generating a set of probable SIR 
models by handling 𝛽𝛽 and 𝛾𝛾 parameters as random variables. The workflow presented in 
Fig. 2 shows the process that generates the database for training and testing of the 
estimation models. 
For iteration 𝑚𝑚 = [1,⋯ ,𝑀𝑀], where M is the total number of iterations, a random set of 
parameters is drawn from a uniform distribution, which is used to develop a unique SIR 
model. Ultimately, the two sets of data consist by the numerical integration of SIR for the 
infected agents (i.e., 𝑿𝑿 ∈ ℝ𝑀𝑀×365 ) and their corresponding parameters (i.e., 𝒀𝒀 ∈ ℝ𝑀𝑀×2).  
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Figure 2: Monte Carlo database generation 

To limit the simulations to generate only relevant data, a constraint has been added to 
maintain 𝛽𝛽  and 𝛾𝛾  within the estimated range of WHO [WHO (2020b)]. As such, the 
epidemiological threshold is constrained within the open set of  1 < 𝑅𝑅0 < 5 . This is 
visualized in Fig. 3, where for a vast range of possible 𝛽𝛽  and 𝛾𝛾  combinations the 
epidemiological threshold is plotted in the z-axis. The blue region represents the search 
space for the Monte Carlo Simulations according to the restriction described above. In 
this study, the number of simulated SIR models are 𝑀𝑀 = 4 ⋅ 105 based on random 
selection of 𝛽𝛽 and 𝛾𝛾 to generate the different possible outbreak outcomes given a fixed 
population. In addition, several levels of 𝜂𝜂 are considered for taking into account the 
impact of initial population in the SIR models. 

 

Figure 3: Monte Carlo search space 

3.3 Artificial intelligence and deep neural networks 
Inspired by the human brain cells, Deep Neural Networks (DNN) are the cornerstone of 
modern Artificial Intelligence (AI). A typical DNN consists of hundreds (or thousands) 
of neurons grouped in at least four layers: an input, an output and two hidden layers. At 
each neuron two operations occur: a summation of the weighted neuron inputs and a 
transformation of that sum through a mapping function. Several mapping functions exist 
such as the Sigmoid, Hyperbolic Tangent or the Rectified Linear Unit. Overall, DNN 
may differ in both size and structure however, all are typically known as universal 
function approximators due to their ability to solve any possible problem [Schaul, 
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Horgan, Gregor et al. (2020)]. DNN can be implemented for Supervised, Unsupervised 
and Reinforced Learning related tasks. Reasonably, the structure will differ depending on 
the type of learning.  
In this paper, the estimation of the COVID-19 evolution in Spain is formulated as a 
Supervised Learning task where partially observed SIR curves are labeled by their 
parameters of their full curves. In other words, the matrix 𝑿𝑿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈  ℝ𝑀𝑀×48 and matrix 
𝒀𝒀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈  ℝ𝑀𝑀×2 are the input-output pairs that are used to train the DNN model.  
To illustrate this, considering Spanish underlying datasets as of April 14𝑠𝑠ℎ, Fig. 4 depicts 
that the number of infected individuals followed a sharp trend upwards for a period of 
approximately two weeks between March 18 and April 5. Hence, to capture the dynamics 
of the virus spread, the information within the period 20/02−07/04/2020 is extracted and 
stored as the sample to be used by the DNN to estimate the optimal SIR model. This is 
called the observation window and is represented by the gray shaded area of the Fig. 4. 
Similarly, for the same period the information about the infected from the generated SIR 
models is used and “labeled” by their 𝛽𝛽  and 𝛾𝛾  parameters. Concretely, the DNN is 
trained to detect from this partial information the true parameters 𝛽𝛽 and 𝛾𝛾. Once trained 
the data within the grey area shown in Fig. 4 are fed into the DNN and the optimal SIR 
model can be created. 

 

Figure 4: Active cases until 14th of April 

4 Results 
4.1 Training and optimization of the DNN models 
The developed DNN models consist of one input layer with 48 neurons (observation 
window in Fig. 4) and an output layer with two neurons representing 𝛽𝛽 and 𝛾𝛾. Different 
designs were implemented and evaluated to conclude that the optimal DNN model 
should consist of two hidden layers each with 50 neurons and a single bias unit, as 
depicted in Fig. 5. All hidden neurons are using the Rectified Linear Unit (ReLu) 
activation function. The total number of trainable parameters can be found in Tab. 1. The 
loss function of the DNN is the Mean Absolute Error (MAE), as in Eq. (5) where 𝑦𝑦𝑠𝑠 and 
𝑦𝑦�𝑠𝑠are the true and predicted values, respectively, of the 𝑖𝑖-th sample. The loss function is 
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minimized using the Adam optimizer [Kingma and Ba (2014)] with a learning rate 𝑙𝑙 =
1𝑒𝑒 − 4, whereas Mean Absolute Percentage Error (MAPE), as in Eq. (6), is used for 
evaluating the performance of the optimal model, as it is more convenient to compare 
performance between different DNN designs. 
To avoid over-fitting in DNN, common practice suggests creating subsets of input and 
output data for training, validating and testing the model [Geron (2019)]. Conversely, 
two subsets e.g., a training and an independent test set were created using an 80%/20% 
random split, respectively, from the main dataset, i.e., {𝑋𝑋𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡,𝑌𝑌𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡}, {𝑋𝑋𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 ,𝑌𝑌𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠}. 
The independent test set is kept aside for the whole process of training and tuning of the 
DNN, only to be used at the final step for testing the generalization to unseen cases. For 
training and validating the DNN a 5-fold cross validation scheme is adopted. Specifically, 
the training subset is divided in 5 equal sets. Each iteration four out of these five sets are 
used for training the network while the other for validating. Therefore, the final 
performance is an average of these models. Note that all sets are scaled between 0 and 1. 

 

Figure 5: Structure of deep neural network 

𝑀𝑀𝑀𝑀𝑀𝑀 = �
1
𝑛𝑛
�� |𝑦𝑦𝑠𝑠 − 𝑦𝑦�𝑠𝑠|

𝑡𝑡

𝑠𝑠=1

 (5) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
100%
𝑛𝑛

�
|𝑦𝑦𝑠𝑠 − 𝑦𝑦�𝑠𝑠|

𝑦𝑦𝑠𝑠

𝑡𝑡

𝑠𝑠=1

 (6) 

The aforementioned optimal DNN model is trained in Python using Tensorflow and 
Keras backend for 20 epochs using a model checkpoint callback to prevent over-fitting 
and store only the best weights according to the validation loss. The training and 
validation MAE and MAPE are plotted in Fig. 6. As it can be observed the callback will 
store the model of epoch 18 as its validation MAE is the smallest.  
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Table 1: Deep neural network parameter list 

Layer Parameters 

Input - 

Hidden 1 2,450 

Hidden 2 2,550 

Output 102 

Total 5,102 

 
Figure 6: Performance of deep neural network based on 5-fold cross validation 

4.2 Validation on unseen cases 
As mentioned, to avoid over-fitting, which may hinder the accuracy of the model to 
generalize in actual cases, an independent test set was kept aside from the development/ 
optimization process of the DNN. Concretely, a random sample is chosen to be used for 
predicted and plotting the true and estimated SIR model, as an independent test set.  
As shown in Fig. 7 the DNN accurately predicts the parameters of the SIR model 
according to the partial curve of infected people for a random sample from the 
independent set. Overall, the cross validated performance of the DNN in the independent 
set is listed in Tab. 2. From these values, the average MAE and MAPE is about 12.87e-3 
and 6.31% respectively, with a corresponding standard deviation of 0.237e-3 and 0.06%.  

Table 2: Deep neural network metrics on independent test set 
K-Fold Model MAE (e-3) MAPE (%) 

1 12.96 6.37 

2 12.94 6.30 

3 12.43 6.20 

4 13.14 6.34 

5 12.89 6.34 
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Figure 7: Deep neural network SIR model prediction for random sample from 
independent test set 

4.3 Estimated SIR model for Spain  
The purpose of the DNN model is to estimate the optimal parameters of a SIR model for 
the recorded total of infected individuals over a time span of 48 days. Datasets, over the 
period from the 20/02/2020 up to 07/04/2020 were considered, as the time point that the 
DNN was developed and because that is the period where the rapid growth of infected 
people is observed in Spain. 
The results presented in Fig. 8, show the predicted evolution of the COVID-19 active 
cases in Spain considering data input, up until 07/04/2020. The cross validated SIR 
parameters predicted by the DNN generate a 𝑅𝑅0���� = 2.24, which is in agreement with 
estimated by WHO [WHO (2020b)].  The predicted active cases evolution will reach a 
peak on April 10 and 91,554 infected people. From then on, the active cases are 
decreasing towards zero. 
The SIR model was developed using as initial conditions the number of infected and 
recovered people on 7 April. As mentioned, the SIR model requires the specification of 
the population that can be infected by the virus. The predictions shown in Fig. 8 are 
based on an initial population 𝜂𝜂 = 0.73% from the total population of Spain i.e., 
~ 335,800. This specific value has been found to minimize the squared Euclidean 
distance between the generated curve and the recorded active cases within the period of 
08/04-14/04/2020, as depicted in Fig. 9. In this study, the squared Euclidean distance, 
defined in Eq. (7) where 𝑥𝑥𝑠𝑠 ∈ ℝ𝑡𝑡 and 𝑦𝑦𝑠𝑠 ∈  ℝ𝑡𝑡 are vectors, is used for calculating how 
well the predicted curve fits the true data.  
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Figure 8: Predicted evolution of active cases in Spain using data until 7th of April 

 

Figure 9: Squared Euclidean distance between predicted and true active cases for various 𝜼𝜼 

𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡2 = �(𝑥𝑥𝑠𝑠 − 𝑦𝑦𝑠𝑠)2
𝑡𝑡

𝑠𝑠=1

    (7) 

Upon finishing this document, new data became available. Therefore, using the same 
parameters the SIR model was recreated, incorporating the latest information about 
infected and recovered cases. The generated SIR model is plotted in Fig. 10 revealing 
that the new peak would be on April 16. Moreover, in contrast to the prediction based on 
the data until April 7, the maximum active case is approximately 1,000 less. Most 
importantly, the deviation of predictions in Fig. 10 is also lower indicating a higher 
confidence result.  
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Figure 10: Predicted evolution of active cases in Spain using latest data 

The peak value and peak occurrence are accounting for a defined population, which is 
considered a stable variable throughout the analysis of parameterization of the SIR 
model. Therefore, using the predicted parameters 𝛽𝛽 and 𝛾𝛾 accepting them as true, SIR 
models are sensitive to differences in population size. Nevertheless, the maximum 
number of infected people appears to be linearly dependent of the initial population 
considered in the SIR model. That is, according to the Spanish population considered in 
the SIR model the maximum number of active cases can be between 88 thousand up to 
8.7 million people. This means that the infected people may be as low as 0.1% or as high 
as 19% of the total population in Spain.  
Adjusting for differences at the initial population, reveals a time window for the COVID-
19 peak in Spain, within the range of 74 to 109 days after February 1st, i.e., 15/04/2020-
20/05/2020 as illustrated in Fig. 11. However, considering the square Euclidean distance, 
shown in Fig. 9, being considerably higher for values above 𝜂𝜂 = 2% we can reasonably 
assume that peak would be reached before the 86th day i.e., 27/05/2020 unless changes in 
the current condition of safety measures occur. 

5 Discussion 
Data-driven approaches in modelling and forecasting the dynamics of an infectious 
disease such as H1N1, SARS and Ebola have been well studied. To illustrate, Lega and 
Brown proposed the approximation of the parameters of a SIR model by fitting an 
inverted parabola to the new versus cumulative cases [Lega and Brown (2016)]. 
Similarly, an agent-based approach is adopted by Venkatramanan et al. [Venkatramanan, 
Lewis, Chen et al. (2017)] to model the Ebola outbreak by including qualitative data.  
In addition, application of AI (and particularly DNN) has been proven very useful to the 
fight against COVID-19 pandemic [Wang, Kang, Ma et al. (2020); Ozturk, Muhammed, 
Yildirim et al. (2020)]. In this study, the application of a DNN has been investigated for the 
identification and optimization of SIR model parameters based on actual healthcare data, 
for Spanish population within the time period from 20/02-07/04/2020. Based on this, a 
prediction of the peak date within the time period of 15/04/2020-20/05/2020 is reported.  
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Figure 11: Days until peak5 of infected cases as a function of 𝜼𝜼 (red circle corresponds 
to the estimations shown in Figs. 8 and 10) 

To provide most accurate predictions, the optimized parameters as established in a 
training set were further validated in an independent test set within the same cohort. 
Apparently, as estimates are strongly related to the given population at each specific time 
point, the optimized parameters are subjected to changes occurring over the incubation 
expansion period of the viral infection within each specific region.  
Moreover, in this estimate, population immunity as a form of indirect protection from the 
infection, is not accounted as a variable considering that for population immunity to occur, 
a large percentage of a population has to become immune (basically disease and recover 
from the infection). Additionally, this prediction is based on the certain detection methods 
that are currently in clinical practice and consider that the detection policy (guidelines on 
testing of symptomatic population) will remain the same within the next weeks.  
Furthermore, the DNN developed in this paper is built upon a database of SIR models 
generated by random selection of its parameters. Essentially, this means that the behavior 
of the virus should follow the response of a typical SIR model. In reality, however, this 
might not be the case. Nevertheless, by approximating the evolution of the virus it is 
possible to obtain insights on the overall behavior of the virus. 
For instance, a regression model is developed by Magdon-Ismail for estimating the 
evolution of total infected people in USA [Magdon-Ismail (2020)]. The SIR model used 
in that study incorporates social distancing and lockdown through a lag variable. 
However, the model requires frequent re-tuning as the safety measures put in force 
change the evolution of the virus. 
Similarly, Dandekar et al. develop neural networks for estimating the evolution of active 
cases in Wuhan, Italy, South Korea and USA [Dandekar and Barbastathis (2020)]. In this 

 
5 Since the first case recorded in Spain i.e., 1st of February. 
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study, the neural networks are used as an ODE integrator meaning that both parameters 
𝛽𝛽 and 𝛾𝛾 as well as the weights of the neural network are optimized at the same time. The 
models are based on the SIR and the SEIR epidemiology models. The initial population 
consider in each model is the full population of each region i.e., 𝜂𝜂 = 100. Nevertheless, 
this approach overestimates the number of active cases, yet the initial population might 
also contribute to the over-estimations. 
In contrast, the proposed DNN in this paper is able to generalize in the recorded data 
even though they do not follow a typical SIR response. However, the SIR model 
approximates the active cases using a bell shaped curve thus exact fitting of the true data 
is not possible. For this, the squared Euclidean Distance is employed to identify the 
similarity with the recorded cases.  Finally, the DNN does not need retuning and it is not 
case specific meaning that it can predict the 𝛽𝛽 and 𝛾𝛾 parameters given data for the active 
cases for a 48-day period is available. 

6 Conclusions 
DNN models provide several advantages in handling big epidemiological data and for 
accurate peak predictions. Although the prediction estimates within this study can inform 
and guide measures, yet further studies on COVID-19 evolution curves are required to 
obtain the SIR model parameters, thus generating a population-dependent model.  
Nevertheless, the DNN is an advanced technique that has made possible to know the 
parameters of the SIR model that better adapts to the data of Spain (being this the studied 
case). Collectively, the simplicity of the proposed approach with the DNN allows 
identifying the SIR parameters for different COVID-19 evolution curves what it could 
help the scientific community to identify curves from different population sizes in 
contact with the virus. 
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