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Abstract: Coronavirus disease (COVID-19) is an extremely infectious disease and 
possibly causes acute respiratory distress or in severe cases may lead to death. There has 
already been some research in dealing with coronavirus using machine learning 
algorithms, but few have presented a truly comprehensive view. In this research, we show 
how convolutional neural network (CNN) can be useful to detect COVID-19 using chest 
X-ray images. We leverage the CNN-based pre-trained models as feature extractors to 
substantiate transfer learning and add our own classifier in detecting COVID-19. In this 
regard, we evaluate performance of five different pre-trained models with fine-tuning the 
weights from some of the top layers. We also develop an ensemble model where the 
predictions from all chosen pre-trained models are combined to generate a single output. 
The models are evaluated through 5-fold cross validation using two publicly available 
data repositories containing healthy and infected (both COVID-19 and other pneumonia) 
chest X-ray images. We also leverage two different visualization techniques to observe 
how efficiently the models extract important features related to the detection of COVID-
19 patients. The models show high degree of accuracy, precision, and sensitivity. We 
believe that the models will aid medical professionals with improved and faster patient 
screening and pave a way to further COVID-19 research. 
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1 Introduction 
The novel coronavirus disease 2019 (COVID-19) started in the Wuhan city, China, in 
December 2019 [Zhu, Zhang, Wang et al. (2020); Li, Guan, Wu et al. (2020)]. The 
common symptoms observed at that time were fever, cough, myalgia, or fatigue after 
clinical diagnosis of 41 patients and all the patients had pneumonia [Huang, Wang, Li et 
al. (2020)]. The complications were acute heart injury, severe respiratory distress 
syndrome, and other infections. Thirteen COVID-19 patients were hospitalized for 
intensive care unit (ICU) and six died. A research team Chan et al. [Chan, Yuan, Kok et 
al. (2020)] at the University of Hong Kong first time discovered the evidence of human-
to-human transmission of COVID-19.  
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Now, COVID-19 has turned into a pandemic and has affected almost 209 countries and 
territories around the world by April 08, 2020 [Worldometer (2020)]. Fig. 1 shows the 
spread of COVID-19 around the world as of April 20, 2020. On 30th January 2020, World 
Health Organization (WHO) has declared it as a Public Health Emergency of 
International Concern (PHEIC) [ICTV (2020)]. Unknown treatment, shortage of 
facilities, and stringent conditions of laboratory environment were seriously delaying 
precise diagnosis of suspected patients. This has created major challenges to stop the 
spread of the infection. Correct and fast COVID-19 diagnosis of suspected patients at the 
premature stage may play an important role in timely quarantine and treatment.  Fast 
detection of COVID-19 is very important for patients’ prognosis, epidemic control, and 
the security of public health.  

 
Figure 1: Coronavirus disease (COVID-19) map [Google N. (2020)] as of April 20, 2020 

Detection of nucleic acid is generally considered to identify the COVID-19 infection. Now, 
faster detection kits for coronavirus are available.  Nevertheless, chest X-rays and computed 
tomography (CT) scans remain largely as an efficient modality to detect and evaluate the 
pneumonia severity of patients [Chen, Zhou, Dong et al. (2020)]. In the initial stage of the 
COVID-19 infection, thinner layer scanning is usually required as an alternative of traditional 
CT scan for diagnosis. This process is very time-consuming, and the radiologists become 
burdened that lingers early isolation and diagnosis of patients, delays patients’ treatment and 
prognosis, and eventually, causes problem to control COVID-19 epidemic.  
COVID-19 epidemic is still uncontrolled in most of the countries and number of infected 
cases and deaths are rising every day. Researchers are also focusing on the learning-based 
mechanisms for detecting COVID-19 infection. Chest X-rays and CT scans are the adopted 
method of imaging to diagnose COVID-19 pneumonia.  This approach can be cost-effective 
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and will possibly take less time to perform the test. Machine learning and computer vision 
technology are now largely considered in the field of medical diagnosis. Machine learning 
models can identify early signs of a disease by examining medical images that doctors would 
overlook. However, the models generally require a huge data to learn from. 
Deep learning is a significant development in the domain of artificial intelligence during 
the last decade. It has great potential to extract minute features in image analysis [Liu, 
Liu and Zhang (2019)]. Hence, deep learning models are mostly considered for object 
recognition, image segmentation and classification, image change detection and in 
various areas of computer vision and image processing [Wang, Li, Zou et al. (2020); 
Wang, Jiang, Luo et al. (2019)]. Deep learning architecture such as CNN has extensive 
applications in medical image processing. A substantial amount of research has been 
conducted using deep learning for pulmonary nodules diagnosis, benign and malignant 
tumors classification, and disease prediction.  
Modern deep learning techniques based on CNN are also being applied for automatic image 
analysis in medical fields to facilitate clinical treatment [Celik, Talo and Yildirim (2020); 
Saba, Mohamed, El-Affendi et al. (2020); Yildirim, Talo, Ay et al. (2019)]. Large amount of 
data is often required to train these deep learning models with longer training period. 
However, one of the major hindrances faced by the researchers in medical data analysis is 
the limited availability of datasets. Transfer learning has been proven to be very useful in 
such scenario [Raghu, Zhang, Kleinberg et al. (2019); Ravishankar, Sudhakar, 
Venkataramani et al. (2016); Yosinski, Clune, Bengio et al. (2014)]. With transfer learning, 
knowledge learned from a deep learning model trained on a very large dataset is utilized in 
the target model to solve a similar problem. In other words, choose a model trained on a 
large dataset and apply its knowledge to a model with smaller dataset in a new domain.  
In the context of computer vision and deep learning, off-the-shelf pre-trained models 
constitute the core of transfer learning. These pre-trained models are based on large 
CNNs with significant depth and can learn hierarchical feature representations 
automatically. A typical CNN consists of a convolutional base created from a stack of 
convolutional and pooling layers and a classifier comprising of fully connected layers. 
The idea is that lower level convolutional layers compute mostly general high-level 
features that are similar across different images and can be reused. On the other hand, 
some of the upper level layers compute features that are specific to the chosen dataset. In 
this paper, we used a suit of pre-trained models built to solve computer vision problems 
which are trained on data from the ImageNet challenge [Canziani, Paszke and Culurciello 
(2016); Deng, Dong, Socher et al. (2009)]. There are two common strategies (as shown in 
Fig. 2) to use these pre-trained models for image classification problems: i) using the pre-
trained models as feature extractors without fine-tuning, and ii) using the pre-trained 
models after fine-tuning. We have adopted the second approach where we decided to 
fine-tune the models by re-training one third of the layers towards the upper level rather 
than re-train the models entirely. Consequently, we obtain fine-tuned pre-trained models 
with improved performance and reduced training time. We have used five different fine-
tuned pre-trained models and analyzed their performance. Thereafter, we employed an 
ensemble model where the predictions from all chosen pre-trained models are combined 
to generate a single output.   
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Figure 2: Strategies to use pre-trained models: (a) Freeze the convolutional base, (b) 
Train some upper-level layers and leave others frozen 

To evaluate the performance of the models used in this study, we have prepared an image 
dataset by collecting chest X-ray images of COVID-19 positive cases in addition to healthy 
and non-COVID pneumonia cases from two publicly available data sources [Cohen (2020); 
Kermany, Goldbaum, Valentim et al. (2018)]. Thus, the studied models are expected to 
effectively identify COVID-19 patients from other non-COVID pneumonia patients and 
healthy population. Moreover, we investigated by using two different visualization 
techniques that our models can extract important features (also called imaging biomarkers) 
related to coronavirus infection that will help health practitioners gain profound 
understanding associated to the detection of COVID-19 patients. 
The rest of the paper is organized as follows. ‘Related work’ section reviews the state-of-the-
art techniques used in COVID-19 detection. ‘Materials and methods’ provide detailed 
description of our model, its configuration, dataset used, and performance evaluation metrics. 
‘Results and discussion’ section presents the performance results obtained by the proposed 
models, qualitative analysis through visualization techniques, and state-of-the-art comparison. 
Finally, the paper concludes with ‘Conclusions’ and outlines some potential future work.  

2 Related work 
After the outbreak of COVID-19, a handful of related research has been conducted. We can 
categorize the areas of COVID-19 research as: (i) recommend antiviral drugs; (ii) forecast 
rates of infected patients and patient prognosis for facilitating healthcare service providers 
to prepare for better healthcare actions and find resources; (iii) develop COVID-19 
diagnostic tools to predict coronavirus from chest X-rays or CT images; (iv) mining social 
media data to better understand the coronavirus spread pattern in the areas and countries. In 
the following, we discuss some of the research progress. Deep learning techniques are 
being applied by researchers to model molecules or molecular interactions. In particular, 
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they are trying to identify the features that might possibly enable them to discover the 
vaccines or an operative antiviral. Zhang et al. [Zhang, Saravanan and Yang (2020)] made 
an effort to come up with an antiviral from other current antiviral using a deep learning 
model with a hope to benefit patients with coronavirus infection. They have used DenseNet 
transfer learning model to anticipate contacts of protein-ligand. They used coronavirus’s 
RNA sequences in addition to chemical compounds to recommend the best possible drug. 
Bo et al. [Bo, Bonggun, Yoonjung et al. (2020)] proposed a model that works based on 
calculating affinity values between COVID-19 target proteins and commercially available 
antiviral drugs to identify the drug that works the best.  
There has been some research to develop methods to model the coronavirus spread. Majority 
of the techniques work primarily based on shallow approaches for predicting spread of 
disease and mortality of patients. Hence, machine learning and deep learning-based models 
can play a significant role to obtain better results. Yan et al. [Yan, Zhang, Xiao et al. (2020)] 
presented a machine model which works based XG-Boost technique to predict the probability 
of survival for a COVID-19 infected patient considering some vital factors such as patient’s 
age. This aids health provides to decide whether the patient needs intensive care or not. In a 
subsequent effort, Fong et al. [Fong, Li, Deyet et al. (2020)] developed a machine learning 
model to predict early outbreak of COVID-19 leveraging various different techniques such as 
data  augmentation, model ensemble, and parameter fine-tuning to attain the maximum 
possible accuracy. Anastassopoulou et al. [Anastassopoulou, Lucia, Athanasios et al. (2020)] 
presented a model to forecast coronavirus spread in Hubei, China, by estimating the key 
epidemiological parameters using the publicly available data for a period of one month. Ran 
[Ran (2020)] proposed a model that can predict the spread of the virus with high accuracy for 
a short period such as one day. The model used Kalman filter algorithm that can demonstrate 
a future trend in the spread of the virus. 
Chakraborty [Chakraborty (2020)] proposed a deep learning approach to detect COVID-
19 using chest X-ray images. The reason is that chest X-ray images are more accessible 
than obtaining CT scans particularly in remote and rural areas. The model performance 
was significant even with the small dataset. However, the model is neither generalized 
nor fine-tuned. We believe that better results can be obtained with fine tuning the model 
and generalizing the model with more data. In an earlier open source research effort, 
COVID-Net [Wang and Wong (2020)] was proposed which is based on a CNN-based 
deep learning model for COVID-19 detection using chest X-ray images. However, the 
model uses a relatively fewer number (less than 100) of COVID-19 images for training 
and testing the model’s performance in addition to about 16,000 images of normal and 
pneumonia categories. Furthermore, Apostolopoulos et al. [Apostolopoulos and 
Mpesiana (2020)] presented a subsequent study on COVID-19 detection using transfer 
learning with chest X-ray images from open source data repositories. 
CT scan-based diagnosis of pneumonia cases related to coronavirus can potentially 
reduce diagnosis time and facilitate improved treatment. Radiologists become burdened 
quickly with large numbers of patients with ICUs. Deep learning techniques using CT 
scans can easily reduce the burden. There has been some research conducted on CT scan-
based images.  
Chen et al. [Chen, Wu, Zhang et al. (2020)] considered a UNet++ for extracting relevant 
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features from CT scans for classification. The model is trained on 40 k scans from 106 
patients. The model performed well with respect to precision and recall. Specifically, the 
model shows 100% sensitivity, 93.55% specificity, 95.24% accuracy, 84.62% PPV, and 
100% NPV on a patient level analysis. Using the model, radiologists’ reading time 
greatly reduced by 65%. However, the model needs to be tested with more cases. 
Wang et al. [Wang, Kang, Ma et al. (2020)] developed a deep learning technique to 
produce COVID-19’s graphical features from COVID-19 radiographical changes in CT 
images for providing a medical diagnosis before the pathogenic test, hence saving crucial 
time for controlling disease. Authors applied their model on 1065 CT images in which 
there are 325 images pathogen-confirmed COVID-19 cases with other 740 images of 
viral pneumonia, previously diagnosed. 
Xu et al. [Xu, Jiang, Ma et al. (2020)] proposed a similar approach as in Wang et al. 
[Wang, Kang, Ma et al. (2020)]. However, they used a relatively larger number of 
patients. The samples were collected from 509 patients that include 175 healthy ones 
from three hospitals in China. The precision and recall values obtained were considerably 
lower than in Xu et al. [Xu, Jiang, Ma et al. (2020)]. 
Jiang et al. [Jiang, Coffee, Bari et al. (2020)] proposed an algorithmic solution to identify 
COVID-19 clinical characteristics and developed an AI capability tool to predict patients’ 
severe outcomes at the initial stage including the possibility of developing acute 
respiratory distress syndrome.  
At present, the WWW can be employed to monitor diseases using search engines and 
social networking sites. Tracking the trends of different diseases can be possible between 
seven to ten days faster than the government agencies [Alessa and Faezipour (2018)].  
Social media contains huge information about symptoms and spread of the disease. This 
can help administration to take actions based on geographical locations such as areas and 
cities. Despite this, little research has been reported so far that works based on social 
media information. 

3 Materials and methods  
3.1 Pre-trained CNN models 
We have used the following CNN-based pre-trained predictive models to detect COVID-19 
cases from chest X-ray images: (a) VGG16 [Simonyan and Zisserman (2014)]; (b) 
ResNet50V2 [He, Zhang, Ren et al. (2016)]; (c)) Xception [Chollet (2017)]; (d) MobileNet 
[Howard, Zhu, Chen et al. (2017)]; (e) DenseNet121 [Huang, Liu and Weinberger (2016)]. 
VGG16 architecture was introduced by researchers from Oxford University which uses 3×3 
convolutional layers in increasing depth and max pooling layers to reduce volume size. It 
has two fully connected layers consisting each layer of 4096 nodes and achieves 92.7% test 
classification accuracy on the ImageNet dataset posed by ILSVRC-2012 classification 
challenge which contains more than 14 million images from over 20,000 categories. It 
contains 16 weight layers achieving performance improvement over its pioneer AlexNet 
[Krizhevsky, Sutskever and Hinton (2017)] by using multiple smaller sized filters. The 
ResNet50V2 model is based on the concept of deep residual learning which effectively 
addresses the vanishing gradient problem in deeper networks which dictates that with 
increasing depth (in traditional sequential network such as VGG), accuracy gets saturated 
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and drops abruptly. In residual learning, the network learns an identity function represented 
by a skip connection which allows the network to pass the input through the residual block 
devoid of passing it through some other weight layers. Thus, ResNet architecture solves the 
problem of degrading accuracy and allows the training of extremely deep network with 
standard SGD optimizer and skipping through less relevant layers by means of residual 
modules. The ResNet50V2 has 50 weight layers and shows significant reduction in model 
size and FLOPs compared to its plain counterparts (such as VGG16 and VGG19). The 
Xception model is an extreme version of Inception which extends the concept of Inception 
module by separately dealing with each output channel through the mapping of spatial 
correlations. This is followed by another step of capturing inter-channel correlation by 
performing 1×1 convolutions. MobileNet provides a simplified version of Xception 
focusing on a compressed structure while preserving the model accuracy. Finally, 
DenseNet121 represents the densely connected convolutional networks which need lesser 
parameters than a comparable customary CNN. In contrast to ResNets, layers in DenseNets 
are incredibly constricted and apply merely 12 filters with a small number of new feature-
maps. DenseNet121 improves training time by directly obtaining gradient values from the 
loss function and gaining direct access to input image. This substantially lowers 
computation cost and makes this a better alternative. 
In this study, we used the above pre-trained models with weights from their convolutional 
layers as feature extractors to substantiate transfer learning in detecting COVID-19 cases 
from chest X-ray images. We removed the predicting layers (i.e., classifier) of the pre-
trained CNNs and added our own classifier consisting of a global average pooling layer 
(GAP) and two dense layers containing 256 and 3 neurons, respectively. Global average 
pooling (GAP) layer is considered right after the last block of convolution as a better 
replacement of flattening to reduce overfitting by minimizing the size of model 
parameters. The GAP layer reduces spatial dimensions of a 3-dimensional tensor having 
size h×w×d to 1×1×d tensor by simply taking the average of all hw pixel values of each 
h×w feature map to single number [Lin, Chen and Yan (2013)]. Fig. 3 shows the block 
diagram of the modified pre-trained models with our new classifier.  

 
Figure 3: Modified architecture of pre-trained models  

We used the above pre-trained models by fine-tuning the models in part to minimize the 
categorical cross-entropic loss without abruptly changing the pre-trained weights with an 
appropriate selection (details will follow in the section of model configurations) of 
learning rate and optimizer. Since lower level convolutional layers in the networks learn 
common features, we decided to freeze their weights in the pre-trained models during the 
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training. On the other hand, high level layers compute features that are specific to the task 
at hand. Thus, we decided to fine-tune the models by re-training one third of the layers 
towards the upper level rather than re-train the models entirely. Consequently, we obtain 
fine-tuned pre-trained models with improved performance and reduced training time.   
 

3.1.1 Building the model ensemble 
Ensemble of models represents the process of combining predictions from various machine 
learning and deep learning models to produce a final predictive output. This guides to the 
opening of diversified prospect of representational capability of the models. Model 
ensembles are incredibly popular improvement to customary machine learning models such 
as forming random forests from decision trees. Unlike machine learning models, deep 
learning models require longer training time and hence constructing an ensemble of models 
by training deep learning models from scratch is impractical. We build the ensemble of 
models (as shown in Fig. 4) by adopting a simple technique where the predictions from 
various pre-trained CNN models are combined to generate a single prediction vector and a 
final output is obtained by majority voting. This works by summing up the output 
probabilities from softmax layer of each pre-trained model in the ensemble and the final 
output corresponds to the maximum value from the resultant vector. The best performing 
model ensemble is then selected from the set of all model combinations. 
 
3.2 Dataset generation and computation resources 
In this study, we have used chest X-ray images to detect COVID-19 cases since previous 
studies have shown great success in diagnosing infectious and other diseases such as 
pneumonia, malaria, lung cancer, breast cancer and so on using X-ray images. Moreover, 
it is justified to use X-ray images to detect COVID-19 cases by analyzing patients’ lungs 
since the novel coronavirus infects the epithelial cells in the lining of the respiratory tract. 
Currently, due to the unavailability of an appropriate COVID-19 radiography image 
datasets, we have created an image dataset to be used in this study by collecting chest X- 
ray images of COVID-19 positive and non-COVID patients from multiple open access 
data sources. COVID-19 X-ray images were collected from a publicly available GitHub 
repository created by Cohen [Cohen (2020)]. This data also contains X-ray and CT 
images of patients suffering from other diseases such as ARDS (acute respiratory distress 
syndrome), MERS (Middle East respiratory syndrome), SARS (severe acute respiratory 
syndrome) and pneumonia. To facilitate our study, we also collected non-COVID chest 
X-ray images from the Guangzhou Women and Children’s Medical Center [Kermany, 
Goldbaum, Valentim et al. (2018)] which contains images of normal, pneumonia 
bacterial and pneumonia viral categories.  
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Figure 4: Optimal ensemble selection from pre-trained models using majority voting 

It is important to note that a very limited amount of public X-ray data is available for 
COVID-19 cases which emphasizes the need for improving the existing repository of 
data as more new cases are identified to expand the dataset. As such, we have collected a 
total of 226 images with confirmed COVID-19 cases from the first repository mentioned 
above. To make a balanced dataset, we have collected non-COVID chest X-ray images 
from the second repository consisting of 452 images divided into 226 images with normal 
condition and 226 images with both bacterial and viral pneumonia cases. Hence, our 
curated dataset contains a total of 678 images from all three categories. As more images 
with COVID-19 cases become available over time, we will increase the size of our 
curated dataset by adding the new COVID-19 images with the same number of images of 
each category from the second data repository. 
The collected COVID-19 and non-COVID images in the prepared dataset are not of equal 
sizes. We plan to resize the images to 224×224 and 299×299 which are the standard input 
image sizes of the selected pre-trained CNN models for faster model convergence. Fig. 5 
shows some sample images from both normal and infected categories. The normal chest X-
ray image shows clear lungs and does not have any irregular “opacification” area. Bacterial 
pneumonia image usually shows a focal non-segmental pattern in the image indicated with 
white arrows in the upper right lobe whereas viral pneumonia image seems to display thin 
“interstitial’’ pattern in both lungs. The proposed deep transfer learning models will be used 
to identify these patterns in X-ray images to effectively differentiate COVID patients.  

    
 

Figure 5: Sample X-ray images from our curated dataset (a) Normal; (b) Bacterial 
Pneumonia; (c) Viral Pneumonia; (d) COVID-19 

(a) (b) (c) (d) 
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3.2.1 Pre-processing and image augmentation 
Data scaling is an important pre-processing task for training and evaluating neural network 
models. Unscaled input image data often results in a slow or unstable learning process. We 
have scaled the input data using a scaling technique called normalization. Normalization 
refers to the process of rescaling input data from original range to the range between 0 and 
1. Since our dataset contains 8-bit RGB color images, the range of pixel values is between 0 
and 255. Hence, we rescale our data using following formulation: 

𝑧𝑧 = 𝑥𝑥−min(𝑥𝑥)
max(𝑥𝑥)−min(𝑥𝑥)

= 𝑥𝑥
255

                                                                                                   

(1) 

Furthermore, we attempted to improve the quality and size of the dataset by using various 
data augmentation techniques which have been used in improving performances in image 
classification problems in medical fields [Araújo, Guilherme, Eduardo et al. (2017); Frid-
Adar, Eyal, Michal et al. (2018)]. Image data augmentation will artificially increase the 
size of our training dataset to address the limited size of our dataset. To this end, certain 
data augmentation techniques are applied on training images which also assist in 
addressing overfitting problems and in increasing model’s generalizability during 
training. Tab. 1 summarizes the augmentation techniques applied on our training dataset.  
The zoom range is used to zoom in (magnify) or zoom out (reduce) the image based on a 
randomly picked value in the range of 1±0.1 (in this case). If the value is less than 1.0 it 
zooms in the image and if it is greater than 1.0 then it zooms out the image. The shear 
range slants the shape of the image in counterclockwise direction with a value of 0.1 
radian. The rotation range refers to the rotation angle in degrees (i.e., 15 degrees) which 
is then used to produce images randomly in the range -15 to +15. We used width shifting 
of 0.1 which specifies the upper bound on the faction of total width to shift the mages 
randomly in horizontal manner (i.e., x-direction). Similarly, height shifting of 0.1 
specifies the upper bound on the faction of total height to shift the mages randomly in 
vertical manner (i.e., y-direction). We also used a nearest type of fill mode in which the 
empty values are filled by choosing and repeating the closest pixel values. Lastly, 
horizontal flip causes the images to be flipped horizontally. 

Table 1: Image augmentation configurations 

Augmentation type Values 
zoom range 0.1 
shear range 0.1 
rotation range 15 
width shift 0.1 
height shift 0.1 
horizontal flip true 
fill mode nearest 
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3.2.2 Cross-validation studies  
Generally, dataset is split into training and test sets to train the model with training set 
and to test the model with test set. This process, however, is not very consistent since the 
performance results can be very diverse across multiple test sets. K-fold cross validation 
is utilized to address this problem where the entire data samples are divided into K equal 
parts and each part in turn is used as validation data to test the model. Hence, our pre-
trained models used in this study were evaluated through 5-fold cross validation to lower 
generalization error. The results obtained from cross-validation are then averaged to yield 
a single estimate. We split the data (as shown in Fig. 6) into training, validation, test sets 
randomly with a ratio of 60:20:20 for the purpose of cross-validation studies and final 
evaluation of the model. The number of X-ray images for each set of data in different 
categories are given in Tab. 2. 

 
Figure 6: Dataset partitioning 

3.2.3 Computational resources 
For training and performance evaluation of our proposed pre-trained CNN models, we 
used Google Colab [Colab (2020)] which is a free Jupyter notebook environment entirely 
running on the cloud. Colab offers a fully configured run time for deep learning and 
access to a robust graphical processing unit (GPU) at no cost. Currently, it provides a 
single CUDA enabled 16 GB NVIDIA Tesla P100 GPU and comes with pre-installed 
Python 3 with Keras 2.2.5 API and TensorFlow 1.15.0 at the backend.  

Table 2: Training, validation, and test data sets 
Set Count Percent 

Normal Pneumonia COVID-19 
Training 135 135 135 60% 

Validation 46 46 45 20% 
Test 45 45 46 20% 

Total 226 226 226 100% 

3.3 Model configurations and evaluation metrics 
We have used dropout regularization (with a dropout ratio of 0.15) in our custom classifier 
to reduce overfitting and to improve network generalization error by randomly dropping 
out nodes during model training [Srivastava, Hinton, Krizhevsky et al. (2014)]. The output 
from the GAP layer followed by a dropout is passed to the first (fully connected) dense 
layer having 256 neurons. First dense layer output is then fed to a dropout and then passed 
to the second dense layer with three neurons and a Softmax classifier.  
We have used Adam optimizer [Kingma and Ba (2015)] for training and optimizing the 
model in order to minimize categorical cross-entropic loss. The optimizer is configured 
with an initial learning rate of 0.001 and a decay of 0.00002 which is calculated by 
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dividing the initial learning rate by the number of epochs used for model training. 
Learning rate is thought to be one of the most dominating hyperparameters in a neural 
network configuration. We used an automatic optimal learning rate finder technique first 
introduced by Smith [Smith (2017)] to find an optimal learning rate that the models can 
start training with.  
 
3.3.1 Automatic learning rate finder 
Smith [Smith (2017)] proposes an algorithm to find optimal learning rates automatically 
for model training. Fig. 7 shows different steps of determining minimum and maximum 
learning rates for our neural network architecture. The algorithm starts by setting a very 
small (1e-10) and a very large (1e+1) value for lower and upper bound of learning rates to 
train the model. As training continues, learning rate is increased exponentially after every 
batch update and loss is recorded as well. Typically, training runs for 3 to 5 epochs before 
the learning rate hits the upper bound. At this point, we plot a smoothed curve for loss 
and learning rate over the training epochs and identify two values for learning rates. First, 
the learning rate which causes the loss start decreasing and the second value of learning 
rate that causes the loss start increasing. Fig. 8 demonstrates the loss for various learning 
rates for our model using automatic learning rates finder.   

Figure 7: The process of finding optimal learning rates automatically 

 

Figure 8: Model loss for various learning rates to identify optimal lower and upper 
bounds on learning rate 
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As seen from the plot, loss remains constant until the learning rate drops to approximately 
1e-8. This implies that the model is not learning due to very low initial learning rates. When 
the learning rate reaches approximately 1e-7 the loss starts to decrease implying that the 
model starts to learn due to a large enough learning rate. The loss continues to decrease 
sharply indicating that the model is learning rapidly until the learning rate decreases to 
approximately 1e-3 where loss starts to increase again. Based on this observation we choose 
1e-3 as the initial learning rate in our optimizer for model training. Finally, Tab. 3 shows the 
summary of our model configurations including hyperparameters. 

3.3.2 Evaluation metrics  
As stated earlier, we have chest X-ray data samples in our created dataset from three 
different categories namely normal, pneumonia, and COVID-19. Based on this, we 
consider our COVID-19 detection problem as three-class classification problem which 
classifies all three types (normal, pneumonia, and COVID-19) of images.   

Table 3: Model configuration summary including hyperparameters 

Parameter  Value/Type 
Epochs 50 
Batch Size 8 
Optimizer Adam  
Learning Rates Initial rate (1e-3) with a decay of (initial_rate/epochs) 
Loss Function Categorical cross entropy 
Input Shape 224×224, 299×299 
Pooling GlobalAverage (Flatten layer) 
Activation  Softmax (Final dense layer) 
Dropout rate 0.15 
CNN Weights ImageNet 

The performance evaluation of our models was done in terms of accuracy, precision, 
recall, F1-score, specificity, and Area Under Curve (AUC). Accuracy is considered as our 
primary metric since this is an important metric if there are nearly balanced target classes, 
which is true for our classification problem. It is the number of correct predictions over 
all predictions made by the model. We used confusion matrix which contains False 
Positives (FP), True Positives (TP), False Negatives (FN), and True Negatives (TN) to 
determine precision, recall, F1-score, specificity, and also classification report to obtain 
values of precision and recall for each target class. In this case, TP specifies the correctly 
identified COVID-19 cases, while FP specifies normal or pneumonia cases that were 
incorrectly identified as COVID-19. In addition, TN represents normal or pneumonia 
cases that were identified as non COVID-19 cases, while FN specifies COVID-19 cases 
that were incorrectly classified as normal or common pneumonia cases. 
Precision measures the proportion of patients that are identified as COVID-19 infected 
are really infected by the virus. Recall or sensitivity measures the proportion of patients 
that are infected are diagnosed by the model as COVID-19 patients. Specificity is the 
opposite of recall which measures the proportion of patients that are not infected are 
diagnosed by the model as not carrying the virus. F1-score provides a single metric out of 
precision and recall by calculating their harmonic mean.  
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4 Results and discussions 
We have adopted the following approach to assess the performance of the proposed pre-
trained CNN models for identifying COVID-19 patients using chest X-ray images. First, 
we evaluated the performance of fine-tuned models in which one third of the layers 
towards the upper level are retrained to attain improved performance and reduced training 
time. Second, proposed ensemble models are evaluated in an attempt to investigate 
further performance improvement.  

Table 4: Performance metrics of pre-trained models with fine-tuning for the dataset with 
normal, pneumonia, and COIVD-19 images 

Model Accuracy AUC Precision Sensitivity Specificity F1-Score 
VGG16 94.11 95.47 95.83 95.65 97.67 95.73 

ResNet50V2 98.15 98.34 97.87 98.26 98.89 98.06 
MobileNet 97.94 98.45 97.83 97.83 98.86 97.83 
Xception 97.35 98.01 97.83 97.83 97.67 97.83 

DenseNet121 97.79 98.33 97.38 100 97.78 98.67 

Tab. 4 shows the performance metrics of our pre-trained models with fine tuning on the 
holdout test dataset. It is observed that ResNet50V2 and MobileNet outperformed the other 
pre-trained models almost in all performance metrics including accuracy, sensitivity and 
specificity. In this case, we can see that these two models achieve very impressive 
classification accuracy of about 98.15% and 97.94%, respectively on the holdout test dataset 
towards classifying COVID-19, pneumonia and healthy patients. Both the models show high 
values of sensitivity (98.26% and 97.83% respectively) and specificity (98.89% and 98.86% 
respectively) which are two very important performance measures for medical applications. 
Sensitivity of 98.26% implies that out of 100 positive COVID-19 cases, the models would 
only miss 1.74 cases in really identifying them as positive. In addition, specificity results 
imply that of the cases that are COVID-19 negative, the models would accurately detect them 
as COVID-19 negative 98.89% and 98.86% of the times respectively. It is worthwhile to 
mention that DenseNet121 showed the best value for sensitivity but achieved similar or lower 
values for accuracy and specificity as the other two models. 
Generic high-level features learned from ImageNet dataset by these models greatly contribute 
to the success of this classification task. A steady decrease in training and validation losses (as 
shown in Fig. 9) indicates a modest learning process by the models during the training period. 
The learning curves also indicate that the models are not overfitting to the training dataset 
albeit the size of the data is limited. This is largely due to the dropout regularization technique 
applied to the custom classifier parts of the pre-trained models and the use of image 
augmentation to combat the scarcity of available COVID-19 data samples.  
Tabs. 5 and 6 show the confusion matrix for the studied pre-trained models with fine-
tuning using the datasets containing COVID-19, normal and pneumonia samples. The 
values of TP, FP, TN and FN in Tab. 5 are calculated with respect to COVID-19 cases. 
First, we can see that False Negatives (FN) counts for both the top performing models 
(ResNet50V2 and MobileNet) are very few (i.e., 0 and 1) which contribute to higher 
values of sensitivity. FN indicates that the models identify a COVID-19 patient to be 
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healthy whereas the patient is infected. This is very detrimental to patient treatment and 
increases the risk of disease transmission. Second, the models also show a very few False 
Positive (FP) cases (i.e., 1) that are misidentified as COVID-19 infected which ultimately 
contributes to higher values of specificity as well as precision. It is very important to limit  

 

 
Figure 9: Training and validation loss and accuracy of two best performing models (a) 
ResNet50V2 (b) MobileNet, with fine-tuning using normal, pneumonia and COVID-19 
images 
FP counts which otherwise unnecessarily put financial burden on health providers. Based 
on these obtained results, we consider ResNet50V2 as our best performing model. Tab. 7 
shows the values for precision and sensitivity for all three classes in the dataset using 
ResNet50V2. It shows highest sensitivity for COVID-19 class while demonstrating 
highest precision for pneumonia class. 

Table 5: Confusion matrix for fine-tuned pre-trained models with respect to COVID-19 
class using dataset containing normal, pneumonia and COVID-19 samples 

Model TP FP TN FN 
VGG16 43 2 85 3 
ResNet50V2 46 1 87 0 
MobileNet 45 1 87 1 
Xception 44 0 88 2 
DenseNet121 46 2 86 0 

(a) 

(b) 
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Table 6: Confusion matrix for top two fine-tuned pre-trained models with dataset 
containing normal, pneumonia, and COVID-19 samples 

Model  Predicted Values 
 Actual Values COVID-19 Normal Pneumonia 
 

ResNet50V2 
COVID-19  46 

1 
0 

0 
44 
2 

0 
0 
43 

Normal 
Pneumonia 

 
MobileNet 

COVID-19  45 
1 
0 

0 
44 
2 

1 
0 
43 

Normal 
Pneumonia 

Table 7: Precision and sensitivity for each class using fine-tuned ResNet50V2 model 
Class Precision Sensitivity F1-Score 

COVID-19 98.0 100 99.0 
Normal 96.0 98.0 97.0 

Pneumonia 100 96.0 98.0 

To further improve the performance of the studied pre-trained CNN models, we 
evaluated the ensemble model (as shown in Tab. 8) by combining the prediction results 
from top four performing CNN models (such as ResNet50V2, MobileNet, Xception, and 
DenseNet121) to generate a single prediction vector and a final output is obtained by 
majority voting. This ensemble model used the same inputs as the individual fine-tuned 
CNN models and outperformed them in all performance metrics. A substantial diversity 
in the base CNN learners in this model ensemble resulted in less correlation in the 
predictions and thus yielded enhanced performance and generality.  

Table 8: Performance metrics of ensemble model for the dataset with normal, 
pneumonia, and COIVD-19 images 
 

Model Accuracy AUC Precision Sensitivity Specificity F1-Score 
Ensemble     99.26 99.44   97.87      100     98.89    98.89 

 
4.1 Heatmap visualization 
We also investigated how the studied models come to their conclusions in distinguishing 
COVID-19 cases from normal and other non COVID infections such as pneumonia. In 
other words, it is important to understand what the models are learning from the supplied 
data during training and validation. To accomplish this, we have used the concept of 
gradient-weighted class activation mapping (Grad-CAM) [Selvaraju, Abhishek, 
Ramakrishna et al. (2019)] that uses important areas of an image to predict the target 
classes. More specifically, Grad-CAM can be used to find out if our models are activating 
the correct locations in the images to come to the prediction decision. This gradient-based 
class activation technique works by locating the last convolutional layer of the model and 
then investigating the gradient data that is coming into that layer. The output represents a 
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heatmap visualization with respect to a particular class label that is used to verify in 
which portion of the image the model is looking at. Fig. 10 illustrates heatmap 
visualizations from ResNet50V2 of some example COVID-19 positive images indicating 
the critical (highlighted) areas within the lungs of the infected patients. This could be 
validated with clinical notes that would take experienced medical professionals to carry 
out rigorous testing and verification of these results. This is important to ensure that the 
proposed COVID-19 detector is relying on appropriate information to make decisions. To 
verify the consistency of prediction explanation obtained through Grad-CAM technique, we 
have also leveraged another feature importance visualization technique called LIME (Local 
Interpretable Model-Agnostic Explanations) [Marco, Sameer and Carlos (2016)] that 
provides local model interpretability. It is observed that both the methods are referring to 
nearly the same area of images as critical regions in identifying COVID-19 symptoms. 

 
 
 

 
 

Figure 10: Visualizing activation maps for COVID-19 positive images with Grad-CAM 
and LIME techniques (ResNet50V2 model) 
 
 

Grad-CAM Output on “image 1” LIME Output on “image 1” 

Grad-CAM Output on “image 2” LIME Output on “image 2” 
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4.2 Discussion 
We compared the performance results obtained by our best performing model and the 
model ensemble (as shown in Tab. 9) with the results obtained by two recent research on 
COVID-19 detection using similar datasets. Firsts, COVID-Net [Wang and Wong 
(2020)] based on a CNN-based deep learning model represents a relatively earlier effort 
on COVID-19 detection using chest X-ray images. COVID-Net uses a relatively fewer 
number (less than 100) of COVID-19 images for training as compared to our dataset. 
However, the number of training images used in each of normal and pneumonia 
categories is much higher (close to 10000) which makes their dataset rather imbalance. It 
reported accuracy, sensitivity, and precision (positive predictive value) of 92.4%, 91.33% 
and 88.67% respectively. COVID-Net leverages 111.6 million parameters to achieve this 
performance accuracy whereas our fine-tuned ResNet50V2 model attains higher accuracy  
(98.15%), sensitivity (98.26%) and precision (97.87%) with only about 24.1 million 
parameters. This results in a significant savings in terms of computation. Second, the 
authors in Apostolopoulos et al. [Apostolopoulos and Mpesiana (2020)] present a 
subsequent study on COVID-19 detection using transfer learning with chest X-ray 
images from a dataset containing the same number of COVID-19 positive images as our 
dataset. Their dataset is also largely imbalanced where they have used 504 healthy and 
714 pneumonia cases. As reported in their paper, they have achieved best performance 
using pre-trained MobileNetV2 network with sensitivity of 98.66% which is better than 
our fine-tuned ResNet50V2 model (98.26%). In terms of specificity, our ResNet50V2 
model performs better than its counterpart (MobileNetV2). Overall, the proposed 
ensemble model outperforms the state-of-the-art approaches to COVID-19 detection in 
terms of accuracy and sensitivity while showing similar results for precision and 
specificity.  

Table 9: Performance comparison of the proposed and state-of-the-art models 

Model Accuracy Precision Sensitivity Specificity AUC 
COVID-Net [Wang 
and Wong (2020)] 

    92.4   91.33      88.67        -     - 

[Apostolopoulos and 
Mpesiana (2020)] 
ResNet50V2 in this 
paper 

    94.72 
 
    98.15           

      - 
 

  97.87 

      98.66 
 

     98.26 

    96.46 
 

   98.89 

    - 
 

98.34 

Ensemble model in 
this paper 

    99.26   97.87      100    98.89 99.44 

Based on the performance and comparative results, it is worthwhile to deduce that CNN 
based deep learning models have significant impact on automatic detection of 
coronavirus disease patients by effectively extracting important features from chest X-ray 
images. At the same time, it is imperative to highlight some of the limitations of the 
current study which can potentially be addressed in future research. The major limitation 
is the inadequate availability of chest X-ray images from COVID-19 patients and thus the 
models were trained and tested using a small dataset containing few hundreds of images. 
An in-depth analysis of the models can be done as more new data becomes available. 
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Since accurate diagnostics necessitate a deeper understanding of radiological features 
(bio-markers) evident in chest X-ray images, the model interpretability results obtained 
by different tools need to be clinically verified by trained medical professionals. 
Nevertheless, our present study offers an automatic, faster and computationally cost-
effective solution to the diagnosis of COVID-19 patients. Furthermore, even though an 
appropriate line of treatment cannot be determined by merely screening an X-ray image, 
it can aid in adopting some early measures such quarantining the positive cases until a 
complete checkup and treatment are prescribed.  
 
5 Conclusions and future work 
In this study, we proposed an end-to-end deep learning model based on pre-trained CNNs 
to offer an early and automatic detection of COVID-19 patients to prevent the spread of 
the disease. The study leverages open source chest X-ray images of healthy, pneumonia, 
and COVID-19 cases. The curated dataset consists of 678 images containing 226 samples 
from each category. Our best performing fine-tuned model, ResNet50V2, achieves an 
accuracy of 98.15% in classifying healthy, coronavirus and pneumonia infected patients 
with a high degree of precision (97.87%) and sensitivity (98.26%). We also constituted a 
model ensemble consisting of four fine-tuned pre-trained models which further improves 
the performance metrics and outperforms two state-of-the-art approaches. Despite having 
the limitations discussed early, we believe that the results obtained from this work will 
benefit the radiologists and health practitioners to earn profound insights into important 
factors related to coronavirus infection. We also have demonstrated a good control on the 
model development by defining the COVID-19 detection problem as a three-class 
(normal, pneumonia, and COVID-19) classification problem to check if the model is 
really detecting coronavirus infection or merely detecting pulmonary edema (a condition 
causing excessive fluid in the lungs) which is usually looked for in the X-ray images to 
detect symptoms caused by many other common diseases. In future, to make our model 
more robust, we will increase the size of our curated dataset by adding the new COVID-
19 images as they become available. We also plan to better address COVID-19 detection 
problem as a multi-modal problem where heterogenous patient data will be collected 
from various sources such as patient vitals, area, density of population and so on.  
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