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Abstract: Fixed point theory is one of the most important subjects in the setting of metric 
spaces since fixed point theorems can be used to determine the existence and the 
uniqueness of solutions of such mathematical problems. It is known that many problems in 
applied sciences and engineering can be formulated as functional equations. Such equations 
can be transferred to fixed point theorems in an easy manner. Moreover, we use the fixed 
point theory to prove the existence and uniqueness of solutions of such integral and 
differential equations. Let X be a non-empty set. A fixed point for a self-mapping T on X is 
a point 𝑒𝑒 ∈ 𝑋𝑋 that satisfying T e=e. One of the most challenging problems in mathematics 
is to construct some iterations to faster the calculation or approximation of the fixed point 
of such problems. Some mathematicians constructed and generated some new iteration 
schemes to calculate or approximate the fixed point of such problems such as Mann et al. 
[Mann (1953); Ishikawa (1974); Sintunavarat and Pitea (2016); Berinde (2004b); Agarwal, 
O’Regan and Sahu (2007)]. The main purpose of the present paper is to introduce and 
construct a new iteration scheme to calculate or approximate the fixed point within a fewer 
number of steps as much as we can. We prove that our iteration scheme is faster than the 
iteration schemes given by Sintunavarat et al. [Sintunavarat and Pitea (2016); Agarwal, 
O’Regan and Sahu (2007); Mann (1953); Ishikawa (1974)]. We give some numerical 
examples by using MATLAB to compare the efficiency and effectiveness of our iterations 
scheme with the efficiency of Mann et al. [Mann (1953); Ishikawa (1974); Sintunavarat and 
Pitea (2016); Abbas and Nazir (2014); Agarwal, O’Regan and Sahu (2007)] schemes. 
Moreover, we introduce a problem raised from Newton’s law of cooling as an application 
of our new iteration scheme. Also, we support our application with a numerical example 
and figures to illustrate the validity of our iterative scheme. 
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1 Introduction 
Numerical analysis is one of the most important subjects in science because scientists 
used numerical analysis to approximate solutions of such important problems in our life. 
Somayeh et al. [Somayeh and Tofigh (2018)] obtained numerical solution of linear 
regression based on Z-numbers by improved neural network. Liu et al. [Liu, Liu, Luo et 
al. (2019)] proposed a new algorithm with good optimization performance to enhance 
exploitation of artificial bee colony algorithm and can improve both the accuracy and the 
convergence speed. Very recently, Arif et al. [Arif, Raza, Shatanawi et al. (2019)] 
employed numerical analysis to present numerical analysis for stochastic SLBR model of 
computer virus over the internet. 
Numerical analysis played a major role in constructing some iterations to approximate the 
existence of fixed points of such functions in fewer number of iterations as much as we 
can. The fixed point theory, which is basically used to study the existence and uniqueness of 
fixed point for functions under some conditions, has many applications in various scientific 
science fields such as physics, economics, some engineering topics, and many mathematical 
branches. In the rest of this paper, ℛ denotes to the set of real numbers, I denotes to an 
interval in ℛ, and 𝐶𝐶(𝐼𝐼) denotes to the set of all continuous real-valued functions on 𝐼𝐼. 
In mathematics, some problems can be formulated to fixed point problems, for example 
the solution of the integral equation 

𝑤𝑤(𝑡𝑡) = 𝑤𝑤0 + � 𝐻𝐻(𝑟𝑟,𝑤𝑤(𝑟𝑟))𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡0
, 

(1) 

where 𝐻𝐻: 𝐼𝐼 × ℛ → ℛ is a continuous mapping and 𝑤𝑤 ∈ 𝐶𝐶(𝐼𝐼) is equivalent to the fixed 
point of the mapping  𝐽𝐽:𝐶𝐶(𝐼𝐼) → 𝐶𝐶(𝐼𝐼) which defined by  

𝐽𝐽𝐽𝐽(𝑡𝑡) = 𝑤𝑤0 + � 𝐻𝐻(𝑟𝑟,𝑤𝑤(𝑟𝑟))𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡0
. 

(2) 

So, the attraction of a high number of researchers to study fixed point theory is 
understandable. 
It is worth mentioning that the Banach contraction theorem [Banach (1922)] is the first 
result in the subject of the fixed point theory. The Banach contraction theorem has been 
extended in many directions by modifying contractive conditions or extending the usual 
metric space to new forms such as G-metric spaces, partial metric spaces, cone metric 
spaces, Ω-distance mappings etc. 
Kannan [Kannan (1968)] extended the Banach contraction to a new type of contraction, 
called Kannan contraction. Moreover, Kannan utilized his contraction to generate and 
prove many existing results in the frame of the concept of metric spaces. 
In 1974, Ciric [Ciric (1974)] presented a generalization of the Banach contraction 
theorem by presenting a new type of contractive conditions. 
Kikkawa et al. [Kikkawa and Suzuki (2008)] studied three fixed point theorems for 
generalized contractions with constants in complete metric spaces as a generalization of 
Banach contraction theorem. While, Suzuki [Suzuki (2008)] studied a generalization of 
the Banach contraction principle that characterizes metric completeness. 
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Aydi et al. [Aydi, Shatanawi and Vetro (2011)] generalized the Banach contraction 
theorem by generating a weak contraction in G-metric spaces.  
Very recently, Mukheimer et al. [Mukheimer, Mlaiki, Abodayeh et al. (2019)] 
introduced new contractions and presented some theorems as a generalization of 
Banach fixed point theorem. 
Some authors generalized the Banach contraction theorem by generating a new 
contractions on Ω-distance mappings, for example see Abu-Irwaq et al. [Abu-Irwaq, 
Shatanawi, Bataihah et al. (2019); Nuseir, Shatanawi, Abu-Irwaq et al. (2017); 
Shatanawi, Maniu, Bataihah et al. (2017)].  
Aydi et al. [Aydi, Postolache and Shatanawi (2012)] introduced a new contractive 
condition based on a pair of functions (ψ, Φ), and studied some new fixed point 
theorems.  Also, Aydi et al. [Aydi, Shatanawi, Postolache et al. (2012)] utilized Boyd-
Wong-type contractions to introduce some results in ordered metric spaces as a 
generalization of Banach contraction theorem.  
For more modifications of Banach contraction theorem, see Aydi  et al. [Aydi, Karapinar 
and Shatanawi (2012); Bataihah, Shatanawi and Tallafha (2020); Choudhury and Kundu 
(2010); Shatanawi (2018); Shatanawi and Abodayeh (2019); Shatanawi and Postolache 
(2013)]. Berinde [Berinde (2004a)] generalized the Banach contraction theorem by 
introducing a weak contraction on the concept of metric spaces. The weak contraction in 
sense of Berinde is given as follows: 
Definition 1  
Let (𝑋𝑋, 𝑝𝑝) be a metric space and 𝑇𝑇:𝑋𝑋 → 𝑋𝑋 be a self-mapping.  Then T is called a weak 
contraction if there exist 𝑎𝑎 ∈ [0,1) and 𝑏𝑏 ≥ 0 such that 
𝑝𝑝(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ 𝑎𝑎 𝑝𝑝(𝑠𝑠, 𝑒𝑒) + 𝑏𝑏 𝑝𝑝(𝑠𝑠,𝑇𝑇𝑇𝑇),𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠, 𝑒𝑒 𝜖𝜖 𝑋𝑋.    (3) 
Moreover, Berinde showed that every weak contraction T on a complete metric space has 
a fixed point.  
One of the most attractive subjects in mathematics is to approximate the fixed point by 
using iterations and construct new schemes to faster the approximation of the fixed point 
of such problems in fewer number of steps. Recently, many authors introduced some 
iterations to speed the rate of convergence of the fixed point.  
In this subject, Berinde [Berinde (2004b)] introduced the following important definitions 
regarding the rate of convergence. 
Definition 2 
Let (𝛼𝛼𝑛𝑛) and (𝛽𝛽𝑛𝑛) be two sequences of real numbers. Also, let  𝛼𝛼,𝛽𝛽, 𝑙𝑙 ∈ ℛ be such that 
 lim
𝑛𝑛→∞

𝛼𝛼𝑛𝑛 = α and lim
𝑛𝑛→∞

𝛽𝛽𝑛𝑛 = β. Suppose that lim
𝑛𝑛→∞

|𝛼𝛼𝑛𝑛−𝛼𝛼|
|𝛽𝛽𝑛𝑛−𝛽𝛽|

= 𝑙𝑙. 

1. If l=0, then it can be said that  (𝛼𝛼𝑛𝑛) converges to 𝛼𝛼 faster than (𝛽𝛽𝑛𝑛) to 𝛽𝛽. 

2. If 0 < 𝑙𝑙 < ∞, then it can be said that (𝛼𝛼𝑛𝑛) and (𝛽𝛽𝑛𝑛) have the same rate of convergence. 
Definition 3  
Let (𝑋𝑋, ∥. ∥) be a normed linear space and let (𝑝𝑝𝑛𝑛) 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑞𝑞𝑛𝑛) be two sequences in X. 
Suppose that  (𝑝𝑝𝑛𝑛) 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑞𝑞𝑛𝑛) converge to a point 𝑧𝑧 ∈ 𝑋𝑋 and the error estimates 
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 ∥ 𝑝𝑝𝑛𝑛 − 𝑧𝑧 ∥≤ 𝛼𝛼𝑛𝑛 and ∥ 𝑞𝑞𝑛𝑛 − 𝑧𝑧 ∥≤ 𝛽𝛽𝑛𝑛  are available, where (𝛼𝛼𝑛𝑛)  and (𝛽𝛽𝑛𝑛)  are non-
negative real sequences that converging to zero. If (𝛼𝛼𝑛𝑛)  converges to zero faster than 
(𝛽𝛽𝑛𝑛), then it can be said that (𝑝𝑝𝑛𝑛) converges to z faster than (𝑞𝑞𝑛𝑛). 
From now on, Y represents to a normed linear space, 𝐶𝐶 represents to a convex subset of Y 
and (𝑎𝑎𝑛𝑛), (𝑏𝑏𝑛𝑛) and (𝑐𝑐𝑛𝑛) represent real sequences in the interval [0, 1]. 
In 1953, Mann [Mann (1953)] presented an iteration process (𝑀𝑀𝑛𝑛) by the sequence (𝑥𝑥𝑛𝑛) 
to approximate a fixed point, which is defined as follows: 

�
𝑥𝑥0 ∈ 𝑌𝑌                                         
𝑥𝑥𝑛𝑛+1 = (1 − 𝑎𝑎𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝑎𝑎𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛. 

(4) 

While, Ishikawa [Ishikawa (1974)] presented an iteration process  (𝐼𝐼𝑛𝑛) by the sequence 
(𝑥𝑥𝑛𝑛) which is defined as follows: 

�
 𝑥𝑥0 ∈ 𝑌𝑌                                        
𝑦𝑦𝑛𝑛 = (1 − 𝑏𝑏𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝑏𝑏𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛   

  𝑥𝑥𝑛𝑛+1 = (1 − 𝑎𝑎𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝑎𝑎𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛.
 

                                                                 (5) 

It is worth mentioning that the iteration process of Ishikawa is faster than the iteration 
process of Mann. 
In the last decade, Agarwal et al. [Agarwal, O’Regan and Sahu (2007)] presented an 
iteration process (𝐴𝐴𝐴𝐴𝑆𝑆𝑛𝑛) by the sequence (𝑠𝑠𝑛𝑛) which is defined as follows: 

�
 𝑠𝑠0 ∈ 𝑌𝑌                                        
𝑦𝑦𝑛𝑛 = (1 − 𝑏𝑏𝑛𝑛)𝑠𝑠𝑛𝑛 + 𝑏𝑏𝑛𝑛𝑇𝑇𝑠𝑠𝑛𝑛   

  𝑠𝑠𝑛𝑛+1 = (1 − 𝑎𝑎𝑛𝑛)𝑇𝑇𝑇𝑇𝑛𝑛 + 𝑎𝑎𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛.
 

 
(6) 

It is worth noting that the iteration scheme of Agarwal et al. is faster than Mann [Mann 
(1953)] and Ishikawa [Ishikawa (1974)] iteration schemes. 
Recently, Abbas et al. [Abbas and Nazir (2014)] introduced the following iteration 
scheme to speed the rate of convergence as much as they can. Also, they proved that their 
iteration scheme is faster than the iteration scheme given by Agarwal et al. [Agarwal, 
O’Regan and Sahu (2007)]: 

⎩
⎨

⎧
 𝑠𝑠0 = 𝑠𝑠 ∈ 𝑌𝑌                                        
𝑠𝑠𝑛𝑛+1 = (1 − 𝑏𝑏𝑛𝑛)𝑇𝑇𝑦𝑦𝑛𝑛 + 𝑏𝑏𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛   

 𝑦𝑦𝑛𝑛 = (1 − 𝑎𝑎𝑛𝑛)𝑇𝑇𝑇𝑇𝑛𝑛 + 𝑎𝑎𝑛𝑛𝑇𝑇𝑧𝑧𝑛𝑛
 𝑧𝑧𝑛𝑛 = (1 − 𝑐𝑐𝑛𝑛)𝑠𝑠𝑛𝑛 + 𝑎𝑎𝑛𝑛𝑇𝑇𝑠𝑠𝑛𝑛.

 

 
(7) 

In 2016, Sintunavarat et al. [Sintunavarat and Pitea (2016)] presented an iteration scheme 
(𝑆𝑆𝑛𝑛) by the sequence (𝑡𝑡𝑛𝑛) as follows: 

⎩
⎨

⎧
 𝑡𝑡0 ∈ 𝐶𝐶                                         
𝑦𝑦𝑛𝑛 = (1 − 𝑏𝑏𝑛𝑛)𝑡𝑡𝑛𝑛 + 𝑏𝑏𝑛𝑛𝑇𝑇𝑡𝑡𝑛𝑛     
𝑧𝑧𝑛𝑛 = (1 − 𝑐𝑐𝑛𝑛)𝑡𝑡𝑛𝑛 + 𝑐𝑐𝑛𝑛𝑦𝑦𝑛𝑛        

  𝑡𝑡𝑛𝑛+1 = (1 − 𝑎𝑎𝑛𝑛)𝑇𝑇𝑇𝑇𝑛𝑛 + 𝑎𝑎𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛.

 

 
(8) 

The aim of the present paper is to introduce a new scheme to speed the approximation of 
a fixed point of such problems as much as we can. Also, we present some numerical 
examples to show the efficiency and effectiveness of our new scheme.  
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2 New iterative scheme with analytic proof 
In this section, we introduce a four-step iterative scheme to approximate a fixed point for 
contraction mappings of weak type. Let 𝐶𝐶  be a nonempty closed convex subset of a 
Banach space Y and T be a self-mapping on C. We define the iteration scheme (𝑆𝑆𝑆𝑆𝑇𝑇𝑛𝑛) by 
the sequence (𝑥𝑥𝑛𝑛) as follows: 

⎩
⎪
⎨

⎪
⎧

𝑥𝑥0 ∈ 𝐶𝐶                                            
𝑦𝑦𝑛𝑛 = (1 − 𝑏𝑏𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝑏𝑏𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛         
𝑧𝑧𝑛𝑛 = (1 − 𝑐𝑐𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝑐𝑐𝑛𝑛𝑦𝑦𝑛𝑛            
𝑤𝑤𝑛𝑛 = (1 − 𝑎𝑎𝑛𝑛)𝑇𝑇𝑧𝑧𝑛𝑛 + 𝑎𝑎𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛      

𝑥𝑥𝑛𝑛+1 = (1 − 𝑑𝑑𝑛𝑛)𝑇𝑇𝑇𝑇𝑛𝑛 + 𝑑𝑑𝑛𝑛𝑇𝑇𝑤𝑤𝑛𝑛.             

 

 
 

(9) 

Theorem 1  
Let (𝑌𝑌, ||. ||) be a Banach space. Suppose that 𝐶𝐶  is a closed convex subset of Y and 
𝑇𝑇:𝐶𝐶 → 𝐶𝐶 be a self-mapping. Assume that T satisfies condition (3) and 𝑢𝑢 is a fixed point 
of T. Suppose that (𝑥𝑥𝑛𝑛) is the sequence in Y, defined by the iteration process(𝑆𝑆𝑆𝑆𝑇𝑇𝑛𝑛). 
Also, assume that (𝑎𝑎𝑛𝑛), (𝑏𝑏𝑛𝑛), (𝑐𝑐𝑛𝑛) and (𝑑𝑑𝑛𝑛) are sequences in [𝑎𝑎, 1 − 𝑎𝑎], [𝑏𝑏, 1 − 𝑏𝑏], [𝑐𝑐, 1 −
𝑐𝑐]  and [𝑑𝑑, 1 − 𝑑𝑑]  respectively, where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ �0, 1

2
 �.  If 𝑎𝑎 < 𝑐𝑐

1−𝑐𝑐
, t hen the iteration 

process (𝑆𝑆𝑆𝑆𝑇𝑇𝑛𝑛) converges to 𝑢𝑢 faster than (𝑆𝑆𝑛𝑛). 
Proof: For each natural number n, (𝑆𝑆𝑆𝑆𝑇𝑇𝑛𝑛) implies that 
∥ 𝑥𝑥𝑛𝑛+1 − 𝑢𝑢 ∥=∥ (1 − 𝑑𝑑𝑛𝑛)𝑇𝑇𝑧𝑧𝑛𝑛 + 𝑑𝑑𝑛𝑛𝑇𝑇𝑤𝑤𝑛𝑛 − 𝑢𝑢 ∥ 

≤ (1 − 𝑑𝑑𝑛𝑛) ∥ 𝑇𝑇𝑧𝑧𝑛𝑛 − 𝑢𝑢 ∥ +𝑑𝑑𝑛𝑛 ∥ 𝑇𝑇𝑤𝑤𝑛𝑛 − 𝑢𝑢 ∥ 
≤ 𝑘𝑘(1 − 𝑑𝑑𝑛𝑛) ∥ 𝑧𝑧𝑛𝑛 − 𝑢𝑢 ∥ +𝑘𝑘𝑘𝑘𝑛𝑛 ∥ 𝑤𝑤𝑛𝑛 − 𝑢𝑢 ∥. 

So,  
∥ 𝑥𝑥𝑛𝑛+1 − 𝑢𝑢 ∥≤ 𝑘𝑘(1 − 𝑑𝑑𝑛𝑛) ∥ 𝑧𝑧𝑛𝑛 − 𝑢𝑢 ∥ +𝑘𝑘𝑘𝑘𝑛𝑛 ∥ 𝑤𝑤𝑛𝑛 − 𝑢𝑢 ∥. (10) 
Now, a 
∥ 𝑧𝑧𝑛𝑛 − 𝑢𝑢 ∥=∥ (1 − 𝑐𝑐𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝑐𝑐𝑛𝑛𝑦𝑦𝑛𝑛 − 𝑢𝑢 ∥ 

=∥ (1 − 𝑐𝑐𝑛𝑛)(𝑥𝑥𝑛𝑛 − 𝑢𝑢) + 𝑐𝑐𝑛𝑛(𝑦𝑦𝑛𝑛 − 𝑢𝑢) ∥ 
≤ (1 − 𝑐𝑐𝑛𝑛) ∥ (𝑥𝑥𝑛𝑛 − 𝑢𝑢) ∥ +𝑐𝑐𝑛𝑛 ∥ (𝑦𝑦𝑛𝑛 − 𝑢𝑢) ∥. 

Also,  
∥ 𝑦𝑦𝑛𝑛 − 𝑢𝑢 ∥=∥ (1 − 𝑏𝑏𝑛𝑛)𝑥𝑥𝑛𝑛 + 𝑏𝑏𝑛𝑛𝑇𝑇𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥ 

=∥ (1 − 𝑏𝑏𝑛𝑛)(𝑥𝑥𝑛𝑛 − 𝑢𝑢) + 𝑘𝑘𝑏𝑏𝑛𝑛(𝑥𝑥𝑛𝑛 − 𝑢𝑢) ∥ 
≤ (1 − 𝑏𝑏𝑛𝑛) ∥ (𝑥𝑥𝑛𝑛 − 𝑢𝑢) ∥ +𝑘𝑘𝑏𝑏𝑛𝑛 ∥ (𝑥𝑥𝑛𝑛 − 𝑢𝑢) ∥. 

Thus,  
∥ 𝑦𝑦𝑛𝑛 − 𝑢𝑢 ∥≤ (1 − (1 − 𝑘𝑘)𝑏𝑏𝑛𝑛) ∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥ (11) 
Hence, 
∥ 𝑧𝑧𝑛𝑛 − 𝑢𝑢 ∥≤ (1 − (1 − 𝑘𝑘)𝑏𝑏𝑛𝑛𝑐𝑐𝑛𝑛) ∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥ (12) 
Now,  
∥ 𝑤𝑤𝑛𝑛 − 𝑢𝑢 ∥=∥ (1 − 𝑎𝑎𝑛𝑛)𝑇𝑇𝑧𝑧𝑛𝑛 + 𝑎𝑎𝑛𝑛𝑇𝑇𝑦𝑦𝑛𝑛 − 𝑢𝑢 ∥ 

=∥ (1 − 𝑐𝑐𝑛𝑛)(𝑇𝑇𝑇𝑇𝑛𝑛 − 𝑢𝑢) + 𝑐𝑐𝑛𝑛𝑇𝑇(𝑦𝑦𝑛𝑛 − 𝑢𝑢) ∥ 
≤ 𝑘𝑘(1 − 𝑎𝑎𝑛𝑛) ∥ (𝑧𝑧𝑛𝑛 − 𝑢𝑢) ∥ +𝑘𝑘𝑎𝑎𝑛𝑛 ∥ (𝑦𝑦𝑛𝑛 − 𝑢𝑢) ∥. 
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By (10) and (11), we have 
∥ 𝑤𝑤𝑛𝑛 − 𝑢𝑢 ∥≤ {𝑘𝑘(1 − 𝑎𝑎𝑛𝑛)(1 − (1 − 𝑘𝑘)𝑏𝑏𝑛𝑛𝑐𝑐𝑛𝑛) + 𝑘𝑘𝑎𝑎𝑛𝑛(1 − (1 − 𝑘𝑘)𝑏𝑏𝑛𝑛)} ∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥ 

= 𝑘𝑘{(1 − 𝑎𝑎𝑛𝑛)(1 − (1 − 𝑘𝑘)𝑏𝑏𝑛𝑛𝑐𝑐𝑛𝑛) + 𝑎𝑎𝑛𝑛(1− (1 − 𝑘𝑘)𝑏𝑏𝑛𝑛)} ∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥.   
Hence, 
∥ 𝑤𝑤𝑛𝑛 − 𝑢𝑢 ∥≤ �1 − (1 − 𝑘𝑘)𝑏𝑏𝑛𝑛�𝑐𝑐𝑛𝑛 + 𝑎𝑎𝑛𝑛(1 − 𝑐𝑐𝑛𝑛)�� ∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥. (13) 
Therefore,  

∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥≤ �(1 − 𝑑𝑑𝑛𝑛)(1 − (1 − 𝑘𝑘)𝑏𝑏𝑛𝑛𝑐𝑐𝑛𝑛) + 𝑑𝑑𝑛𝑛 �1 − (1 − 𝑘𝑘)𝑏𝑏𝑛𝑛�𝑐𝑐𝑛𝑛 + 𝑎𝑎𝑛𝑛(1− 𝑐𝑐𝑛𝑛)���
∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥ 

= �(1 − (1 − 𝑘𝑘)𝑏𝑏𝑛𝑛𝑐𝑐𝑛𝑛)− 𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛𝑐𝑐𝑛𝑛�(1 − 𝑘𝑘)(1− 𝑐𝑐𝑛𝑛)�� ∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥ 
= �1 − (1 − 𝑘𝑘)𝑏𝑏𝑛𝑛�𝑐𝑐𝑛𝑛 + 𝑎𝑎𝑛𝑛𝑑𝑑𝑛𝑛(1− 𝑐𝑐𝑛𝑛)��  ∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥ 
≤  �1− (1 − 𝑘𝑘)𝑏𝑏�𝑐𝑐 + 𝑎𝑎𝑎𝑎(1 − 𝑐𝑐)��  ∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥. 

So, 

∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥≤ �1 − (1 − 𝑘𝑘)𝑏𝑏�𝑐𝑐 + 𝑎𝑎𝑎𝑎(1 − 𝑐𝑐)��𝑛𝑛  ∥ 𝑥𝑥0 − 𝑢𝑢 ∥. (14) 

On the other hand, the iterative process 𝑆𝑆𝑛𝑛 gives that 

∥ 𝑡𝑡𝑛𝑛 − 𝑢𝑢 ∥≤ �1 − (1 − 𝑘𝑘)𝑏𝑏�𝑐𝑐 + 𝑎𝑎(1 − 𝑐𝑐)��𝑛𝑛  ∥ 𝑡𝑡0 − 𝑢𝑢 ∥. (15) 

Let  𝛼𝛼𝑛𝑛 = �1− (1 − 𝑘𝑘)𝑏𝑏�𝑐𝑐 + 𝑎𝑎𝑎𝑎(1 − 𝑐𝑐)��𝑛𝑛  ∥ 𝑥𝑥0 − 𝑢𝑢 ∥ and 

𝛽𝛽𝑛𝑛 = �1 − (1 − 𝑘𝑘)𝑏𝑏�𝑐𝑐 + 𝑎𝑎𝑎𝑎(1 − 𝑐𝑐)��𝑛𝑛  ∥ 𝑥𝑥0 − 𝑢𝑢 ∥. 
Then, we have 

lim
𝑛𝑛→∞

∥ 𝑥𝑥𝑛𝑛 − 𝑢𝑢 ∥ ≤ lim
𝑛𝑛→∞

�1 − (1 − 𝑘𝑘)𝑏𝑏�𝑐𝑐 + 𝑎𝑎𝑎𝑎(1 − 𝑐𝑐)��𝑛𝑛  ∥ 𝑥𝑥0 − 𝑢𝑢 ∥= 0 and 

lim
𝑛𝑛→∞

∥ 𝑡𝑡𝑛𝑛 − 𝑢𝑢 ∥ ≤ lim
𝑛𝑛→∞

�1 − (1 − 𝑘𝑘)𝑏𝑏�𝑐𝑐 + 𝑎𝑎(1 − 𝑐𝑐)��𝑛𝑛  ∥ 𝑡𝑡0 − 𝑢𝑢 ∥= 0. 

Since 𝛼𝛼1 < 𝛽𝛽1, we get 

 lim
𝑛𝑛→∞

�1−(1−𝑘𝑘)𝑏𝑏�𝑐𝑐+𝑎𝑎𝑎𝑎(1−𝑐𝑐)�
1−(1−𝑘𝑘)𝑏𝑏�𝑐𝑐+𝑎𝑎(1−𝑐𝑐)�

�
𝑛𝑛

= 0.  

Hence our result is satisfied. 

3 Some numerical examples 
Next, we give some numerical examples to illustrate our result. 
Example 1 
Let 𝑌𝑌 = ℛ  with the usual norm. Take 𝐶𝐶 = [0,50] . Define 𝑇𝑇:𝐶𝐶 → 𝐶𝐶  by 𝑇𝑇𝑇𝑇 =
√5𝑥𝑥2 − 2𝑥𝑥 + 483 . Let 𝑎𝑎 = 𝑐𝑐 = 2

5
, and 𝑏𝑏 = 𝑑𝑑 = 1

4
. Also, let 𝑎𝑎𝑛𝑛 = 𝑐𝑐𝑛𝑛 = 1

2
, and 𝑏𝑏𝑛𝑛 = 𝑑𝑑𝑛𝑛 =

3
4
− 1

4+𝑛𝑛
 for 𝑛𝑛 = 0,1,2,⋯. The Mean Value Theorem implies that T satisfies condition (3). 

Also, note that (𝑎𝑎𝑛𝑛), (𝑏𝑏𝑛𝑛), (𝑐𝑐𝑛𝑛) , (𝑑𝑑𝑛𝑛),𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑  satisfy the conditions of Theorem 
2.1. Thus the iteration scheme (SBTn) is faster than the iteration schemes (Sn), (ARSn), 
(In) and (Mn). For more details, see the table below which gives the results to 
approximate the fixed point of the function T with start point 𝑥𝑥0 = 50. 
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Table 1: comparative results of example 1 
Step Mn In ARSn Sn SBTn 
1 36.587858878398400 34.180084789163100 20.767943667561600 19.598381679944100 11.729717300628600 
2 27.705002368667000 24.347196887740000 11.961294173244300 11.106098557586700 7.094325635858250 
3 21.675723790983000 18.121337795550400 8.609859836200890 8.070779153023590 6.217873743369290 
4 17.488989111022200 14.103460100492300 7.176767916711330 6.858841543103770 6.043075029792180 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

20 6.149975887561380 6.017364383359820 6.000003535729840 6.000000533210640 6.000000000000110 
21 6.115237489175310 6.011811992843360 6.000001586743620 6.000000215759680 6.000000000000020 
22 6.088549543658810 6.008032810428890 6.000000711785820 6.000000087243640 6.000000000000000 
23 6.068044636341280 6.005461356839480 6.000000319168790 6.000000035254280 6.000000000000000 
24 6.052289287574550 6.003712186247620 6.000000143064610 6.000000014237210 6.000000000000000 
25 6.040182784523080 6.002522678812220 6.000000064105560 6.000000005746330 6.000000000000000 

 
Figure 1: Behavior of iteration processes (Mn), (In), (ARSn), (Sn) and (SBTn) for the 
mapping T in Example 1 

Example 2 

Let 𝑌𝑌 = ℛ  with the usual norm. Take 𝐶𝐶 = [0,2]. Define 𝑇𝑇:𝐶𝐶 → 𝐶𝐶 by 𝑇𝑇𝑇𝑇 = 𝑒𝑒sin(𝑥𝑥)−32. Let 
𝑎𝑎 = 𝑐𝑐 = 2

5
, and 𝑏𝑏 = 𝑑𝑑 = 1

4
 . Also, let 𝑎𝑎𝑛𝑛 = 𝑐𝑐𝑛𝑛 = 1

2
 and 𝑏𝑏𝑛𝑛 = 𝑑𝑑𝑛𝑛 = 3

4
− 1

4+𝑛𝑛2
 for 𝑛𝑛 =

0, 1, 2,⋯. The Mean Value Theorem implies that T satisfies condition (3). Also, note that 
(𝑎𝑎𝑛𝑛), (𝑏𝑏𝑛𝑛), (𝑐𝑐𝑛𝑛), (𝑑𝑑𝑛𝑛) , 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑  satisfy the conditions of Theorem 2.1. Thus the 
iteration scheme (SBTn) is faster than the iteration schemes (Sn), (ARSn), (In) and (Mn). 
For more details, see the below table which gives the results to approximate the fixed 
point of the function T with start point 𝑥𝑥0 = 2. Note that by using MATLAB we can see 
that L has the fixed point 𝑢𝑢~0.299786903282166. 
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Table 2: comparative results of example 2 
Step Mn In ARSn Sn SBTn 
1 1.276968983016460 1.283816457008920 0.560785440025372 0.586931029365896 0.364564361469188 
2 0.929027181994992 0.877663221914339 0.361887859036987 0.358475878853376 0.302691056742270 
3 0.713064099004039 0.636844645186341 0.313556053203331 0.310719114006616 0.299905328156244 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

10 0.319901011198184 0.306462794885001 0.299787171230084 0.299786958532239 0.299786903282178 
11 0.312742990634971 0.303575580337322 0.299786959709464 0.299786912822620 0.299786903282166 
12 0.308128080816175 0.301936338319421 0.299786915158052 0.299786904927771 0.299786903282166 
13 0.305155222571262 0.301006059899413 0.299786905780421 0.299786903565765 0.299786903282166 
14 0.303241179889617 0.300478287296089 0.299786903807509 0.299786903331007 0.299786903282166 
15 0.302009273268062 0.300178935277693 0.299786903392603 0.299786903290572 0.299786903282166 
16 0.301216578008352 0.300009172001756 0.299786903305376 0.299786903283612 0.299786903282166 
17 0.300706576196817 0.299912911441948 0.299786903287043 0.299786903282415 0.299786903282166 
18 0.300378483491956 0.299858334656172 0.299786903283191 0.299786903282209 0.299786903282166 
19 0.300167428667533 0.299827393890902 0.299786903282381 0.299786903282173 0.299786903282166 
20 0.300031666999588 0.299809854113763 0.299786903282211 0.299786903282167 0.299786903282166 

 
Figure 2: Behavior of iteration processes (Mn), (In), (ARSn), (Sn) and (SBTn) for the 
mapping T in Example 2 

4 Applications 
In this section, we shall prove that the initial value problem: 

𝑤𝑤′(𝑡𝑡) = 𝐻𝐻�𝑡𝑡,𝑤𝑤(𝑡𝑡)�,𝑤𝑤(𝑡𝑡0) = 𝑤𝑤0 (16) 

has a unique solution. Also, we will give some examples to show the validity of our 
iterative scheme.  
In order to prove that, we need the following lemma  
Lemma 1 
[Plaat (1971)]  𝑤𝑤(𝑡𝑡) is a solution for the initial value problem  
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𝑤𝑤′(𝑡𝑡) = 𝐻𝐻�𝑡𝑡,𝑤𝑤(𝑡𝑡)�,𝑤𝑤(𝑡𝑡0) = 𝑤𝑤0 (17) 

if and only if  

𝑤𝑤(𝑡𝑡) = 𝑤𝑤0 + ∫ 𝐻𝐻(𝑟𝑟,𝑤𝑤(𝑟𝑟))𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡0

. (18) 

Let ∥. ∥∞ be the superior norm on 𝐶𝐶(𝐼𝐼) which is defined by ∥ 𝑢𝑢 ∥∞= sup
𝑡𝑡∈𝐼𝐼

𝑢𝑢(𝑡𝑡). Now, we 

have the following theorem: 
Theorem 2 
Let 𝐻𝐻: 𝐼𝐼 × ℛ → ℛ  be a continuous function on 𝐼𝐼 ×ℛ and let 𝑡𝑡0 be an interior point of I. 
Suppose that there is 𝑙𝑙0 > 0 such that H satisfies the following condition: 
|𝐻𝐻(𝑡𝑡, 𝑥𝑥1) −𝐻𝐻(𝑡𝑡, 𝑥𝑥2)| ≤ 𝑙𝑙0|𝑥𝑥1 − 𝑥𝑥2|. (19) 
For all 𝑥𝑥1,𝑥𝑥2 ∈ ℛ and for all 𝑡𝑡 ∈ 𝐼𝐼 . Then the initial value problem (16) has a unique 
solution 𝑤𝑤 ∈ 𝐶𝐶(𝐼𝐼). 
Proof: Let 𝜖𝜖 ≥ 0 be a real number such that 𝜖𝜖 𝑙𝑙0 < 1. Define the mapping 𝑇𝑇:𝐶𝐶(𝐼𝐼) → 𝐶𝐶(𝐼𝐼) 
by 𝑇𝑇𝑇𝑇(𝑡𝑡) = 𝑤𝑤0 + ∫ 𝐻𝐻(𝑟𝑟,𝑤𝑤(𝑟𝑟))𝑑𝑑𝑑𝑑𝑡𝑡

𝑡𝑡0
. Now, we show that T satisfies condition (3) on the 

interval 𝐶𝐶0 = [𝑡𝑡0, 𝑡𝑡0 + 𝜖𝜖]. 
Let 𝑢𝑢, 𝑣𝑣 ∈ 𝐶𝐶(𝐼𝐼). Then we have 
∥ 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇 ∥∞= sup

𝑡𝑡∈𝐶𝐶0
|𝑇𝑇𝑇𝑇(𝑡𝑡) − 𝑇𝑇𝑇𝑇(𝑡𝑡)| 

= sup
t∈C0

�� 𝐻𝐻�𝑟𝑟, 𝑢𝑢(𝑟𝑟)� − 𝐻𝐻�𝑟𝑟, 𝑣𝑣(𝑟𝑟)�𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡0
� 

≤ sup
𝑡𝑡∈𝐶𝐶0

� |𝐻𝐻�𝑟𝑟,𝑢𝑢(𝑟𝑟)�
𝑡𝑡

𝑡𝑡0

− 𝐻𝐻( 𝑟𝑟, 𝑣𝑣(𝑟𝑟))|𝑑𝑑𝑑𝑑 

≤ sup
𝑡𝑡∈𝐶𝐶0

𝑙𝑙0|𝑢𝑢(𝑡𝑡) − 𝑣𝑣(𝑡𝑡) �𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡0

 

≤ 𝜖𝜖𝑙𝑙0 ∥ 𝑢𝑢 − 𝑣𝑣 ∥∞.  
Therefore, condition (3) is satisfied and hence the result is satisfied. 
Newton’s law of cooling is a differential equation that foresees the cooling of somebody 
that placed in a colder environment which may be written as follows:  
𝑥𝑥′(𝑡𝑡) = −𝑙𝑙(𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝜖𝜖 , where x(t) represents to the temperature of the object at the time t, 
𝑥𝑥𝜖𝜖  represents to the temperature of the environment, and l represents to the 
proportionality constant.  
If 𝑥𝑥(𝑡𝑡0)  =  𝑥𝑥0, then we have the following initial value problem 
𝑥𝑥′(𝑡𝑡) = −𝑙𝑙(𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝜖𝜖),𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0. (20) 

Let 𝐻𝐻(𝑡𝑡, 𝑥𝑥) = −𝑙𝑙(𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝜖𝜖). Then, one can show that H satisfies condition (19). By 
Theorem 4.2, the initial value problem (20) has a unique solution. 
In fact, the exact solution of (20) is 𝑥𝑥(𝑡𝑡) = 𝑥𝑥𝜖𝜖 + (𝑥𝑥0 − 𝑥𝑥𝜖𝜖)𝑒𝑒−𝑙𝑙(𝑡𝑡−𝑡𝑡0).  
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Now, we introduce the following example to illustrate the usability of our iterative 
scheme (SBTn). 
Example 3 
An orange pie was taken out of the oven at a temperature of 170o. Then it was left to cool 
down with an air temperature of 20o. If the temperature of the pie decreases initially at a 
rate of 3/minute, find the relation between the time and the temperature of the pie. 
Suppose that the pie temperature obeys Newton’s law of cooling. Then, we get the 
following initial value problem: 
𝑥𝑥′(𝑡𝑡) = −𝑙𝑙(𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝜖𝜖 ),𝑥𝑥(0) = 170,𝑥𝑥′(0) = −3. (21) 
One can easily find that l = 0:02. So, the exact solution is  
𝑥𝑥(𝑡𝑡) = 20 + 150𝑒𝑒−0.02𝑡𝑡. 

Now, let 𝑇𝑇𝑇𝑇(𝑡𝑡) = 170 + ∫ −0.02(𝑥𝑥(𝑟𝑟) − 20)𝑑𝑑𝑑𝑑,𝑡𝑡
0  and  

𝐻𝐻(𝑡𝑡, 𝑥𝑥) =  0.02(𝑥𝑥(𝑟𝑟) − 20). Then, H satisfies condition (19), and so by Theorem 2, 𝑇𝑇 
has a unique fixed point. 
The following figures illustrate the result of approximating the fixed point of 𝑇𝑇 with the 
initial point 𝑥𝑥0(𝑡𝑡)  =  𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡 +  𝑡𝑡2𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡.  
We use MATLAB to get the solution obtained from the above iteration schemes at the 
10th iteration:  

 
Figure 3: The solution obtained by (SBTn) at 10th iteration vs. exact solution of IVP (9) 
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Figure 4: The solution obtained by (Sn) at 10th iteration vs. exact solution of IVP (9) 

 
Figure 5: The solution obtained by (ARSn) at 10th iteration vs. exact solution of IVP (9) 

 
Figure 6: The solution obtained by (In) at 10th iteration vs. exact solution of IVP (9) 
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Figure 7: The solution obtained by (Mn) at 10th iteration vs. exact solution of IVP (9) 

5 Conclusion 
We introduced a new scheme to speed the approximation of a fixed point of such 
problems. We applied our scheme to some numerical examples. Also, we compared our 
scheme with some known schemes such as Mann’s scheme [Mann (1953)], Ishikawa’s 
scheme [Ishikawa (1974)], Agarwal et al.’s scheme [Agarwal, O’Regan and Sahu (2007)] 
and Sintunavarat et al. scheme [Sintunavarat and Pitea (2016)] to show the efficiency and 
effectiveness of our new scheme. Also, we gave an application that raised from Newton’s 
law of cooling to show the applicability of our new scheme. 
 
Acknowledgement: We thank all reviewers for their valuable comments and remarks on 
our paper which made our paper complete, organized and visible. 
 
Funding Statement: The authors received no specific funding for this study. 
 
Conflicts of Interest: The authors declare that they have no conflicts of interest to report 
regarding the present study. 

References 
Abbas, M.; Nazir, T. (2014): A new faster iteration process applied to constrained 
minimization and feasibility problems. Matematicki Vesnik, vol. 66, no. 2, pp. 223-234. 
Abu-Irwaq, I.; Shatanawi, W.; Bataihah, A.; Nuseir, I. (2019): Fixed point results for 
nonlinear contractions with generalized Ω-distance mappings. University Politehnica of 
Bucharest Scientific Bulletin, Series A, Applied Mathematics and Physics, vol. 81, no. 1, 
pp. 57-64. 
Agarwal, R. P.; O’Regan, D.; Sahu, D. R. (2007): Iterative construction of fixed points 
of nearly asymptotically nonexpansive mappings. Journal of Nonlinear and Convex 
Analysis, vol. 8, no. 1, pp. 61-79. 



Four-Step Iteration Scheme to Approximate Fixed Point                                    1503 

Arif, M. S.; Raza, A.; Shatanawi, W.; Rafiq, M.; Bibi, M. (2019): A stochastic 
numerical analysis for computer virus model with vertical transmission over the Internet. 
Computers, Materials & Continua, vol. 61, no. 3, pp. 1025-1043. 
Aydi, H.; Karapinar, E.; Shatanawi, W. (2012): Tripled coincidence point results for 
generalized contractions in ordered generalized metric. Fixed Point Theory and 
Applications, vol. 2012, no. 101, pp. 1-22. 
Aydi, H.; Postolache, M.; Shatanawi, W. (2012): Coupled fixed point results for (Ψ, Φ)-
weakly contractive mappings in ordered G-metric spaces. Computers and Mathematics 
with Applications, vol. 63, no. 1, pp. 298-309. 
Aydi, H.; Shatanawi, W.; Postolache, M.; Mustafa Z.; Tahat, N. (2012): Theorems 
for Boyd-Wong-type contractions in ordered metric space. Abstract and Applied 
Analysis, vol. 2012. 
Aydi, H.; Shatanawi, W.; Vetro, C. (2011): On generalized weak G-contraction 
mapping in G-metric spaces. Computers & Mathematics with Applications, vol. 62, no. 
11, pp. 4222-4229. 
Banach, S. (1922): Sur Les op𝑒́𝑒rations dans les ensembles abstraits et leur application 
aux 𝑒́𝑒quations int𝑒́𝑒grals. Fundamenta Mathematicae, vol. 3, no. 1, pp. 133-181. 
Bataihah, A.; Shatanawi, W.; Tallafha, A. (2020): Fixed point results with simulation 
functions. Nonlinear Functional Analysis and Applications, vol. 25, no. 1, pp. 13-23. 
Berinde, V. (2004a): Approximating fixed points of weak contractions using the Picard 
iteration. Nonlinear Analysis Forum, vol. 9, no. 1, pp. 43-54. 
Berinde, V. (2004b): Picard iteration converges faster than Mann iteration for a class of 
quasi-contractive operators. Fixed Point Theory and Applications, vol. 2004, no. 2, pp. 1-9. 
Choudhury, B. S.; Kundu, A. (2010): A coupled coincidence point result in partially 
ordered metric spaces for compatible mappings. Nonlinear Analysis: Theory, Methods & 
Applications, vol. 73, no. 8, pp. 2524-2531. 
Ciric, L. B. (1974): A generalization of Banach’s contraction principle. Proceedings of 
the American Mathematical Society, vol. 45, no. 2, pp. 267-273. 
Ishikawa, S. (1974): Fixed point by a new iteration method. Proceedings of the 
American Mathematical Society, vol. 44, no. 1, pp. 147-150. 
Kannan, R. (1968): Some results on fixed point. Bulletin Calcutta Mathematical Society, 
vol. 60, pp. 71-76.  
Kikkawa, M.; Suzuki, T. (2008): Three fixed point theorems for generalized 
contractions with constants in complete metric spaces. Nonlinear Analysis: Theory, 
Methods & Applications, vol. 69, no. 9, pp. 2942-2949.  
Liu, P. Z.; Liu, X. F.; Luo, Y. M.; Du, Y. Z.; Fan, Y. L. et al. (2019): An enhanced 
exploitation artificial bee colony algorithm in automatic functional approximations. 
Intelligent Automation and Soft Computing, vol. 25, no. 2, pp. 385-394. 
Mann, W. R. (1953): Mean value methods in iteration. Proceedings of the American 
Mathematical Society, vol. 4, no. 3, pp. 506-510.  



 
 
1504                                                                        CMC, vol.64, no.3, pp.1491-1504, 2020 

Mukheimer, A.; Mlaiki, N.; Abodayeh, K; Shatanawi, W. (2019): New theorems on 
extended b-metric spaces under new contractions. Nonlinear Analysis: Modelling and 
Control, vol. 24, no. 6, pp. 870-883. 
Nuseir, I.; Shatanawi, W.; Abu-Irwaq, I.; Bataihah, A. (2017): Nonlinear contractions 
and fixed point theorems with modified Ω-distance mappings in complete quasi metric 
spaces. Journal of Nonlinear Science and Applications, vol. 10, no. 10, pp. 5342-5350. 
Plaat, O. (1971): Ordinary Differential Equations, San Francisco: Holden-Day. 
Shatanawi, W. (2018): Common fixed points for mappings under contractive conditions 
of (𝛼𝛼,𝛽𝛽,𝜓𝜓)-admissibility type. Mathematics, vol. 6, no. 11, pp. 1-11. 
Shatanawi, W.; Abodayeh, K. (2019): Fixed point results for mapping of nonlinear 
contractive conditions of α-admissibility form. IEEE Access, vol. 7, pp. 50280-50286. 
Shatanawi, W.; Maniu, G.; Bataihah, A.; Bani Ahmad, F. (2017): Common fixed 
points for mappings of cyclic form satisfying linear contractive conditions with Omega-
distance. University Politehnica of Bucharest Scientific Bulletin-Series A, Applied 
Mathematics and Physics, vol. 79, no. 2, pp. 11-20.  
Shatanawi, W.; Postolache, M. (2013): Common fixed point results for mappings under 
nonlinear contraction of cyclic form in ordered metric spaces. Fixed Point Theory and 
Applications, vol. 2013, no. 1, pp. 1-13. 
Sintunavarat, W.; Pitea, A. (2016): On a new iteration scheme for numerical reckoning 
fixed points of Berinde mappings with convergence analysis. Journal of Nonlinear 
Science and Applications, vol. 9, no. 5, pp. 2553-2562.  
Somayeh, E.; Tofigh, A. (2018): Numerical solution of linear regression based on Z-
numbers by improved neural network. Intelligent Automation and Soft Computing, vol. 
24, no. 1, pp. 193-203. 
Suzuki, T. (2008): A generalized Banach contraction principle that characterizes metric 
completeness. Proceedings of the American Mathematical Society, vol. 136, no. 5, pp. 
1861-1869.  


	Four-Step Iteration Scheme to Approximate Fixed Point for Weak Contractions
	Wasfi Shatanawi0F , 1F , 3, *, Anwar Bataihah4 and Abdalla Tallafha4

	1 Introduction
	2 New iterative scheme with analytic proof
	3 Some numerical examples
	4 Applications
	References

