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Abstract: Although there has been a great breakthrough in the accuracy and speed of 
super-resolution (SR) reconstruction of a single image by using a convolutional neural 
network, an important problem remains unresolved: how to restore finer texture details 
during image super-resolution reconstruction? This paper proposes an Enhanced 
Laplacian Pyramid Generative Adversarial Network (ELSRGAN), based on the 
Laplacian pyramid to capture the high-frequency details of the image. By combining 
Laplacian pyramids and generative adversarial networks, progressive reconstruction of 
super-resolution images can be made, making model applications more flexible. In order 
to solve the problem of gradient disappearance, we introduce the Residual-in-Residual 
Dense Block (RRDB) as the basic network unit. Network capacity benefits more from 
dense connections, is able to capture more visual features with better reconstruction 
effects, and removes BN layers to increase calculation speed and reduce calculation 
complexity. In addition, a loss of content driven by perceived similarity is used instead of 
content loss driven by spatial similarity, thereby enhancing the visual effect of the super-
resolution image, making it more consistent with human visual perception. Extensive 
qualitative and quantitative evaluation of the baseline datasets shows that the proposed 
algorithm has higher mean-sort-score (MSS) than any state-of-the-art method and has 
better visual perception. 
 
Keywords: Single image super-resolution, generative adversarial networks, Laplacian 
pyramid. 

1 Introduction 
Image super-resolution refers to reconstructing one or more low-resolution (LR) images 
into high-resolution (HR) images [Harris (1964); Goodman and Gustafson (1968)]. 
Super-resolution is an important research problem in the field of computer vision and 
image processing, but there are still many shortcomings in high-resolution super-
resolution reconstruction of low-resolution images. First, since the existing methods are 
optimized by algorithms that reduce the mean square error (MSE), the picture is too 
smooth [Wang, Simoncelli and Bovik (2003); Wang, Bovik, Sheikh et al. (2004); Gupta, 
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Strivastava, Bhardwaj et al. (2011)]. Images with the highest peak signal-to-noise ratio 
(PSNR) and MSE do not necessarily have a better visual effect in perception. Second, the 
existing methods first up sample the image and then reconstruct the SR image. It will 
cause the model to not effectively learn the corresponding mapping function when the 
reconstruction multiple is too large (such as 8×). Finally, the residual block (RB) 
reconstruction results currently utilized are not good, and because of the use of the batch 
normalization (BN) layer, it will lead to greater model computational complexity.  
To solve these problems, we proposed ELSRGAN for image super-resolution. We use 
RRDB as the basic unit of the network to make the model easier to train and capture 
more high-frequency details. We use the advanced mapping features of the VGG network 
to define the loss function [Simonyan and Zisserman (2015); Joshson, Alahi and Li 
(2016)] to prevent the image from being too smooth. At the same time, we combined the 
improved generative adversarial network (GAN) model and Laplacian pyramid to capture 
more high-frequency texture features. Our main work are: 
1) This paper first proposes a combination of generative adversarial network and 
Laplacian pyramid to achieve SR of the image. By introducing the Laplacian pyramid, 
more high-frequency details of the image can be captured and the SR image can be 
reconstructed step by step. This makes our models more flexible, and our high-
magnification model can perform low-magnification image reconstruction work alone, 
which is not possible with other methods. 
2) This paper modified the GAN network, modified the basic network element from the 
regular residual block to the RRDB. And we removed the BN layer, which makes our 
model easier to train and can achieve higher reconstruction quality. A VGG-based 
perceptual function is used to reconstruct an image with better visual sense and better 
high-frequency texture features. 
3) The experimental results show that the proposed ELSRGAN is better than the state-of-
the-art method such as (LapSRN, DRCN and DRRN) after the MSS test. 

2 Related work 
2.1 Image super-resolution 
Harris and Goodman proposed the concept of super-resolution. Early super-resolution 
problems were solved by interpolation-based methods. A general interpolation model was 
proposed by Rajan et al. [Rajan and Chaudhri (2001)], which divides into three steps: 
decomposition, interpolation and fusion. Yang et al. [Yang and Yang (2013)] 
implemented a statistical-based super-resolution reconstruction method to divide the 
feature space into multiple sub-spaces, and learn the multiple sub-spaces through the 
sample to create an effective mapping function. These two methods can quickly 
reconstruct images with super-resolution, but cannot reconstruct high-magnification 
images, and the generated image texture is too smooth. 
Subsequently, the super-resolution reconstruction method based on learning was used 
extensively. By using a large number of LR images and HR images for comparison, 
inferring the missing high frequency information, and finally completing the super-
resolution reconstruction. Ni et al. [Ni and Nguyen (2017)] utilized the support vector 
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regression method to learn the mapping relationship between LR and HR images, and 
learned the regression amount through the structural characteristics of the DCT domain to 
obtain high-resolution images. Chang et al. [Chang, Yeung and Xiong (2004)] proposed 
an image SR method based on local linear embedding. By finding the K nearest 
neighbors in the training library for the input low-resolution image blocks, the high-
resolution reconstruction of the nearest neighbor feature blocks is finally performed using 
the linear combination. Resolution image block. Singh et al. [Singh and Ahuja (2014)] 
decomposed the mapping patch into directional frequency subbands and independently 
matched each subband pyramid to obtain better results. In order to expand the size of the 
training set, Huang et al. [Huang, Sigh and Ahuja (2015)] made small changes and shape 
changes to the image. Kim et al. [Kim and Kwon (2010)] used kernel ridge regression to 
estimate the high frequency information of high-resolution images. In order to reduce the 
practical complexity of the method, a sparse kernel ridge regression model was proposed 
based on matching tracking and gradient descent methods. Compared to, it is more 
general. Yue et al. [Yue, Sun, Yang et al. (2013)] proposed to retrieve similar HR images 
from the network and propose perceptual matching criteria for alignment structures. 
However, this method is limited by the training set size, and the number of mappings 
between LR and HR images may not be sufficient to cover texture changes in the image, 
and the counterparts requiring HR are known. 
Dong et al. [Dong and Loy (2015)] first used deep learning [Hinton and Salakhutdinov 
(2006)] to solve the super-resolution problem. Wang et al. [Wang, He, Sun et al. (2019)] 
used convolutional neural networks to remove image noise. Shocher et al. [Schocher, 
Cohen and Irani (2018)] proposed an unsupervised SR method based on CNN by using 
the repetitiveness of image internal information. In order to solve the problem that LR 
degradation is not downsampled from HR bicubic, Zhang et al. [Zhang, Zuo and Zhang 
(2018)] proposes a general framework with dimensionality stretching strategy. A 
discriminator network attached to the feature domain is used by Park et al. [Perk, Son, 
Cho et al. (2018)] to generate high frequency features. Kim et al. [Kim, Lee and Lee 
(2016)] proposed a network with multiple recursive layers, proposing a high performance 
architecture that allows long distance pixels Dependencies also maintain a small number 
of parameter models. These super-resolution methods all learn the mapping function 
through the MSE loss. Although it can effectively obtain high PSNR and SSIM, it will 
cause the output image to be too smooth. 
In order to prevent smooth output, a method for extracting the high-level feature-aware 
loss of the trainer is proposed by Bruna et al. [Bruna, Sprechmann and Lecun (2015)] and 
Johnson et al. [Johnson, Alahi and Li (2016)]. Huang et al. [Huang, He, Sun et al. (2019)] 
proposed a method for generating wavelet domain, which will be low, the resolution of 
the face is enlarged to a higher multiple. To create more realistic texture details, Sajjad et 
al. [Sajjadi, Scholkopf and Hirsch (2017)] proposed a texture-based matching loss 
function. Lai et al. [Lai, Huang, Ahuja et al. (2018)] proposed a new loss function 
Charbonnier to correct the difference between the SR image and the HR image. Ledig et 
al. [Ledig, Theis and Huszar (2016)] utilized the generated confrontation network to 
perform super-resolution reconstruction by optimizing the damage and content loss. We 
refer to this form of network architecture and modify its basic network elements. And 
Ledig the difference is that SRGAN focuses on 4×, our method has higher magnification, 
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such as 8× to 16×. And Ledig focuses on learning the mapping function between low 
frequency image and high frequency image, and our network architecture is focused on 
capturing the exact high frequency details. 

2.2 Laplacian pyramid 
Burt et al. [Burt and Adelson (1983)] proposed the concept of Laplacian pyramid. The 
Laplacian pyramid interprets the image with multiple resolutions and restores the image 
to the greatest extent by residual prediction. Denton et al. [Denton, Chintala and Fergus 
(2015)] proposed a LAPGAN (Laplacian Pyramid GAN) is used to produce real images. 
Recently, Lai et al. [Lai, Huang, Ahuja et al. (2018)] proposed LapSRN for image super 
resolution. Our method has the following differences compared to LapSRN: 
1) LapSRN used a deep convolution network to combine with the Laplacian pyramid. We 
use the GAN network to combine with the Laplacian pyramid. By combining the GAN 
network, we can enhance super-resolution image quality, have better results, and recover 
more high-frequency details. 
2) LapSRN implemented feature sharing to ensure higher inference speed, but does not 
focus on recovering high-frequency texture details of the image. This article focuses on 
recovering the high-frequency contour information of the image to generate a picture 
more consistent with human perception. We used LR images to train step by step to 
capture the missing high-frequency features at different magnifications. 
3) LapSRN utilized the charbonnier loss function to better capture the difference between 
the SR image and the HR image. While we focus on restoring images that match the human 
perception and capture higher high frequency details, we used the VGG loss function. 

2.3 Generative adversarial network 
In 2014, Goodfellow et al. [Goodfellow, Pouget-Abadie and Mirza (2014)] proposed 
Generative Adversarial Network that utilized the generator network G to generate as 
realistic a sample as possible, using the discriminator network D to determine whether the 
image is a generated image or a real HR image, both iterative confrontation complete 
training. Ledig et al. [Ledig, Theis and Huszar (2016)] proposed to solve the problem that 
the discriminator in the network min-max is easy to discriminate by optimizing the loss 
function. A method for super-resolution using wavelets was proposed by Huang et al. 
[Huang, Li, He et al. (2018)]. 

3 Laplacian pyramid generative adversarial network for super-resolution 
3.1 Network architecture 
Our network works as shown in Fig. 1. By inputting the LR image to the GAN network, a 
residual image is generated. The upsampled image of the LR and the residual image are 
added pixel by pixel to recover the desired SR image. For 4× and 8× images, we need to 
continue to call the ELSRGAN network for super-resolution on the resulting SR results 
until the magnification requirement is met. 
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Figure 1: Super-resolution reconstruction process. This figure is a schematic diagram of 
4× resolution amplification. For the case of 4× amplification, we call the GAN network 
twice to generate the final SR image 

In the process of generator network training, we used the combination of Laplacian 
pyramid and GAN. This paper is different from the ordinary GAN network. The ordinary 
GAN network directly inputs the LR image to generate the corresponding HR image. But 
we in order to capture more high frequency details, the modified LR image is generated 
to generate a different residual image (DR) in the Laplacian pyramid. Finally, the residual 
image is sampled on the original image and added pixel by pixel. ELSRGAN training 
schematic is shown in Fig. 2.  

 
Figure 2: ELSRGAN training diagram. The difference between the upsampled HR image 
and the LR image is captured for training. The generator network generates a predicted 
residual image, determine whether the image is generated or a true HR image is 
performed by the discriminator network 

3.2 Generative adversarial network 
The generator network D and the discriminator network G form the generative 
adversarial network model. The generator network is responsible for generating as 
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realistic a picture as possible, the discriminator network discriminating whether the image 
is a real HR image or an image generated by the generator network. Both the generator 
network and the discriminator network perform iterative training on the resistance, and 
finally complete the training, so that the generator generates a highly similar result to the 
image. However, in the GAN network, the min-max problem is easy to occur. That is, the 
discriminator can easily identify the result and cause the training model to crash. To solve 
this problem, we used the function of Eq. (1). 

~ ( ) ~ ( )
min max [log ( )] [log(1 ( ( ))]DR DR LR LR

train G

DR LR
I p I I p IG D

E D I E D G I+ −
                            

(1) 

For the generator network architecture, SRGAN implemented the residual block structure 
as shown in Fig. 3. We introduced RRDB as the new generator network architecture, as 
shown in Fig. 4. We removed the BN layer in SRGAN to ensure the stability of the 
training. And reduce the complexity of the calculation, and combine the multi-layer 
residual network with dense links. 

 
Figure 3: Residual Block. The picture shows the Residual Block in SRGAN. The 
network structure adopts the method of jumping connection layer. The BN layer is used 
after each convolution layer 

 

Figure 4: Residual-in-Residual Dense Block. The figure shows the RRDB used by our 
model, and the BN layer is removed, where β is the residual scaling parameter. The 
specific structure of the Dense block is given 

It has been confirmed that removing the BN layer in super-resolution can improve the 
operation speed, reduce the computational complexity and GPU memory consumption. 
And we propose a more complex and deep basic network unit structure, and the network 



 
 
 
Better Visual Image Super-Resolution with Laplacian Pyramid                           1607 

capacity is obtained from the dense connection [Luo, Qin, Xiang et al. (2019)] which 
have higher benefit. 
To solve the max-pooling problem, LeakyReLU is used as the activation function of the 
discriminator network. Our discriminator can effectively solve the min-max problem by 
Eq. (1). Fig. 5 is our discriminator network model. Whenever the number of features 
doubles, we use a convolutional layer to reduce the resolution. We implemented the 
Sigmoid activation function to get the final classification probability. 

 
Figure 5: Discriminator network. It consists of eight 3×3 kernel convolution layers. The 
number above the convolution layer is the step distance. The number of feature maps is 
indicated by the number below 

3.3 Perceptual loss function 
The perceptual function used in this paper refers to the perceptual function proposed by 
Ledig [Ledig, Theis and Huszar (2016)], which is weighted by content loss ( SR

VGGl ) and 

adversarial loss ( SR
Genl ) : 

310SR SR SR
VGG Genl l l−= +                                                                                                                     (2) 

Common content loss relies on MSE-optimized loss function, which can result in higher 
PSNR, but results in an overly smooth texture that is not satisfactory in visual perception. 
We utilized a VGG loss function that is closer to the perceived similarity, which is defined 
as the Euclidean distance between the feature representation and the reference image: 

, ,
2

/ , , , , ,
1 1, ,

1 ( ( ) ( ( )) )
i j i j

G

W H
SR HR LR

VGG i j i j x y i j x y
x yi j i j

l I G I
W H θφ φ

= =

= −∑∑
                                         

       (3) 

The adversarial loss in this paper is to encourage our generator network to spoof the 
discriminator network to achieve a variety of natural images. The generator loss is 
defined as follows: 

1
log[1 ( ( ))]

D G

N
SR LR
Gen

n
l D G Iθ θ

=

= −∑                                                                                              (4) 

4 Experiment 
4.1 Training data and test data 
The training data in this paper is trained by the common reference data DIV2K, and the 
HR image domain LR upsampled image is subtracted pixel by pixel to obtain the DR 
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image for training. The test data was tested using the widely used benchmark datasets 
Set5 [Bevilacqua, Roumy, Guillemot et al. (2012)], Set14 [Zeyde, Elad and Protter 
(2012)], BSD100 [Yang, Wright, Huang et al. (2008)] and URBAN100 [Yang, Wright, 
Huang et al. (2010)], where the first three methods consist of natural scenes and the 
URBAN contains challenging Scene image. 

4.2 ELSRGAN model experimental analysis 
We conducted an experimental analysis of the ELSRGAN model structure and compared 
the gaps between the two residual blocks of RRDB and RB. It can be found that the used 
of RRDB can capture more image details. 

 
Figure 6: Comparison of results of different network unit. We will use the ELSRGAN 
model of RRDB as ELSRGAN-RRDB and the ELSRGAN-RB using RB ELSRGAN 
model. It can be found that using RRDB can obtain higher reconstruction quality, the 
figure is the result under 4× super resolution 
We compared the number of RRDBs utilized and finally decided to use 24 RRDB units 
for our generator network, which guarantees that the network will not be too deep 
without sacrificing the reconstruction results. 

 
Figure 7: Comparison of the number of RRDBs. We compared the impact of the number of 
RRDBs on the results and finally decided to use 24 RRDBs as our final generator network 
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4.3 Perceptual mean-sort-score 
We propose a mean-sort-score (MSS) to reflect the visual effect of the image. Ledig et al. 
proposed a MOS score using 26 evaluators to evaluate images from 1-5, and we found 
that images with two sensory differences still scored the same during the assessment. And 
the evaluator is not good for nearby scoring (such as the choice between 2 and 3). In 
order to distinguish the perceptions of different methods, we propose the concept of 
MSS. The images of all methods and the HR images are simultaneously provided to the 
judges, and the scorer is sorted for the senses of all the images, and the lowest score is 1 
point, and the highest score is N points (N is the number of images of a single score). For 
the convenience of comparison, the score is processed in Eq. (5): 

SMSS
n N

=
×

                                                                                                                              (5) 

where S is the total score of the picture and n is the number of test sets. Using 50 
evaluators to sort a total of 219 images, we found that the HR scores were closer to full 
marks than the MOS method (in 4× and 8×, all graders ranked HR first in the senses). 
The MSS score of the bicubic method is the last one, and we can find that our scoring 
method can better evaluate the senses. The comparison results are shown in Section 4.4. 

4.4 Comparison with state-of-the-arts 
We compare ELSRGAN with the most advanced methods: Bicubic, ScSR, Kim, 
SRCNN, SelfExSR and LapSRN. Among them SRGAN is only used for comparison of 
4× images. As shown in Figs. 8-10, we enumerate the detailed features of the picture 
after super-resolution at different magnifications. It can be seen from the comparison that 
our proposed ELSRGAN contains more high-frequency details and accurately 
reconstructs the texture lines. 
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Figure 8: Visual comparison at 2× magnification. Our method reconstructs the contour 
features and texture details of the jewelry, which is not available in other methods. The 
texture details on the walls of the building are also the most abundant 

 

 

Figure 9: Visual comparisons at 4× magnification. It can be seen that at 4× 
magnification, ELSRGAN can reconstruct more high-frequency texture features and the 
angle of the statue is more obvious 
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Figure 10: Visual comparison at 8× magnification. At 8× magnification, our method 
complements the detail of the image in an illusion detail to make it look more realistic 
We detail the comparison of PSNR, structural similarity index (SSIM) and MSS. It can be found 
that although the proposed ELSRGAN method has a small PSNR and SSIM after super-resolution, 
the MSS is higher than other methods and is more in line with human sensory visual effects. 

Table 1: Comparison of different method results 

Algorithm Scale 
Set5 Set14 BSD100 URBAN100 

PSNR SSIM MSS PSNR SSIM MSS PSNR SSIM MSS PSNR SSIM MSS 

Bicubic 

2× 

33.69 0.931 0.160 30.25 0.870 0.145 29.57 0.844 0.150 26.89 0.841 0.113 

ScSR 35.78 0.949 0.215 31.64 0.894 0.235 30.77 0.874 0.225 28.26 0.883 0.253 

Kim 36.24 0.958 0.385 32.15 0.903 0.383 31.11 0.884 0.387 28.74 0.894 0.378 

SRCNN 36.72 0.955 0.528 32.51 0.908 0.521 31.38 0.889 0.523 39.53 0.896 0.593 

SelfExSR 36.60 0.955 0.595 32.24 0.904 0.612 31.20 0.887 0.600 29.55 0.898 0.629 

LapSRN 37.52 0.959 0.737 33.08 0.913 0.733 31.80 0.895 0.732 30.41 0.910 0.792 

ELSRGAN 33.94 0.941 0.889 30.87 0.884 0.902 29.56 0.847 0.903 26.81 0.838 0.905 

HR  0.975  0.972  0.970  0.970 

Bicubic 

4× 

28.43 0.811 0.158 26.01 0.704 0.149 25.97 0.670 0.162 23.15 0.660 0.164 

ScSR 29.07 0.826 0.217 26.40 0.722 0.223 26.61 0.703 0.214 24.02 0.702 0.212 

Kim 30.07 0.855 0.375 27.18 0.743 0.346 26.71 0.698 0.384 24.20 0.710 0.382 

SRCNN 30.50 0.863 0.552 27.52 0.753 0.525 26.91 0.712 0.534 24.53 0.725 0.543 

SelfExSR 30.34 0.862 0.574 27.41 0.753 0.584 26.84 0.713 0.582 24.83 0.740 0.558 

LapSRN 31.54 0.885 0.784 28.1 0.772 0.762 27.32 0.727 0.779 25.21 0.756 0.779 

ELSRGAN 28.81 0.820 0.841 26.17 0.712 0.853 25.88 0.681 0.849 23.27 0.655 0.864 

HR  1.000  1.000    1.000 

Bicubic 

8× 

24.40 0.658 0.173 23.10 0.566 0.169 23.67 0.548 0.182 20.74 0.516 0.191 

ScSR 24.61 0.671 0.202 23.36 0.577 0.211 23.85 0.561 0.205 20.91 0.531 0.197 

Kim 24.98 0.685 0.377 23.58 0.585 0.386 24.02 0.558 0.364 21.03 0.535 0.372 

SRCNN 25.33 0.690 0.562 23.76 0.591 0.554 24.13 0.566 0.545 21.29 0.544 0.513 

SelfExSR 25.49 0.703 0.564 23.92 0.601 0.571 24.19 0.568 0.568 21.81 0.577 0.582 

LapSRN 26.15 0.738 0.770 24.35 0.620 0.694 24.54 0.586 0.741 21.81 0.581 0.671 

ELSRGAN 24.33 0.673 0.856 23.03 0.558 0.860 23.31 0.544 0.846 20.45 0.511 0.870 

HR  1.000  1.000  1.000  1.000 
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4.5 Discussion 
By comparing MSS, we can find that our proposed ELSRGAN method is more in line 
with human visual sensory effects, and can restore more texture features in image high-
frequency detail comparison. Although we have improved the scoring criteria for image 
sensory effects, we still use the criteria for human scoring. In the future work, we will 
further study the sensory scoring criteria and propose corresponding formulas to evaluate 
visual sensory effects and high-frequency texture features. At the same time, although the 
paper can restore the fine structure, the more elaborate methods of illusion produced by 
self-similarity may not be suitable for medical applications and surveillance. 

5 Conclusion 
We use generative adversarial networks combined with Laplacian pyramids to achieve 
single-resolution super-resolution reconstruction. We used RRDB as the basic network 
unit to capture more content details while using the perceptual loss function to obtain 
finer texture features. Extensive evaluation of the baseline data set shows that using the 
MSS score can confirm that our proposed ELSRGAN method is more visually authentic. 
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