
 
 
 
Computers, Materials & Continua                       CMC, vol.64, no.3, pp.1959-1975, 2020 

CMC. doi:10.32604/cmc.2020.010186                                                         www.techscience.com/journal/cmc 

 
 

A Recommendation Method for Highly Sparse Dataset Based on 
Teaching Recommendation Factorization Machines 

 
Dunhong Yao1, 2, 3, Shijun Li4, *, Ang Li5 and Yu Chen6 

 
 

Abstract: There is no reasonable scientific basis for selecting the excellent teachers of 
the school’s courses. To solve the practical problem, we firstly give a series of 
normalization models for defining the key attributes of teachers’ professional foundation, 
course difficulty coefficient, and comprehensive evaluation of teaching. Then, we define 
a partial weight function to calculate the key attributes, and obtain the partial 
recommendation values. Next, we construct a highly sparse Teaching Recommendation 
Factorization Machines (TRFMs) model, which takes the 5-tuples relation including 
teacher, course, teachers’ professional foundation, course difficulty, teaching evaluation 
as the feature vector, and take partial recommendation value as the recommendation 
label. Finally, we design a novel Top-N excellent teacher recommendation algorithm 
based on TRFMs by course classification on the highly sparse dataset. Experimental 
results show that the proposed TRFMs and recommendation algorithm can accurately 
realize the recommendation of excellent teachers on a highly sparse historical teaching 
dataset. The recommendation accuracy is superior to that of the three-dimensional tensor 
decomposition model algorithm which also solves sparse datasets. The proposed method 
can be used as a new recommendation method applied to the teaching arrangements in all 
kinds of schools, which can effectively improve the teaching quality. 
 
Keywords: Highly sparse dataset, normalized models, teaching recommendation 
factorization machines, excellent teacher recommendation. 

1 Introduction 
The personalized recommendation system predicts the potential interests of users based 
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on the analysis of users’ historical behavior data. It makes a current recommendation to 
meet the personalized needs [Resnick and Varian (1997)]. In recent years, personalized 
recommendation systems based on different recommendation algorithms have been 
rapidly developed in e-commerce, social networks, and search engines. 
The techniques used in personalized recommendation systems are categorized into five 
groups [Xu, Wu, Li et al. (2009); Jiang, Chen, Jiang et al. (2019); Cacheda, Carneiro, 
Fernández et al. (2011); Chen, Xiong, Xu et al. (2019)]: 1) the nearest neighbor heuristic 
collaborative filtering recommendation algorithms based on the Euclidean distance, 
Pearson correlation coefficient, and cosine similarity; 2) the collaborative filtering 
recommendation algorithms based on the context-aware model, latent factor model, 
Bayesian model, trust-aware model, clustering model, and maximum entropy model; 3) 
the content-based recommendation algorithms based on decision trees, neural networks, 
vectors, term frequency-inverse document frequency (TF-IDF), adaptive filtering, and 
threshold setting; 4) the other algorithms based on association rules recommendation, 
utility recommendation, and knowledge reasoning; 5) the combination recommendation 
algorithms based on tag graph, tag FolkRank, cascade, feature combination, weighting, 
transformation, hierarchical tag clustering, variable support vector machine (VSVM), and 
tensor decomposition. 
When the dataset is highly sparse, most of the recommendation techniques mentioned 
above show a significant decrease in the recommendation accuracy and increase the time 
complexity [Meng, Ji and Zhang (2015)]. Also, traditional factorization models (such as 
matrix factorization [Guan, Li and Guan (2017)], parallel factor analysis [Yu, Hsieh, Si et 
al. (2014)], SVD++ [Kumar, Verma and Rastogi (2014)], and pairwise interaction tensor 
factorization (PITF) [Rendle and Schmidt-Thieme (2010)]) are restricted to a specific 
data type. To address these problems, Rendle [Rendle (2012)] proposed Factorization 
Machines (FMs). FMs overcomes the low generality and the data type restriction of the 
traditional factorization models. FMs can deal with multi-class variables and highly 
sparse numbers. According to the advantages of model parameter estimation, linear time 
complexity, and high-quality prediction on any real eigenvector, the algorithm includes 
many successful collaborative filtering methods. FMs has been successfully applied to 
many recommendation fields in the existing Chinese and English documents. For 
example, Rendle et al. [Rendle, Gantner, Freudenthaler et al. (2011)] used the FMs model 
to realize fast context-aware recommendations. Nguyen et al. [Nguyen, Karatzoglou and 
Baltrunas (2014)] used an improved Gaussian Process Factor decomposition Machine 
(GPFM) to realize the most advanced context-aware recommendation. Geuens [Geuens 
(2015)] used the FMs model to realize customer, product and implicit recommendation. 
Chen et al. [Chen, Hou, Xiao et al. (2016); He, Fang, Liu et al. (2019); Alemu, Olsen, 
Vedel et al. (2017)] used the FMs to improve the accuracy of product recommendation 
and better recommend the mobile app. FMs model is used to predict students’ 
achievement, such as Thai-Nghe et al. [Thai-Nghe, Drumond, Horváth et al. (2012)]. 
To best our knowledge, no research conducted on the application of recommendation 
systems to teaching. The limited research conducted on data pre-processing techniques 
for teachers and course teaching [Qin (2015)]. The local second-tier universities have 
relatively inadequate teachers and schooling conditions. In this case, the teaching 
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arrangements are mostly based on the teacher’s wishes. When encountering some new 
courses, there is no reasonable scientific basis for teaching recommendation. Such a lack 
of scientific basis leads to a non-optimized and low quality of teaching. 
In this paper, a series of normalized models are proposed to pre-process a large amount of 
teaching data. Based on the processed data, the key attributes of teacher professional 
foundation, course difficulty coefficient, teaching comprehensive evaluation, and overall 
recommendation value are defined. We use these key attributes as the feature vector X 
and the recommended observation value as the target vector Y to construct the Teaching 
Recommended Factorization Machines (TRFMs) model. Then, the teaching 
recommendation algorithm is designed based on the TRFMs model. Finally, we compare 
it with the three-dimensional tensor recommendation algorithm in accuracy and time 
complexity. Experimental results show that the proposed TRFMs model and 
recommendation algorithm provide advantages in the recommendation of a sparse 
teaching dataset. The proposed methods are promising to address the lack of a scientific 
recommendation basis. 

2 Related works 
Referring to Adomavicius’ definition of recommendation system [Adomavicius and 
Tuzhilin (2005)], we define the teaching recommendation system as follows. The course 
and teacher sets are defined as C and T, respectively. Utility function f() is used to 
calculate the recommendation degree of teacher object t to course c; that is, 

:f C T R× →  where R is a set of totally ordered non-negative real numbers in a specific 
range. The problem is to find those T* whose recommendation degree R is the largest, 
that is, ∀c∈C, * arg max ( , )

t T
T f c t

∈
=  . 

Steffen proposed the FMs. In FMs, the implicit factor model and the matrix decomposition 
idea for reference are used to remove the autocorrelation item from polynomial regression, 
and only the interaction between the categorical variables is used as factor decomposition 
[Rendle, Gantner, Freudenthaler et al. (2011)]. FMs can be used to deal with three 
prediction problems: a regression, a binary classification, and a ranking. 
The second-order factorization model is commonly used, which is defined as follows: 

0
1 1

ˆ( ) ,
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i i i j i j
i i j i
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= = >
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The parameter w0∈ℝ, w∈ℝn, v∈ℝn×k, <vi,vj> denote the dot product of two vectors vi and 

vj whose size is k, i.e. , ,
1

,
k

i j i f j f
f
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=

=∑  , where k∈ℕ+ ( k n ) is called factor 

decomposition dimension hyper-parameter. In Eq. (1), by defining j>i, autocorrelation 
term is removed; thus, only the interaction between two mutually-distinct feature 
components is considered. The dot product of two low-rank matrices is used in FMs to 

approximate the interaction of categorical variables. That is, , , ,
1

,
k
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, * * , *,
1

,
k

i j i j i f j f
f

w v v v v
=

≈ =∑   so that some interactions are shared between wi,j and wi,j*. 

Accordingly, FMs can contain multiple categorical variables and be suitable for the case 
where the data is very sparse [Rendle (2012)]. 
To learn model parameter Θ={w0, w1, …wn, v1,1, …vn,k} from the training set, different 
loss functions need to be defined according to different issues. 
The time complexity of Eq. (1) is O(kn2) because the interaction <vi,vj> between variables 
of different types is calculated. Therefore, the second-order model can be obtained by 
factorization and optimization into the form shown in Eq. (2): 

2 2 2
0 , ,

1 1 1 1

1ˆ( ) (( ) )
2

n k n n

i i i f i i f i
i f i i

y x w w x v x v x
= = = =

= + + −∑ ∑ ∑ ∑                                                           (2) 

The time complexity of Eq. (2) is reduced to O(kn). Further, the time complexity is only 
O(kp) in applications where the dataset is extremely sparse (the number of non-zero 
elements is set to p). 
For each pair (x, y) in the observation dataset (S), Eq. (3) can be used to find the 
minimum of the error sum of all observations y and predicted values ˆ( | Θ)y x  to obtain 
the ideal parameter set Θ: 

( , )

ˆ(S) argmin Θ ( ( | Θ), )
x y S

OPT loss y x y
∈

= ∑                                                                         (3) 

When the factorization dimension k is large, the L2-norm regularization term prevents the 
model from overfitting. Thus, employing the L2-norm regularization term, Eq. (3) 
becomes as follows: 

2

( , ) Θ

ˆ( , ) argmin Θ ( ( | Θ), ) )θ
x y S θ

OPT S λ loss y x y λ θ
∈ ∈

= +∑ ∑(                                                   (4) 

where θλ  denotes the regularization coefficient and 2

Θθ
θ

∈
∑  denotes the L2-norm of a 

parameter set Θ. Moreover, according to Rendle et al. [Rendle, Gantner, Freudenthaler et 
al. (2011)], for ∀θ∈Θ, the factorization machine can be expressed as a linear 
combination of two functions: 
ˆ( ) g ( ) h ( )θ θy x x θ x= +                                                                                                        (5) 

where gθ and hθ are independent of the value of parameter θ. 
Then, according to Rendle et al. [Rendle, Gantner, Freudenthaler et al. (2011)], the 
optimization learning method is used to find the optimal parameters. The main idea is 
that each parameter is learned iteratively while other parameters are fixed until all 
parameters converge to the optimal solution. 

3 Proposed model and algorithm 
3.1 Data pre-processing methods 
The collected data is pre-processed to construct the requirements of the factorization 
model and decomposition algorithm for teaching recommendation. Firstly, a teaching 
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information data warehouse is constructed based on the fact constellation model by 
extract-transform-load (ETL) from several database tables, such as teacher information 
table, course information table, and teaching evaluation table. The structure of the data 
warehouse is shown in Fig. 1. 
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Eva

Course dimension 
table Degree dimension 

table

Title dimension 
table

Evaluation 
dimension table

 
Figure 1: Pattern structure of the fact constellation 

Then, we construct the following definitions to normalize the related attributes in the data 
warehouse. 
Definition 1: School factor vector (vsf, vsf=[0.4 0.3 0.2 0.1]T) is used to quantify the 
teacher’s graduation schools. Vector elements represent the values of graduates from 
“985 Project” universities, “211 Project” universities, other first-tier universities, second-
tier universities and below. 
Definition 2: Degree coefficient (vDc, vDc=[0.4 0.3 0.2 0.1]T) is used to quantify the 
degree earned by teachers. Each element represents the value of Ph.D., master, bachelor, 
and non-degree, respectively. 
Definition 3: Graduation years (Gy, Gy≥0) represents the difference between the current 
year and the year of graduation (this paper takes the year of graduation of the final 
academic degree as the teacher’s graduation year). That is, Gy=the current year-the year 
of graduation. 

Definition 4: Attenuation function Af (Gy) (Gy∈ℕ+, 0≤Af(Gy) ≤0.1) means that with the 
growth of the teacher’s graduation years (Gy), the professional foundation of teachers has 
a small decline. The function is defined as follows: 

Gy

1(Gy)
5(1 )

Af s
a−= −

+
                                                                                                  (6) 

where a is the constant coefficient of convergence rate. With a larger value of a, the 
function quickly converges to s. In this paper, a=1.3 and s=0.1 are used (the maximum 
attenuation value converges to 0.1). 
Definition 5: Teacher professional foundation (Tpf) is used to quantify the professional 
foundation of a teacher defined as: 
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2 2

sf , Dc
i 1 1

1Tpf ( Cv ) Dw Af(Gy)
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i
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= =
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where ( 1,2)iλ i = represents the proportion of the i-th graduation major (generally 
considered the first and last graduation major) of a teacher, it is defined as follows: 

1

Cv

2 Cv

i
i n

p
p

λ

=

=

∑
,

2

1 1
1

n

i
p i

λ
= =

=∑∑                                                                                                 (8) 

where Cvi represents the correlation coefficient between the teacher’s i-th graduation 
major and the major he is engaged in, the total correlation is 1, and the correlation is r, 
the concrete definition is as follows: 

i

1
=Cv

r




 i=1, 2  0<r<1                                                                                                       (9) 

In Eq. (7), Dw(0<Dw≤1) is the teacher’s degree factor. If the degree is obtained in full-
time, Dw is 1, while if the degree is obtained part-time, Dw is a number between (0, 1) 
according to the total time. 
To verify the validity of the definition, we select 40 teachers as sample data from a 
school in a second-tier university. The sample data are normalized and sorted by their 
professional foundation. As shown in Fig. 2, the obtained Tpf is differentiated. The result 
shows that the definition is reasonable. 

 
Figure 2: Tpf example 

Definition 6: Course difficulty coefficient (Cdc, 0.1≤Cdc≤1) indicates the difficulty of 
the course. A higher value means a more difficult course. We adopt an online survey 
system of course difficulty coefficient classified by major, where a difficulty coefficient 
is scaled from 1 to 10. The respondents are graduates and expert teachers of relevant 
majors in second-tier or equivalent universities. The total recovered questionnaires for 
each major shall not be less than the minimum threshold of m (including k teachers’ 
questionnaires and l students’ questionnaires, m=k+l). Finally, we use min-max 
normalization to normalize the difficulty coefficient to the interval [Emin, Emax] (Emin and 
Emax represent the lowest and highest difficulty coefficients of the course respectively. 
Emin=0.1 and Emax=1.0 are used in this paper), which is given by: 
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min
max min min

max min

Qs QsCdc
Qs Qs

E E E−
= × − +

−
（ ）                                                                      (10) 

where Qsmin and Qsmax are the minimum and maximum difficulty values of the courses 
investigated in a particular major. Qs is defined as: 

( )
1 i 1

1
Qs Cd Cd

k l

i i
i

ww
k l= =

−
= +∑ ∑                                                                                       (11) 

where w (0<w<1) is the weight of the expert teacher questionnaire survey and Cdi is the 
difficulty coefficient value given in the questionnaire for the i-th course.  
Definition 7: Teaching Comprehensive Evaluation (Eva, 0.1≤Eva≤1) is used to 
normalize the score of the course taught by the teacher. We adopt the min-max 
normalization to normalize Eva to the interval [Emin, Emax] (Emin and Emax represent the 
minimum and maximum evaluation values respectively. Emin=0.1 and Emax=1.0 are used 
in this paper). A comprehensive evaluation value is defined as follows: 

min
max min min

max min

Aver AverEva
Aver Aver

E E E−
= × − +

−
( )                                                               (12) 

where Avermin and Avermax are the lowest and highest evaluation scores of all courses in 
the major. Aver represents the average score of student evaluations for the same course 
taught by a teacher over M semesters defined as follows: 

1 1
Aver (Qty Aver ) Qty

M M

m m m
m m= =

= ×∑ ∑                                                                               (13) 

where Qtym represents the number of students participating in the evaluation of the 
course in semester m (1≤m≤M), and Averm (0<Averm≤100) represents the average score 
of the course in semester m. 

3.2 TRFMs model and recommendation algorithm 
Five variables are used to construct x(i) in FMs model feature vector X={x(1), x(2),…, x(n)}: 
Teacher, Course, Teacher Professional Foundation, Course Difficulty Coefficient, and 
Teaching Comprehensive Evaluation, n is the total number of feature vectors. We use 
Tpf, Cdc, and Eva to represent the corresponding eigenvalues of teachers’ professional 
foundation, course difficulty coefficient, and teaching comprehensive evaluation, 
respectively. Then, we use the partial recommendation value y(i) calculated by Eq. (14) to 
construct the recommendation label in the target vector Y={y(1), y(2), …, y(n)} of FMs: 

3
( )

1 2 3
1

y Tpf Cdc Eva,  1i
i

i
ρ ρ ρ ρ

=

= + + =∑                                                                           (14) 

where ρ1, ρ2, and ρ3 are partial weights. If ρ1>ρ2 and ρ1>ρ3, the recommendation basis lays 
particular stress on teachers’ professional foundation. We name such a Factorization 
Machine model as Teaching Recommendation Factorization Machines (TRFMs). 
Then, we constitute the TRFMs dataset by the feature vector X and the target vector Y. 
An example of this dataset is shown in Fig. 3. 
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Feature Vector X

1 0 0 0 … 1 0 0 0 … 0.3586 0 0 0 …

1 0 0 … 0 1 0 0 … 0 0.6167 0 0 …

0 1 0 0 … 0 0 1 0 … 0 0.6167 0 0 …

0 0 1 0 … 0 0 0 1 … 0 0 0.4962 0 …

0 0 1 0 … 0 0 1 0 … 0 0 0.4962 0 …

0 0 0 1 … 0 0 1 0 … 0 0 0 0.5046 …

0 0 0 1 … 0 1 0 0 … 0 0 0 0.5046 …

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

Teacher Course Tpf
CS001   CS002   CS003   CS004 60308    60384    60557    60188

0

Tpf1       Tpf2       Tpf3       Tpf4

0.57 0 0 0 …

0 0.54 0 0 …

0 0 0.11 0 …

0 0 0 0.80 …

0 0 0.11 0 …

0 0 0.11 0 …

0 0.54 0 0 …

Cdc
Cdc1       Cdc2       Cdc3       Cdc4

0.81 0 0 0 …

0 0.83 0 0 …

0 0 0.80 0 …

0 0 0 0.84 …

0 0 0.80 0 …

0 0 0.79 0 …

0 0.86 0 0 …

Eva
Eva1       Eva2       Eva3       Eva4

Target  Y
0.6717

0.7293

0.6253

0.7632

0.6012

0.5969

0.7249

y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

y(7)

 Figure 3: TRFMs model dataset example 

In practical application, a course set is a large number of sets, and so is the teacher set. 
However, the courses taught by each teacher only account for a limited number of 
elements in the course set, which is bound to cause that the majority of elements in the 
TRFMs data set are 0. Thus, the TRFMs data set is highly sparse. 
We propose an improved recommendation algorithm based on the alternative least square 
method [Rendle, Gantner, Freudenthaler et al. (2011)]. After learning the optimal 
parameters of TRFMs from the training set, we calculate the recommendation accuracy 
of the model under different test sets and the TOP_N teacher recommendation accuracy 
classified by the specified course. The TRFMs recommendation algorithm is described in 
Algorithm 1. 

Algorithm 1: TRFMs recommendation algorithm 

Input: historical data in teaching information data warehouse O, degree obtaining factor 
Dw, professional correlation coefficient r, expert teacher questionnaire weight w, partial 
weight ρ1, ρ2 and ρ3, regularization parameter λ, initialize the standard deviation parameter σ. 
Output: Root Mean Squared Error (RMSE) of different test sets under the optimized 
parameter Θ={w0, w1,…wn, v1,1,…vn,k} obtained from the training of the algorithm, as 
well as TOP_N recommendation and P@N sorting accuracy by course classification. 

1: The historical teaching record data O in the teaching information data warehouse is 
normalized by the given Dw, r, w according to the definitions 1-7, and the 
recommended label y(i) is calculated according to Eq. (14) according to the given ρ1, 
ρ2, and ρ3. 
2: The pre-processed data is constructed into the experimental data set E required by 
TRFMs, and divided into training set T1 and test set T2 according to 80% and 20% of 
each course. 
3: Initialization parameters w0=0, (w1, …,wn)=(0, …, 0),(v1,1…, vn,k)~N(0, σ) 
4: for (x,y)∈T1 do // Pre-calculate e and q 
5:     ˆ( , | Θ) ( , )e x y y x y y← −  

6:     for f∈{1,…,k} do // k∈ℕ+( k n )is called hyper-parameter 

7:        ,
1

( , | Θ)
n

i f i
i

q x f v x
=

←∑  

8:     end for 
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9: end for 
10: repeat//loop optimization model parameters 

11:  
0

0( , ) 1*
0

( )

( ( , |Θ) )

| 1|
x y T

w

e x y w
w

T λ
∈

−
← −

+
∑

 

12:   * *
0 0( , | Θ ) ( , | Θ) ( )e x y e x y w w← + −  

13:   *
0 0w w← //Update the value of  w0  

14:   for l∈{1, …, n} do 

15:      ( , ) 1
2

( )( , ) 1

( ( , |Θ) )

l

l l lx y T
l

l wx y T

e x y w x x
w

x λ
∈

∈

−
← −

+
∑

∑
 

16:       * *( , | Θ ) ( , | Θ) ( )l l le x y e x y w w x← + −  

17:       *
i iw w← //Update the value of wl 

18:   end for 
19:   for f∈{1, …,k} do 
20:       for l∈{1, …, n} do 

21:         , ,

( ) ,,

, ( ) ( )( , ) 1*
, 2

( )( , ) 1

( ( , |Θ) ( )) ( )

( )
l f l f

v l fl f

l f v vx y T
l f

vx y T

e x y v h x h x
w

h x λ
∈

∈

−
← −

+
∑

∑
 

22:         * *
, ,( , | Θ ) ( , | Θ) ( )l f l f le x y e x y v v x← + −  

23:         * *
, ,( , | Θ ) ( , | Θ) ( )l f l f lq x f q x f v v x← + −  

24:         *
,l f l fv v←, ; 

25:      end for 
26:  end for 
27: until(all parameters converge) 
28: Use the test set T2 to verify the RMSE of the model after optimized parameters. 
29: Top_N recommendation is generated according to course classification and 
calculation of P@N sorting accuracy. 

The time overhead in the algorithm is mainly used to update the model parameters 
according to the training set iteratively. Because the algorithm pre-calculates the 
intermediate variables e∈ℝn and q∈ℝn×k, the time complexity is | 1|( | 1| )TO k T M  where 

|T1| is the training set size and | 1|TM  is the average number of non-zero elements in the 
input feature vector X. 
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4 Experimental evaluations 
4.1 Experimental data 
The experimental data is collected from the teaching data of a second-tier university in 
recent years. The data includes 928 teachers after desensitization, 2983 courses, and 
1,956,632 valid evaluation scores obtained by averaging the student evaluation scores of 
courses taught by each teacher. During the normalization process of these data, we set 
different specific weight coefficients r, Dw, w, ρ1, ρ2, and ρ3 to obtain different 
experimental data. In this paper, according to the practical situation of the second-tier 
university, we select weight coefficients r=0.7, Dw=0.4, w=0.4, ρ1=0.2, ρ2=0.2, and 
ρ3=0.6 for normalization processing to obtain the experimental data set. The data are 
summarized in Tab. 1. 

Table 1: Samples of experimental data 
TeacherID Tpf CourseID Cdc Evaluation y(i) 
CS001 0.3586 60308 0.57 0.81 0.6717  
CS002 0.6167 60384 0.54 0.83 0.7293  
CS002 0.6167 60557 0.11 0.80 0.6253  
CS003 0.4962 60188 0.80 0.84 0.7632  
CS003 0.4962 60557 0.11 0.80 0.6012  
CS004 0.5046 60557 0.11 0.79 0.5969  
CS004 0.5046 60384 0.54 0.86 0.7249  

4.2 Evaluation index 
Root Mean Squared Error (RMSE) evaluation index proposed in Zhu et al. [Zhu and Lu 
(2012)] is adapted to measure the accuracy of recommended experiments. The RMSE is 
defined as follows: 

* 2
tc

tc
( )RMSE

E

tc E
T

y y T
∈

−= ∑                                                                                      (15) 

where ET  indicates the size of the test set TE. ytc and y*
tc indicate the ground-truth and 

predicted recommended label values of course c taught by teacher t in the test set. 
Besides, we use P@N [Wang, Meng, Zhang et al. (2010)] to evaluate the relevance of the 
first N recommended teachers for each course. Because the experimental dataset is very 
sparse, the N values in this experiment only consider the first three, the first four and the 
first five values. P@N is suitable to evaluate TOP_N recommendation defined as follows: 

#  P  TOP_@N
N

N relevant items in the items
=                                                                 (16) 

4.3 Experiment results and analysis 
To ensure that each course has data in both the training set and test set, in the TRFMs 
model experiment dataset (E), we choose 20% of the data of each course as the test set 
(TE), and the remaining 80% of the data (E- TE) as the training set. 
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4.3.1 Algorithm accuracy and sorting accuracy 
In the experiment, firstly, the TRFMs optimization parameter Θ is trained according to 
the Algorithm 1. Then, teachers are recommended according to the classification of 
courses. Here, the initialization standard deviation parameter σ=0.01 is used following 
Rendle [Rendle (2012)], and the regularization parameter λ is obtained by the adaptive 
selection method proposed in Rendle [Rendle (2012)]. 
The accuracy of the teaching recommendation algorithm is compared with the factor 
decomposition dimension hyper-parameter k=8, 12, 16, 20, 24, 28, 32, 36. Theoretically, 
the parameter k is required to be large enough. A small value of k is used in the 
experiment since the experimental data is highly sparse so that not enough sample is 
given to estimate the complex interaction matrix. We conduct ten experiments for 
different k values, and then their mean value is used as the result value to obtain the 
precision comparison chart as shown in Fig. 4: 

 
Figure 4: RMSE under different k 

Fig. 4 shows that the algorithm can usually recommend from a highly sparse 
experimental dataset E, and k profoundly affects the recommendation accuracy. If k is 
small, RMSE is high (i.e., low accuracy). As k increases, RMSE gradually increases 
correspondingly. 
We further sort out the experimental results and obtain the comparison of the sorting 
accuracy of the algorithm at P@N when the dimension hyper-parameter k is 8, 16 and 32, 
and N is 3, 4, and 5. The results are shown in Fig. 5. 

 
Figure 5: Comparison of P@N under different k and N 
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As shown in Fig. 5, the larger the value of k is, the higher the ranking accuracy is, while 
the smaller the value of N is, the higher the sorting accuracy is under a reasonable range 
of the dimension super-parameter k. 
Through the above experiment, we verified that the TRFMS algorithm provides a reasonable 
range of RMSE and P@N values for highly sparse teaching recommendation data sets. It 
indicates that the TRFMS algorithm correctly predicts the recommended label y*

tc of each 
teacher for a given course, and recommends the teachers with the highest TOP_N predictive 
value y*

tc for a given course. Consequently, the teaching effect will be improved. 

4.3.2 Recommended accuracy comparisons between TRFMs and HOSVD 
Tensor decomposition is also known as high order singular value decomposition (HOSVD). 
The Tucker decomposition model [Tucker (1966)] decomposes the three-dimensional 
tensor X into the product of a low-rank eigenvalue matrix on three dimensions and a core 
tensor: ( ) ( ) ( )i j k

i j kX X C V V V≈ = × × ×


. C is the compressed tensor of tensor X which is 
much smaller than the original tensor and has a significant effect on a sparse dataset.  
The three-dimensional tensor recommended by teachers is constructed with the 
experimental data described in Tab. 1. The three-dimensional tensor t c eI I IX R × ×∈ is 
constructed with dimensions T, C, and E according to the four-tuples relationship (ti, cj, 
ek, y(i)) of “Teacher(T)-Course(C)-Evaluation(E)-Recommendation Label (Y)”. The 
corresponding element index is (ti, cj, ek), and the corresponding element value is y(i) with 
a partial recommendation value calculated by Eq. (14). If there is a teacher (ti) with a 
certain teacher professional foundation of Tpfi who teaches a course (cj) with a difficulty 
coefficient of Cdcj and gets an evaluation score (ek) of Evak, then the element value of 
tensor corresponding to the subscript (ti, cj, ek) is the weighted y(i) value. Otherwise, the 
corresponding element value is 0. 
Then, we adopt the Tucker tensor decomposition method [Tucker (1966)] to obtain the 
approximate tensor after the dimension reduction and generate the Top-N 
recommendation list classified by the course according to the size of the approximate 
tensor element values. The time complexity of the algorithm consists of the complexity 

3 1 3

1, 1 1

O( ( ))
n

n n j j
i i n j j n

I R R I
−

= ≠ = = +
∑ ∏ ∏ of calculating the core tensor C in each iteration, the 

complexity 
3

2

1,

O n j n
j j n

I R R
= ≠

 
 
 

∏ of performing SVD calculation on X̂ , and the modular 

multiplication complexity of solving the approximate tensor X̂  (the same as solving the 
core tensor). In the algorithm, the dimension In of tensor X is much larger than the 
dimension Rn of decomposition factor; thus, the complexity of the algorithm can be 

reduced to
3

1

O i
i

I
=

 
 
 
∏ . 

In the experiment, we used the same parameters as in the previous experiment for the 
TRFMs algorithm but fixed the factorization dimension hyper-parameter k=24. For the 
HOSVD, we fixed the iteration threshold of Ɛ=0.0005 [Kolda and Bader (2009)]. Then 
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we took 60%, 70%, 80%, 90%, and 100% of E-TE as training sets (the sparsity of training 
sets varies with the size of training sets) to compare their recommendation accuracy. 
Through the experiment, we obtained a comparison between their recommended 
accuracy and the running time of each iteration, as shown in Figs. 6 and 7. When N is 3, 
4 and 5, we obtained the comparison of P@N sorting accuracy, as shown in Fig. 8: 

 
Figure 6: Recommended accuracy for different size training sets 

 
Figure 7: Run-time of each iteration under different size training sets 

 
Figure 8: Recommended sorting accuracy for different P@N 

The results show that the recommendation accuracy of both models is improved with the 
increase in the training set. However, the recommendation accuracy obtained by the 
TRFMs model algorithm is slightly higher than that of the HOSVD model algorithm. The 
recommended sorting accuracy of the P@N is also slightly higher than the HOSVD 
model algorithm. The running time is also much lower than that of the HOSVD model 
algorithm. Those indicate that the recommended performance of TRMFs is superior to 
HOSVD for a highly sparse dataset. 
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4.3.3 Recommended differences comparisons under different specific weight factors 
To compare the recommended differences of experimental datasets under different specific 
weight coefficients, we designed a series of experiments. In each experiment, we fixed the 
dimensional hyper-parameter k=24 of the TRMFs algorithm and compared their 
recommendation differences of Top_5 in the same course. The specific design is as follows: 
(1) Comparison of the effects of different r and Dw on the recommended results: We 
fixed w=0.4, optional r=0.7 and Dw=0.4 to construct the experimental dataset E1 while 
optional r=0.5 and Dw=0.2 to construct the experimental dataset E2. We completed 
TRFMs-based teaching recommendation experiments for E1 and E2 respectively, and the 
comparison results are shown in Tab. 2. 

Table 2: Comparison of different r and Dw recommended (CourseID=60264) 
E1 E2 

TeacherID  y*
tc TeacherID y*

tc 
CS022 0.6004 CS011 0.5862 
CS009 0.5855 CS009 0.5752 
CS035 0.5803 CS022 0.5726 
CS012 0.5781 CS012 0.5542 
CS011 0.5781 CS035 0.5524 

Tab. 2 shows that the same course under different proportion coefficients r and DW (i.e., 
in different Tpf) provide different predicted recommended label values y*

tc; that is, the 
recommended order of teachers is different. Through the analysis, it can be seen from 
Eqs. (6)-(8) that there are inconsistencies in each teacher’s professional relevancy and 
degree obtaining method. That is, different values of Cvi and Dw lead to different values 
of Tpf. In this way, the order of teachers recommended for the same course will also be 
different. Therefore, different values of r and DW have a significant impact on the 
recommendation results. 
(2) Comparison of the effects of different specific weight coefficients w on the 
recommended results: We fixed r=0.7, Dw=0.4, optional w=0.3 to construct the 
experimental dataset E3 while optional w=0.7 to construct the experimental dataset E4. 
we completed TRFMs-based teaching recommendation experiments for E3 and E4 
respectively, and the comparison results are shown in Tab. 3. 

Table 3: Recommended comparison of different w-values (CourseID=60264) 
E3 E4 

TeacherID y*
tc TeacherID y*

tc 
CS012 0.4451 CS012 0.5220 
CS022 0.4405 CS022 0.5174 
CS035 0.4386 CS035 0.5155 
CS004 0.4373 CS004 0.5142 
CS011 0.4283 CS011 0.5052 
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Tab. 3 shows that the predicted value of recommendation label y*
tc can be changed with 

the change of w (that is, the change of Cdc value) while other data and the specific weight 
coefficient remain unchanged. However, there is no change in the recommendation 
results of Top_5 teachers in the same course. As can be seen from Eqs. (9) and (10), only 
a change of w will change the Cdc value of the course and the predicted value. However, 
when recommending teachers for the same course, a change of the Cdc value does not 
affect the order of recommendation. All the experimental results show that the TRFMs 
and the recommendation algorithm can accurately implement the course teaching teacher 
recommendation according to different focuses. 

5 Conclusion 
This paper proposes TRFMs and the recommendation algorithm to address the lack of 
scientific basis for teaching arrangement. Several normalized factors are defined: 
teachers’ professional foundation, course difficulty coefficient and teaching 
comprehensive evaluation value. Based on the factors, a comprehensive recommendation 
value is computed using partial weights with historical teaching data. A highly sparse 
teaching recommendation dataset is constructed where Teacher, Course, Tpf, Cdc, and 
Eva are used as the attributes of feature vector X, and the comprehensive 
recommendation value is used as target vector Y. Then, TRFMs model and the 
recommendation algorithm are proposed for accurate teacher recommendation. The 
experimental results show that the proposed methods can be a new solution for the school 
course to realize intelligent and accurate recommendations of teaching teachers. Also, the 
proportion coefficients of the proposed methods can be adjusted to fit the situation of the 
target school, which leads to ideal recommendation results and effectively improve 
teaching quality. 
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