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Abstract: Single image super resolution (SISR) is an important research content in the 
field of computer vision and image processing. With the rapid development of deep 
neural networks, different image super-resolution models have emerged. Compared to 
some traditional SISR methods, deep learning-based methods can complete the super-
resolution tasks through a single image. In addition, compared with the SISR methods 
using traditional convolutional neural networks, SISR based on generative adversarial 
networks (GAN) has achieved the most advanced visual performance. In this review, we 
first explore the challenges faced by SISR and introduce some common datasets and 
evaluation metrics. Then, we review the improved network structures and loss functions 
of GAN-based perceptual SISR. Subsequently, the advantages and disadvantages of 
different networks are analyzed by multiple comparative experiments. Finally, we 
summarize the paper and look forward to the future development trends of GAN-based 
perceptual SISR.  
 
Keywords: Single image super-resolution, generative adversarial networks, deep 
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1 Introduction 
Image super-resolution reconstruction technology is a research hotspot in the field of 
computer vision, and plays an important role in remote sensing images [Haut, Fernandez-
Beltran, Paoletti et al. (2018)], medical images [Nie, Trullo, Lian et al. (2017); Guo, Cui, 
Yang et al. (2019); Mahapatra, Bozorgtabar and Garnavi (2019)], video surveillance and 
so on. Image super-resolution refers to the recovery of a corresponding high-resolution 
image from a low-resolution single image or a sequence of low-resolution images. 
Traditional single image super resolution requires multiple low-resolution images to 
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restore high-frequency details of high-resolution images. However, it is sometimes 
difficult to obtain multiple images in some real-world scenarios. 
The super resolution of a single image is an inverse problem. Since a single low-
resolution image loses a lot of high-frequency information, there are many possibilities 
for reconstruction results. In recent years, the deep learning method has achieved 
remarkable results in image processing [He, Zhang, Ren et al. (2016); Huang, Liu, 
Maaten et al. (2017)] due to its powerful learning ability. Therefore, most of the 
researches attempt to use the deep learning method to perform a single image super-
resolution task and has achieved good results. Moreover, a network of adversarial 
learning has been proposed in recent years: GAN. The GAN-based method can achieve 
lifelike results on image synthesis [Karras, Laine and Aila (2019)]. Most single image 
super resolution methods based on GAN models get lower scores in peak signal-to-noise 
ratio (PSNR) and structural similarity (SSIM) evaluation experiments than traditional 
methods, but have higher mean-opinion-score (MOS).  
In this paper, our main goal is to provide a survey of perceptual SISR based on GAN 
models in recent years. We focus on the challenges, structural approaches, and results of 
the SISR based on the GAN models. These represent the problems to be solved and 
possible development methods for using GAN method on image super-resolution. The 
following chapters are organized as follows: In Section 2, we try to explore the challenges 
of single image super resolution. In Section 3, the datasets and evaluation metrics for a 
single image super-resolution experiment are presented. In Section 4, we review the recent 
study of single image perceptual super-resolution using GAN methods. In Section 5, the 
results of a single image super-resolution reconstruction based on GAN are summarized 
and analyzed. In Section 6, we summarize the full text and look to the future. 

2 Standard GAN model and SSIR challenges 
The single image super-resolution based on GAN trains neural networks with the idea of 
zero-sum game. The generator tries to learn the distribution of the real data, and the 
discriminator tries to judge the authenticity of the data from the generator. In the end, 
both are continually optimized to achieve Nash equilibrium.  

 
Figure 1: SGAN model 

2.1 Standard GAN model 
The standard GAN (SGAN) model [Goodfellow, Pouget-Abadie, Mirza et al. (2014)] 
includes two neural networks, a Generator (G) and a Discriminator (D). The SGAN 
model is shown in Fig. 1. The objective function can be described as follows: 
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𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝛦𝛦𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)] + 𝛦𝛦𝑧𝑧~𝑝𝑝𝑧𝑧(𝑧𝑧)[𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧)))]                 (1) 

where x represents a real dataset, pdata (x) represents a real sample distribution, z 
represents a random noise, pz (z) represents a prior distribution (generally assumed to be a 
Gaussian distribution), and E (⸳) represents an  operation to calculate expected value. 

2.2 GAN model challenge 
First, the GAN-based model uses an adversarial idea to train neural networks. This 
method can complete the single-image super-resolution task by continuously optimizing 
the generator and discriminator. Second, due to the adversarial idea, this approach avoids 
the need to design complex loss functions to optimize the model. However, due to this 
adversarial idea, it has caused problems such as unstable training, gradient dispersion, 
and model collapse. For this open-ended problem, the optimization direction of most 
GAN models is in terms of architecture and loss function [Pan, Yu, Yi et al. (2019)]. 
Therefore, a naive idea is to apply different GAN models to SISR. However, the 
convergence time, memory requirements and image quality of different GAN models 
have advantages and disadvantages. 

2.3 Evaluation metric challenge 
In general, in the image super-resolution experiments, most image super-resolution 
models use the mean square error (MSE) to optimize the distance between reconstructed 
high-resolution images and ground truth (GT) images. This optimization method itself is 
beneficial to traditional super-resolution (SR) evaluation metrics: peak signal-to-noise 
ratio (PSNR), structural similarity (SSIM). However, using MSE to optimize models will 
make the reconstructed high-resolution images tend to smooth. Moreover, on the mean 
opinion scores (MOS), the images reconstructed by the traditional SISR method are 
lower than the SISR based on the GAN model. However, MOS cannot quantitatively 
analyze the perceptual quality of an image. Therefore, it is a better choice to apply the 
evaluation metric of perception combined with distortion to evaluate the perception 
quality of the image [Blau, Mechrez, Timofte et al. (2018)]. 

2.4 Real-world dataset challenge 
Most of the existing research low-resolution images are sampled from high-resolution 
images using bicubic interpolation. In an unknown down-sampling experiment, the single 
image super-resolution evaluation metric score will decrease [Timofte, Agustsson, Van 
Gool et al. (2017)]. In addition, in the real world, low resolution images tend to have 
more complex motion. Usually, building a large-scale training set of real-world super-
resolution images may solve this problem to a certain extent. Furthermore, there are also 
methods that use GAN architecture to learn image degradation and then adapt to real 
datasets [Bulat and Yang (2018)]. 

2.5 Up-sampling multiple challenge 
In super-resolution experiments, the ×4 up-sampling factor is currently the mainstream 
study. A single image super-resolution for a higher up-sampling factor is a very 
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challenging problem, because an image with a higher up-sampling factor needs more 
high-frequency information. Therefore, it is crucial how to recover the detail information 
of high-resolution images in a single image higher resolution reconstruction experiment. 
For the problem of higher resolution image reconstruction, it can be considered to 
integrate the reconstruction information of different scales by using a multi-scale 
reconstruction method [Wang, Perazzi, McWilliams et al. (2018)]. 

3 Datasets and evaluation metrics 
In order to train and evaluate a single image super-resolution model, some available 
datasets are needed for experiments. So far, the commonly used experimental datasets for 
single image super-resolution based on GAN model include: DIV2K [Agustsson and 
Timofte (2017)], Set5 [Bevilacqua, Roumy, Guillemot et al. (2012)], Set14 [Zeyde, Elad 
and Protter (2010)], BSD100 [Martin, Fowlkes, Tal et al. (2001)], Urban100 [Huang, 
Singh and Ahuja (2015)], PIRM [Blau, Mechrez, Timofte et al. (2018)]. Tab. 1 provides a 
brief summary of these datasets. 

Table 1: SSIR public datasets 

Dataset Classes Contents Download link 

DIV2K 1000 people, cities, fauna, sceneries, etc. https://data.vision.ee.eth
z.ch/cvl/DIV2K/ 

Set5 5 baby, bird, butterfly, head, etc. 

https://github.com/jbhua
ng0604/SelfExSR 

Set14 14 animals, humans, insects, etc. 

BSD100 100 animals, buildings, people, etc. 

Urban100 100 cities, urban, architectures, etc. 

PIRM 200 people, objects, environments, etc. https://pirm.github.io/ 

3.1 Public datasets 
The following sections introduce the common training and evaluation datasets for single-
image super-resolution based on the GAN model. 

3.1.1 Training dataset 
DIV2K dataset. The dataset consists of high-quality images collected on the Internet, 
and it contains 1,000 RGB images with a resolution of 2 K. The DIV2 K dataset contains 
a variety of categories of content, including people, natural environments, flora and 
fauna, and more. The dataset is divided into a training set, a validation set, and a test set, 
and the numbers are 800, 100, and 100, respectively. The training set, validation set, and 
test set all have three down-sampling factors, which are ×2, ×3, and ×4, respectively. 

3.1.2 Evaluation datasets 
Set5 dataset. The Set5 dataset contains 5 images, and the size of the images is generally 
small. This dataset contains high-low resolution images, and its down-sampling factors 
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include ×2, ×3, ×4. 
Set14 dataset. The Set14 dataset contains 14 images. The high-low resolution images in 
this dataset contain three down-sampling factors, which are ×2, ×3, and ×4, respectively. 
BSD100 dataset. The BSD100 dataset contains 100 kinds of images from real-life 
scenes. There are three different high-low resolution down-sampling factors in this 
dataset, which are ×2, ×3 and ×4, respectively. 
Urban100 dataset. The Urban100 dataset contains 100 high-resolution images from 
urban scenes. The high-low resolution images in this dataset contain two down-sampling 
factors, which are ×2 and ×4, respectively. 
PIRM dataset. The PIRM dataset contains a validation set and a test set, each containing 
100 pairs of high-low resolution images. Furthermore, the down-sampling factor for 
high-low resolution images is only ×4. This dataset is currently used primarily to measure 
the perception-distortion of images. 

3.2 Evaluation metrics 
Existing image super-resolution evaluation metrics can be divided into two categories: 
based on reconstruction accuracy (PSNR, SSIM) and based on visual perception (PI, 
Root Mean Square Error). 
Peak signal to noise ratio (PSNR). PSNR represents the ratio of the maximum power of 
the signal to the power of the signal noise. Given a real image x and a reconstructed 
image y whose pixels are both N, then MSE and PSNR can be defined as: 

MSE = 1
𝑁𝑁
∑ (𝑥𝑥 − 𝑦𝑦)2𝑁𝑁
𝑖𝑖=1                                                                                                      (2) 

PSNR = 10𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝐿𝐿2

MSE
�                                                                                                    (3) 

Here, L is generally 255, which represents the largest pixel value of an 8-bit image. 
Structural similarity (SSIM). SSIM is used to measure the similarity of two images, 
and its value is 0 to 1. A larger SSIM value indicates a smaller degree of image 
distortion, which means that the image quality is better. Given a real image x and a 
reconstructed image y, SSIM can be defined as: 

SSIM(𝑥𝑥,𝑦𝑦) = �2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝑐𝑐1��2𝜇𝜇𝑥𝑥𝑥𝑥+𝑐𝑐2�
�𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝑐𝑐1��𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝑐𝑐2�

                                                                                  (4) 

Here, μx and μy, σ2 
x  and σ2 

y  represent the corresponding mean and variance of the image x 
and the image y, respectively. The μxy is expressed as the covariance of x and y. For the 
constants c1 and c2, they are constrained by c1=(k1L)2 and c2=(k2L)2, respectively. Where k1 
and k2 take a smaller constant (e.g., 0.01) and L represents the largest possible pixel value. 
Perceptual index (PI) and root mean square error (RMSE). The perceptual-distortion 
plane consists of the PI of the vertical axis and the RMSE of the horizontal axis. By 
setting the RMSE value, it can be divided into three regions (regions 1/2/3 were defined 
by RMSE≤11.5/12.5/16 respectively) as shown in Fig. 2. In Fig. 2, the model cannot be 
implemented in the area below the curve, which shows that perception and distortion can 
only achieve better performance by trade-off. PI combines the non-reference image 
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quality measurements of Ma et al. [Ma, Yang, Yang et al. (2017)] and NIQE [Mittal, 
Soundararajan and Bovik (2012)], which can be expressed as: 

PI = 1
2
�(10 − Ma) + NIQE�                                                                                             (5) 

The RMSE is calculated as the square root of the Mean Squared Error (MSE) of all pixels 
in all images and can be expressed as: 

RMSE = (1
𝑀𝑀
∑ 1

𝑁𝑁𝑖𝑖
𝑀𝑀
𝑖𝑖=1 �𝑥𝑥𝑖𝑖𝐻𝐻𝐻𝐻 − 𝑥𝑥𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸�

2)1 2⁄                                                                           (6) 
where xHR 

i  and xEST 
i  represent the ground truth and estimated image, respectively. Ni represents 

the number of pixels in xHR 
i  and M represents the number of images in the test set. 

 
Figure 2: Perceptual-distortion plane 

4 SISR reconstruction based on GAN model 
The traditional SISR method training neural networks use the L1/L2 cost function, which 
makes the reconstruction results have higher PSNR and SSIM. However, the 
reconstructed high-resolution images lack rich details. At present, generative adversarial 
network (GAN) and its variants have achieved remarkable results in the field of images. 
The GAN-based method uses a discriminator to judge the authenticity of reconstructed 
high-resolution images, which makes the generated high-resolution images closer to the 
real images as a whole. Besides, the reconstructed images have more details and are more 
consistent with human visual perception. The GAN-based image super-resolution 
network structure is improved on the SGAN. The basic generator network and 
discriminator network are shown in Figs. 3 and 4, respectively. In Fig. 3, the gray box 
represents a feature extraction module (FEM), which includes multiple feature extraction 
blocks and a convolution layer (Conv) and an optional batch normalization layer (BN). In 
most GAN-based image super-resolution methods, their main improvement directions are 
discriminator networks, generator networks, and loss functions. Moreover, there are other 
improvement directions. For example, Shama et al. [Shama, Mechrez, Shoshan et al. 
(2019)] adds an adversarial feedback loop (AFL) to the SGAN. In other words, they add 
a feedback module based on the discriminator and generator, which enables the model to 
use the discriminator information during the testing stage. Next, we will introduce 
improvements in discriminator networks, generator networks, and loss functions. 
Besides, in order to maintain a good balance between RMSE and PI, Luo et al. [Luo, 
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Chen, Xie et al. (2018)] used two complementary GAN networks, named Bi-GANs-ST. 
One memory residual GAN (MR-GAN) is used to reduce the RMSE score, and another 
weight-aware GAN (WP-GAN) is used to reduce the PI score. Zhong et al. [Zhong and 
Zhou (2020)] used a latent spatial regularization (LSR) generator network in the proposed 
LSRGAN. They added a companion encoder to apply regularization conditions to the 
GAN to generate a more ideal image manifold. 

4.1 Discriminator network 
Currently, part of the work is improved on the discriminator network [Lee, Lee, Lee et al. 
(2019); Park, Son, Cho et al. (2018); Wang, Perazzi, McWilliams et al. (2018)]. Lee et al. 
[Lee, Lee, Lee et al. (2019)] studied the discriminator of SRGAN [Ledig, Theis, Huszár 
et al. (2017)] and found that strided convolution layers and maxpooling layers of the 
VGG network would cause detailed information losses and visual artifacts. Therefore, 
they proposed a resolution-preserving SRGAN (RPSRGAN). First, in order to keep the 
details in the discriminator network, they set the stride size of the convolutional layers to 
1. Then, the maxpooling layers are removed after training the VGG network. To reduce 
the small amount of high-frequency noise generated in the SISR based on the GAN 
model, Park et al. [Park, Son, Cho et al. (2018)] used an additional discriminator in the 
feature domain. First, a traditional image discriminator is used to process pixel-level 
images. Besides, a feature discriminator attempts to distinguish the authenticity of the 
reconstructed image based on the extracted feature map. Similarly, Zhu et al. [Zhu, Chen, 
Peng et al. (2020)] also used multiple feature discriminators in the proposed GAN-IMC. 
They used three discriminators to distinguish the three aspects of the input image: image, 
morphology, and color. From the experimental results of these improved discriminators, 
the perceptual quality of reconstructed images can be improved to a certain extent. 

 
Figure 3: Generator network 

 
Figure 4: Discriminator network  
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4.2 Generator network 
At present, most researches on improving the GAN generator network mainly enhance the 
FEM of the single generator network in Fig. 3. Unlike improving a single generator network, 
a multi-scale generator network extends a single generator network to multiple scales for 
reconstruction. Next, we will introduce the improvement methods of these two parts. 

4.2.1 FEM improvements 
Residual block (RB) with/without batch normalization. Yu et al. [Yu and Porikli (2016)] 
earlier used a generative adversarial network for super-resolution reconstruction of images. 
They used multiple convolutional layers to build a generator network, and output face 
images with a ×8 up-sampling factor. It is well known that deeper networks can improve the 
performance of the model, but as the number of network layers increases, it will lead to 
gradient dispersion or gradient explosion. This problem can be solved using normalized 
initialization and intermediate normalization layers. However, when the network reaches a 
certain depth, it will cause model degradation. With the introduction of the deep residual 
network, this problem is solved. Therefore, early improved generator networks mostly use 
the residual network. Ledig et al. [Ledig, Theis, Huszár et al. (2017)] proposed SRGAN 
earlier, and the generator network is shown in Fig. 3. They used 16 residual blocks with BN 
layers in the feature extraction block (FEB), as shown in Fig. 5(a). Similarly, Lee et al. [Lee, 
Lee, Lee et al. (2019)] also use the same generator network.  
Recently, some experimental results show that removing BN layers can improve the 
performance of generator networks and reduce the computational complexity of generator 
networks. Therefore, subsequent work removed all BN layers from the FEM. The EUSR-
PCL proposed by Cheon et al. [Cheon, Kim, Choi et al. (2018)] used FEB as shown in 
Fig. 5(b), and removed PReLU in the dashed box in Fig. 3. Furthermore, Choi et al. 
[Choi, Kim, Cheon et al. (2019)] used a similar architecture in the proposed 4PP-EUSR. 
Residual block with scaling (RB-Scaling). Model performance can be improved by 
increasing the number of feature maps. However, too many feature maps will cause the 
network training process to be unstable. Therefore, some models add a residual scaling 
factor (e.g., 0.1) behind the last convolution layer of the residual block to stabilize the 
network training process. PESR Vu et al. [Vu, Luu, Yoo et al. (2018)] and EPSR Vasu et 
al. [Vasu, Thekke and Rajagopalan (2018)] both used scaled residual blocks, as shown in 
Fig. 5 (c). 
Residual dense block (RDB) with scaling. Recent research results show that densely 
connected neural network layers can alleviate the gradient dispersion problem. In 
addition, the densely connected networks can better reuse features. However, densely 
connected networks cannot be designed as deeply as residual networks. Therefore, part of 
the work combined the residual network and the densely connected network into a 
residual dense block (RDB). Wang et al. [Wang, Yu, Wu et al. (2018)] used residual 
dense blocks with scaling factors to improve FEB in the proposed ESRGAN, as shown in 
Fig. 5(d). Chen et al. [Chen, Liu, Liu et al. (2019); Shama, Mechrez, Shoshan et al. 
(2019)] used a similar approach. Among them, Chen et al. [Chen, Liu, Liu et al. (2019)] 
made a change on the densely connection network of Fig. 5(d). They move the residual 
scaling to skip-connection. 
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(a) RB with BN                       (b) RB without BN              (c) RB with Scaling 

 
(d) RDB with Scaling 

Figure 5: Different feature extraction blocks 

4.2.2 Multi-scale generator network 
The multi-scale generator network is shown in Fig. 6. The network can complete image 
super-resolution tasks in three different scales. In Fig. 6, FEB and FEM can refer to Figs. 
5(b) and 3, respectively. 

 
Figure 6: Multi-scale generator network 

Improved up-sampling. The sub-pixel convolution layer was first proposed by Shi et al. 
[Shi, Caballero, Huszár et al. (2016)]. They fed a single LR of size H×W×C into 
convolutional layers to generate r2C feature maps, all of which are H×W in size. Where, 
H, W, and C are the height, width, and number of channels of the LR, respectively. 
Moreover, r represents an up-sampling factor. The sub-pixel convolution operator 
rearranges generated feature maps into a single Super-resolution image of size rH×rW×C, 
as shown in Fig. 7(a). Unlike the method of generating r2C feature maps directly through 
convolutional layers, Cheon et al. [Cheon, Kim, Choi et al. (2018); Choi, Kim, Cheon et 
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al. (2019)] both use enhanced up-sampling  modules [Kim and Lee (2018)]. Specifically, 
they replaced Conv in the original up-sampling with 4 FEMs, as shown in Fig. 7(b). It 
should be noted that each FEM generates the same number of feature maps as the input. 

              
(a) Original up-sampling                       (b) Enhanced up-sampling  

Figure 7: Different up-sampling modules 

4.3 Loss function 
GAN-based perception SISR can generate natural images mainly due to the adversarial 
network. In order to further improve the perceptual quality of images, most studies apply 
different loss functions while improving the GAN network. Ledig et al. [Ledig, Theis, 
Huszár et al. (2017)] used a perceptual loss function in SRGAN, which includes a content 
loss and an adversarial loss. The content loss includes a pixel-based MSE loss (L2 loss) 
and a feature space-based VGG loss. Generally, the network uses MSE to ensure that the 
reconstructed image is similar to the ground truth image. These losses are defined as: 
𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 = ‖𝐼𝐼𝑆𝑆𝑆𝑆 − 𝐼𝐼𝐻𝐻𝐻𝐻‖22                                                                                                        (7) 
Here, ISR represents a reconstructed super-resolution image, and IHR represents a ground 
truth image. 
Besides, the network also uses VGG loss to improve image perceptual quality. The loss 
function can be expressed as: 
𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉 = ‖𝜙𝜙(𝐼𝐼𝑆𝑆𝑆𝑆)− 𝜙𝜙(𝐼𝐼𝐻𝐻𝐻𝐻)‖22                                                                                            (8) 
where, ϕ indicates the VGG19 network feature layers. 
In addition to the content loss introduced above, there are the adversarial loss LG_adv of the 
GAN generator and the adversarial loss LD_adv of the discriminator. Their loss function is 
defined as: 
𝐿𝐿𝐺𝐺_𝑎𝑎𝑎𝑎𝑎𝑎 = −Ε𝐼𝐼𝐿𝐿𝐿𝐿 log𝐷𝐷(𝐺𝐺(𝐼𝐼𝐿𝐿𝐿𝐿))                                                                                           (9) 
𝐿𝐿𝐷𝐷_𝑎𝑎𝑎𝑎𝑎𝑎 = −Ε𝐼𝐼𝐻𝐻𝐻𝐻 log𝐷𝐷(𝐼𝐼𝐻𝐻𝐻𝐻) − Ε𝐼𝐼𝐿𝐿𝐿𝐿 log𝐷𝐷(1 − 𝐺𝐺(𝐼𝐼𝐿𝐿𝐿𝐿))                                                    (10) 
Here, G and D represent a generator and a discriminator, respectively. 
Since SRGAN was proposed, most studies have attempted to improve its content loss and 
adversarial loss. According to the expressions in the existing literature, we reclassify the 
content loss into content loss (e.g., L2 loss) and perception loss (e.g., LVGG loss). Next, we 
will introduce some improved loss functions. 
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4.3.1 Improved content loss 
L1 loss. In addition to using L2 loss, some work also uses L1 loss to evaluate the 1-norm 
distance between the reconstructed super-resolution image and the ground truth image 
[Cheon, Kim, Choi et al. (2018); Wang, Yu, Wu et al. (2018); Chen, Liu, Liu et al. 
(2019)]. The L1 loss can be calculated as: 
𝐿𝐿1 = ΕILR‖𝐺𝐺(𝐼𝐼𝐿𝐿𝐿𝐿) − 𝐼𝐼𝐻𝐻𝐻𝐻‖1                                                                                             (11) 
where, ILR means a low-resolution image, and IHR means a ground truth image. 
Total variance loss. To alleviate the problem of high frequency noise amplification in 
GAN, Vu et al. [Vu, Luu, Yoo et al. (2018)] used a total variance loss function. The loss 
function is expressed as: 
𝐿𝐿𝑇𝑇𝑇𝑇 = −∑ (�𝐼𝐼𝑖𝑖,j+1,k

𝑆𝑆𝑆𝑆 − 𝐼𝐼𝑖𝑖,j,k𝑆𝑆𝑆𝑆 �+ �𝐼𝐼𝑖𝑖,j,k+1𝑆𝑆𝑆𝑆 − 𝐼𝐼𝑖𝑖,j,k𝑆𝑆𝑆𝑆 �)𝑖𝑖,j,k                                                           (12) 
Rank-content loss. In traditional image accuracy SR experiments, using MSE as a loss 
function is beneficial to PSNR. However, in perceptual super-resolution experiments, 
there is no direct loss function to optimize PI. Therefore, most perceptual SR methods 
cannot show stable performance. For example, different SR methods have advantages 
and disadvantages on different test sets. In order to alleviate this problem, Zhang et al. 
[Zhang, Liu, Dong et al. (2019)] proposed RankSRGAN. They train a Ranker that can 
learn perceptual metric behavior, and then use a Rank-content loss to optimize perceptual 
quality. The loss function is shown as: 
𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = sigmoid(𝑅𝑅(𝐺𝐺(𝐼𝐼𝐿𝐿𝐿𝐿)))                                                                                        (13) 
Here, R(G(ILR)) represents the ranking score of ILR. 

4.3.2 Improved perceptual loss 
VGG19 loss combined with Resnet50 loss. Most GAN-based image super-resolution 
uses a pre-trained VGG19 network to calculate the perceptual loss. They calculate the 
MSE of ISR and IHR in the feature space, as shown in Eq. (8). The difference is that Chen 
et al. [Chen, Liu, Liu et al. (2019)] calculated the 1-norm distance of ISR and IHR in the 
feature space. Moreover, they combined VGG19 and Resnet50 to jointly develop a new 
perceptual loss. The perceptual loss can be defined as: 
𝐿𝐿𝑉𝑉𝑉𝑉𝑉𝑉−𝑅𝑅𝑅𝑅𝑅𝑅 = E‖𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼𝑆𝑆𝑆𝑆)− 𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼𝐻𝐻𝐻𝐻)‖1 + E‖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐼𝐼𝑆𝑆𝑆𝑆) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐼𝐼𝐻𝐻𝐻𝐻)‖1           (14) 
Differential content loss. Cheon et al. [Cheon, Kim, Choi et al. (2018)] used a 
differential content loss to evaluate the distance between the reconstructed super-
resolution image and the ground truth image at a deeper level. The loss function can be 
calculated as: 

𝐿𝐿𝐷𝐷𝐷𝐷 = 1
𝑊𝑊𝑊𝑊

�∑ |𝑑𝑑𝑥𝑥𝐼𝐼𝑤𝑤𝐻𝐻𝐻𝐻 − 𝑑𝑑𝑥𝑥𝐼𝐼𝑤𝑤𝑆𝑆𝑆𝑆|𝑤𝑤 + ∑ �𝑑𝑑𝑦𝑦𝐼𝐼ℎ𝐻𝐻𝐻𝐻 − 𝑑𝑑𝑦𝑦𝐼𝐼ℎ𝑆𝑆𝑆𝑆�ℎ �                                              (15) 

where, dx and dy represent horizontal and vertical differential operators, respectively. 
Discrete cosine transform loss. For traditional content loss, improving the distortion-based 
performance of the image will reduce the perceptual quality. However, perception loss can 
better alleviate this situation. Therefore, the application of new perceptual loss is a key to 
improve distortion and perception. In this problem, Cheon et al. [Cheon, Kim, Choi et al. 
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(2018)] used a discrete cosine transform loss function to compare the differences between 
two images in the frequency domain. The DCT loss function can be expressed as: 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 = 1
𝑊𝑊𝑊𝑊

�∑ ∑ �𝐷𝐷𝐷𝐷𝐷𝐷(𝐼𝐼𝐻𝐻𝐻𝐻)𝑤𝑤,ℎ − 𝐷𝐷𝐷𝐷𝐷𝐷(𝐼𝐼𝑆𝑆𝑆𝑆)𝑤𝑤,ℎ�
2

ℎ𝑤𝑤 �                                                 (16) 

Here, DCT(I) represents the DCT coefficient of the image I. 

4.3.3 Improved adversarial loss 
Relativistic GAN loss. Because SRGAN uses an adversarial loss function of binary cross 
entropy, this will cause model training to be unstable. Therefore, some studies have tried 
to stabilize the training process of GAN models with other adversarial losses [Vu, Luu, 
Yoo et al. (2018); Wang, Yu, Wu et al. (2018)]. In SRGAN, the discriminator can be 
expressed as D(x)=sigmoid(C(x)), where C(x) represents the output of a no-transformed 
discriminator. Vu et al. [Vu, Luu, Yoo et al. (2018)] and Wang et al. [Wang, Yu, Wu et 
al. (2018)] both introduced Relativistic GAN [Jolicoeur-Martineau (2018)] for improved 
networks. Among them, Eqs. (17) and (18) are relativistic GAN (RGAN) loss, and Eqs. 
(19) and (20) are relativistic average GAN loss. These loss functions are defined as: 
𝐿𝐿𝐺𝐺_𝑅𝑅 = −Ε(𝐼𝐼𝐿𝐿𝐿𝐿,𝐼𝐼𝐻𝐻𝐻𝐻)[log(sigmoid(𝐶𝐶(𝐺𝐺(𝐼𝐼𝐿𝐿𝐿𝐿)) − 𝐶𝐶(𝐼𝐼𝐻𝐻𝐻𝐻)))]                                             (17) 
𝐿𝐿𝐷𝐷_𝑅𝑅 = −Ε(𝐼𝐼𝐿𝐿𝐿𝐿,𝐼𝐼𝐻𝐻𝐻𝐻)[log(sigmoid(𝐶𝐶(𝐼𝐼𝐻𝐻𝐻𝐻)− 𝐶𝐶(𝐺𝐺(𝐼𝐼𝐿𝐿𝐿𝐿))))]                                             (18) 
𝐿𝐿𝐺𝐺_𝑅𝑅𝑅𝑅 = −Ε𝐼𝐼𝐻𝐻𝐻𝐻[log (1 − 𝐷𝐷𝑅𝑅𝑅𝑅(𝐼𝐼𝐻𝐻𝐻𝐻 ,𝐺𝐺(𝐼𝐼𝐿𝐿𝐿𝐿)))] − Ε𝐼𝐼𝐿𝐿𝐿𝐿[log (𝐷𝐷𝑅𝑅𝑅𝑅(𝐺𝐺(𝐼𝐼𝐿𝐿𝐿𝐿), 𝐼𝐼𝐻𝐻𝐻𝐻))]             (19) 
𝐿𝐿𝐷𝐷_𝑅𝑅𝑅𝑅 = −Ε𝐼𝐼𝐻𝐻𝐻𝐻[log (𝐷𝐷𝑅𝑅𝑅𝑅(𝐼𝐼𝐻𝐻𝐻𝐻 ,𝐺𝐺(𝐼𝐼𝐿𝐿𝐿𝐿)))] − Ε𝐼𝐼𝐿𝐿𝐿𝐿[log (1 − 𝐷𝐷𝑅𝑅𝑅𝑅(𝐺𝐺(𝐼𝐼𝐿𝐿𝐿𝐿), 𝐼𝐼𝐻𝐻𝐻𝐻))]             (20) 
where, DRa(IHR,G(ILR))=sigmoid(C(IHR)-ΕILR [C(G(ILR))])). 
Focal RGAN loss. In a single-image super-resolution experiment, images with rich 
textures and patches are more difficult to reconstruct. To solve this problem, Vu et al. 
[Vu, Luu, Yoo et al. (2018)] used a focal loss to emphasize difficult training samples. 
They emphasize difficult samples and reduce the weight of simple samples, which 
increases the texture reconstruction in the images. The loss function is expressed as: 
𝐿𝐿𝐹𝐹_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = −∑(1 − 𝑝𝑝)𝛾𝛾log (𝑝𝑝)                                                                                      (21) 
Here, γ is a focusing parameter, p=σ (C(G(ILR ))- C(IHR )), C is obtained before the last 
sigmoid function σ of the discriminator. 
Other GAN losses. In addition to the above improved adversarial losses, there are some 
studies that also use GAN losses in other variants. Purohit et al. [Purohit, Mandal, 
Rajagopalan et al. (2018)] used conditional GAN loss [Mirza and Osindero (2014)] (LCGAN) 
in the proposed MRDN-GAN, Lee et al. [Lee, Chuang and Wang (2019)] used Wasserstein 
GAN loss [Arjovsky, Chintala and Bottou (2017)] (LWGAN) in the proposed RCAN-GAN. 

5 Results of SISR reconstruction in recent year 
In this section, we analyze the advantages and disadvantages of different GAN-based 
SISR methods through multiple comparative experiments. It should be noted that the 
experimental up-sampling factor for all the analyses below is ×4. 
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5.1 Comparison of training time and model parameters 
First, we compare the training time and parameters of different models, as shown in Tab. 
2. The lower the PI calculated on the PIRM-self validation set, the better the perceptual 
quality. “Parameters” of Tab. 2 indicates the size of the generator network. “*” of Tab. 2 
indicates that the experimental result is from RPSRGAN. As can be seen from Tab. 2, 
EPSR and ESRGAN can achieve better perceptual quality. However, their model 
parameters are 28 times and 33 times larger than that of SRGAN, respectively. Moreover, 
EPSR takes about 3 times more training time than SRGAN. Furthermore, it can be seen 
from Tab. 2 that the currently widely used training dataset is the DIV2K dataset. Since 
the dataset has fewer classes, the Flickr2K dataset [Lim, Son, Kim et al. (2017)] is also 
used in the ESRGAN experiment. They found that using additional training data with 
rich textures was more conducive to restoring the texture of the image. 

Table 2: Comparison of models parameters and training time 

Method Training dataset GPU Parameters(M) Time(h) PI  

SRGAN* DIV2K TitanX Pascal 1.54 12 2.238 

 

EPSR DIV2K TitanX Pascal 43.07 45 2.069 

ESRGAN DIV2K Titan Xp 51.02 - 2.040 

EUSP-PCL DIV2K GTX 1080 - 48 2.818 

MRDN-GAN DIV2K Titan X >5.0 66 2.190 

PESR DIV2K Titan Xp - 20 2.130 

RPSRGAN DIV2K+Flickr2K TitanX Pascal 1.54 26 2.196  

5.2 Comparison of PI scores for PSNR models 
At present, most GAN-based perceptual SISR studies have used PSNR-oriented network 
structures as generators of GAN models. Tab. 3 briefly summarizes the PSNR and PI 
values obtained by some PSNR models on different datasets. Where, the results of the three 
models of SRCNN [Dong, Loy, He et al. (2014)], VDSR [Kim, Lee, Lee et al. (2016)] and 
EDSR [Lim, Son, Kim et al. (2017)] are from Vu et al. [Vu, Luu, Yoo et al. (2018)]. The 
DBPN [Haris, Shakhnarovich and Ukita (2018)] and RCAN [Zhang, Li, Li et al. (2018)] 
results are from Cheon et al. [Cheon, Kim, Choi et al. (2018)] and Lee et al. [Lee, Chuang 
and Wang (2019)], respectively. It can be seen from Tab. 3 that the PSNR-oriented model 
can achieve a lower PI value to a certain extent while achieving a higher PSNR value. This 
shows that the PSNR and PI are not completely opposite, and better PSNR models can be 
used in the future to perceptual SISR experiments. Besides, it is necessary to see that the PI 
scores obtained by the PSNR-oriented models is far less than the PI values calculated by the 
high resolution datasets. This also shows that most of the current PSNR-oriented models 
cannot adapt well to perceptual SISR experiments. However, on the other hand, using a 
better PSNR model for GAN-based perceptual SISR architecture may further improve the 
images perceptual quality. 
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Table 3: PI comparison for PSNR-oriented models 
Method Set5  Set14 BSD100 Urban100  

SRCNN 30.48/6.79 27.50/6.03 26.90/6.04 24.52/5.94 
 

VDSR 31.35/6.45 28.03/5.77 27.29/5.70 25.18/5.54 

DBPN 32.47/6.10 28.82/5.57 27.72/5.54 26.38/5.19  

EDSR 32.46/6.00 28.80/5.52 27.71/5.40 26.64/5.14  

RCAN 32.63/- 28.87/- 27.77/5.14 26.82/4.98  

HR -/3.62 -/3.48 -/2.30 -/3.70  

5.3 Comparison of perceptual SISR models 
Tab. 4 compares the PSNR and PI of different models on Set5, Set14, BSD100 (B100), 
and Urban100 (U100). It can be seen from Tab. 4 that models with lower PI scores tend 
to have lower PSNR scores. Combining Tabs. 3 and 4 shows that the PI values obtained 
by most models on different datasets are already lower than the PI scores calculated by 
the high-resolution datasets themselves. This shows the point that GAN-based perceptual 
SISRs may generate excessively realistic images. Moreover, it can be seen from Fig. 8 
that the image reconstructed by the GAN method is sharper and has a lower PI than the 
image reconstructed by the Bicubic method. However, the PSNR obtained by the GAN 
method is lower in terms of image accuracy (PSNR). This shows that it is significant to 
apply PI to evaluate the perceptual quality of the generated images.  
Furthermore, SRResNet in Tab. 4 is a generator network in SRGAN, which is a PSNR-
oriented model. It can also be seen from Tab. 4 that the super-resolution images 
generated by the GAN architecture is inferior to the PSNR model generated images in the 
PSNR values. However, GAN-based perceptual SISR can balance PSNR and PI through 
perceptual trade-off schemes. This method is more advantageous for tasks that require 
image quality and reconstruction accuracy in the future.  
From the above analysis, for the perceptual SR methods, pursuing only the perceptual 
quality or distortion of the image is more one-sided. When a good reconstructed image 
requires good perceptual quality, it also needs good reconstruction accuracy. Therefore, a 
solution that can balance the accuracy of image reconstruction and the perceptual quality 
of the image may have more potential. 

                     
Baboon (PSNR/PI)                 Bicubic (20.25/6.70)                 GAN (20.14/1.95) 

Figure 8: Visualized super-resolution results for “Baboon” 
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Table 4: Comparison of different datasets 

Method Datasets PSNR PI  

SRResNet Set5/Set14/B100 32.05/28.49/27.59 -/-/- 
 

EUSR-PCL Set5/Set14/B100 31.60/28.20/27.10 4.57/3.55/2.82 

GAN-IMC Set5/Set14/B100 27.89/25.67/24.20 3.23/2.86/2.49  

4PP-EUSR Set5/Set14/B100 31.37/27.97/26.90 4.24/3.35/2.96  

EPSR Set5/Set14/B100/U100 29.6/25.5/25.0/22.8 3.26/2.70/2.20/3.33  

PESR Set5/Set14/B100/U100 -/-/-/- 3.42/2.66/2.25/3.41  

RCAN-GAN Set5/Set14/B100/U100 -/-/-/- 3.76/3.00/2.46/3.46  

Bi-GANs-ST Set5/Set14/B100/U100 29.54/26.01/24.54/23.90 3.53/2.87/2.38/3.27  

MRDN-GAN Set5/Set14/B100/U100 30.08/26.67/25.74/24.54 3.43/2.82/2.37/3.55  

LSRGAN Set5/Set14/B100/U100 30.19/26.52/25.53/24.76 3.13/2.82/2.29/3.51  

5.4 Comparison of different network structures and loss functions 
In this experiment, we compare the network structure and loss function of different 
methods. Tab. 5 shows the RMSE and PI on PIRM test set. It can be seen from Tab. 5 
that the generator loss of most models currently uses a combination of pixel loss, 
perceptual loss, and adversarial loss, and they are also trying other losses. At present, the 
method adopted by ESRGAN achieved better perceptual quality in the third region. 
ESRGAN combined the residual dense network with the relativistic GAN loss and used 
some training trick. The difference is that EPSR uses a slightly worse adversarial loss 
function and generator network. In the end, EPSR achieved performance close to 
ESRGAN by setting non-negative scale factors for the generator loss. With this method, 
EPSR can achieve better perceptual quality in multiple regions of the perceptual-
distortion plane. In a word, different architectures combined with different loss functions 
may achieve the most advanced results in a certain region of perceptual-distortion. 
However, considering the trade-off between perceptual-distortion is more likely to 
prevail over the entire perceptual-distortion plane. 
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Table 5: Comparison of different network structures and loss functions 

Method Network Description Generator Loss PI (R1; R2; R3) 

EPSR FEM (RB-Scaling)+discriminator 
(Fine-tuning Fig. 4) α1LG_adv+α2LVGG+α3L2 (2.71; 2.28; 2.01) 

ESRGAN FEM (RDB-Scaling)+discriminator 
(Fig. 4) 

α1LG_Ra+α2L1+LVGG 
(before the activation 
layers) 

(2.93; 2.42; 1.98) 

EUSR-PCL FEM(RB)+discriminator (Fine-
tuning Fig. 4) LG_adv+L1+LDC+LDCT (2.75; 2.28; 2.14) 

PESR FEM (RB-Scaling)+discriminator 
(Typical Conv) α1LVGG+α2 LFocal+α3LTV (3.32; 2.60; 2.01) 

Bi-GANs-ST FEM (Fine-tuning 
RB)+discriminator (Fig. 4) α1LG_adv+α2LVGG+L2 (4.44; -; 2.07) 

MRDN-GAN FEM (Fine-tuning RDB-
Scaling)+discriminator (Fig. 4) LG_CGAN+LVGG+L1 (3.83; 2.64; 2.13) 

5.5 Comparison of real dataset results 
Currently, most GAN-based perceptual SISRs are studied on bicubic degradation 
datasets. They use known degradation datasets in both training and testing. In order to 
briefly analyze the performance of the perceptual SISR based on the GAN model on the 
real dataset, we list some results in Tab. 6. The results of RCAN-Bic, RCAN-Real and 
DA-SRNet in Tab. 6 are from Gong et al. [Gong, Sun, Shi et al. (2020)]. The results of 
RCAN-Bic1 are from Lee et al. [Lee, Chuang and Wang (2019)]. Among them, DA-
SRNet is a perceptual SISR method based on GAN network, and the other is a method 
oriented to PSNR model. In addition, RCAN-Bic and RCAN-Bic1 represent models 
trained on a bicubic degradation (known degradation) dataset, respectively. RCAN-Real 
and DA-SRNet represent models trained on a real dataset (unknown degradation), 
respectively. It can be seen from Tab. 6 that the model trained on the known degradation 
dataset has a lower performance on the real dataset. However, RCAN-Real trained on a 
real dataset can achieve better performance than RCAN-Bic trained on a known 
degradation dataset. Furthermore, it should be noted that the GAN-based perceptual SISR 
can achieve a lower PI score. 

Table 6: Real dataset reconstruction results 

Method Test dataset Test degradation PSNR PI  

RCAN-Bic1 BSD100/Urban100 Bicubic 27.77/26.82 5.14/4.98 
 

RCAN-Bic1 RealSR Unknown 27.65 7.84 

RCAN-Bic1 RealSR Unknown 29.49 7.18  

DA-SRNet RealSR Unknown 27.72 5.24  
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6 Conclusion and future direction 
In this paper, a single image super-resolution reconstruction based on generative adversarial 
network is reviewed in recent years. We introduce the challenges that faced by SSIR and 
also introduced common evaluation datasets. In addition, we review the direction of 
perceptual SSIR optimization based on the GAN model and summarize the results of partial 
reconstruction in recent years. Although the perceptual SSIR based on the GAN model has 
achieved considerable success, the super-resolution of the single image using the generative 
adversarial network has just started, so there is still a certain gap between the reconstructed 
image and the real result. Secondly, due to the problems of GAN itself, there is not much 
breakthrough in the latest research. However, we believe that these problems can be further 
solved with the optimization of neural networks. Based on the review of this paper, we 
propose the following possible future directions for research: 
(1) SSIR reconstruction of video. Most studies currently use DIV2K [Agustsson and 
Timofte (2017)] image datasets for training. At present, there are too few studies on 
image super-resolution using image sequences (video files). In the future, it may be 
considered to use video files to assist in super-resolution reconstruction of a single image. 
(2) Improving efficiency of models. Most studies pursue the expression ability of the 
model, but ignore the time-consuming of the model. The current state-of-the-art model 
(EPSR) has a very high runtime. Therefore, how to reduce the calculation amount of the 
model and improve the speed of the algorithm is a direction worth considering. 
(3) Establishment of new assessment measures. Most of the current research is focused 
on improving the PSNR and SSIM of reconstructed images, but these indexes do not 
correspond to the visual perception of the human eye. Although perception and distortion 
are used to assess the perceptual quality of an image, a low perception score may be an 
overly realistic result. Therefore, a more just image index is needed to measure the 
quality of the reconstructed image in the future. 
(4) SSIR for unknown degradation. Most current methods degrade images using known 
algorithms to obtain low-resolution images (e.g., bicubic interpolation). However, these 
methods cannot adapt well to unknown degraded images in the real world. Therefore, 
reconstruction of low resolution images of unknown degraded can be considered in the 
future [Bulat, Yang, Tzimiropoulos et al. (2018); Gong, Sun, Shi et al. (2020)]. 
(5) Design of GAN models. On the one hand, the performance improvement of 
perceptual super-resolution comes from loss functions. On the other hand, the 
performance improvement of neural networks comes from design of GAN models. In 
perceptual SR, it is a natural choice to use the latest image feature extraction networks to 
improve the GAN model. Therefore, in the future, other advanced neural network 
structures or new network structures can be considered to extract image features. 
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