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Abstract: Manufacturing service composition of the supply side and scheduling of the 
demand side are two important components of Cloud Manufacturing, which directly 
affect the quality of Cloud Manufacturing services. However, the previous studies on the 
two components are carried out independently and thus ignoring the internal relations and 
mutual constraints. Considering the two components on both sides of the supply and the 
demand of Cloud Manufacturing services at the same time, a Bilateral Collaborative 
Optimization Model of Cloud Manufacturing (BCOM-CMfg) is constructed in this paper. 
In BCOM-CMfg, to solve the manufacturing service scheduling problem on the supply 
side, a new efficient manufacturing service scheduling strategy is proposed. Then, as the 
input of the service composition problem on the demand side, the scheduling strategy is 
used to build the BCOM-CMfg. Furthermore, the Cooperation Level (CPL) between 
services is added as an evaluation index in BCOM-CMfg, which reveals the importance 
of the relationship between services. To improve the quality of manufacturing services 
more comprehensively. Finally, a Self-adaptive Multi-objective Pigeon-inspired 
Optimization algorithm (S-MOPIO) is proposed to solve the BCOM-CMfg. Simulation 
results show that the BCOM-CMfg model has advantages in reliability and cost and S-
MOPIO can solve BCOM-CMfg effectively. 
 
Keywords: Service composition, service scheduling, bilateral collaborative optimization, 
evolutionary computation, PIO. 

1 Introduction 
Cloud Manufacturing is a new service-oriented manufacturing model. Intricate 
manufacturing tasks are decomposed into subtasks, which composes various candidate 
services. Due to the increasing user demand and the expansion of manufacturing service, 
the manufacturing network is very complex [Zhao and Peng (2019)], it is becoming more 
and more difficult for researchers to choose the right services from the massive 
manufacturing service cloud pool to form the best service composition. It has become a 
research focus both in the academic and industrial fields. Recently, research on the 
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service composition on the demand side of Cloud Manufacturing has been carried out and 
preliminary results have been achieved. A method for optimal transmission of 
hierarchical network for heterogeneous service in Cloud Scenarios was presented 
[Huang, Bai, Liu et al. (2018)]. It provides technical support for the construction of the 
Cloud Manufacturing platform. A method based on the combination of fuzzy hierarchical 
analysis and grey relational analysis is proposed to deal with the service composition 
[Peng and Meng (2016)]. A new Quality of Service evaluation model of manufacturing 
service composition is proposed according to the networked collaboration model in 
Cluster Supply Chains [Xue, Wang and Lu (2016)]. After considering the evaluation and 
selection of manufacturing resources in networked manufacturing, a manufacturing 
resources evaluation system including time, quality, cost, service, green and other 
indexes are established, and a manufacturing resources evaluation model is put forward 
combined with Analytic Hierarchy Process, comparative judgment and fuzzy theory 
[Chen, Huang, Lin et al. (2014)]. A cross-tenant role-based access control model for 
collaborative cloud services is proposed, which is beneficial to the utilization and 
popularization of cloud services [Liu and Xia (2019)]. An API management system is 
designed to facilitate efficient service composition [Wang, Sun, Zhang et al. (2019)]. 
However, the above studies do not take into account the relationship between 
manufacturing services, especially the cooperative relationship between services while it 
is valuable. During the industrial manufacturing process, the environment of Cloud 
Manufacturing services is dynamic and uncertain. There is a potential relationship 
between different Cloud Manufacturing services, which is critical to the quality of Cloud 
Manufacturing services. If Cloud Manufacturing tasks are accomplished by services that 
cooperate frequently, product quality, manufacturing cycle and reliability will have more 
advantages. Therefore, it is necessary to study the CPL between services in the 
manufacturing service composition. 
Besides, manufacturing service scheduling also has an important impact on service 
composition. The service scheduling scheme determines whether the results of service 
composition can be effectively implemented. The research on service scheduling in the 
field of Cloud Manufacturing mainly focuses on resource scheduling in the Job Shop 
layer of Cloud Manufacturing, the resource search strategy in the Cloud Manufacturing 
environment and the intelligent algorithm based on scheduling model. Lee et al. [Lee and 
Katz (2011)] investigate the Job Shop scheduling under scheduling tasks, resource and 
process model and scheduling algorithm, and study scheduling optimization algorithms 
under different tasks in consideration of workflow and resource heterogeneity. An energy 
consumption model is proposed to compute the energy consumption for a machine in 
different states [Wu and Sun (2018)]. A new Job Shop scheduling method based on a 
digital twin is proposed to reduce the scheduling deviation and a prototype system is 
designed to verify it [Fang, Peng, Ping et al. (2019)]. Sun et al. [Sun, Lin, Gen et al. 
(2019)] propose an effective hybrid cooperative coevolution algorithm for the 
minimization of fuzzy make span. Kim et al. [Kim, Jin and Sun (2011)] focus on process 
manufacturing in discrete manufacturing Job Shop and elaborate the applicable 
conditions and characteristics of different dynamic scheduling methods. However, the 
research on manufacturing service scheduling has not been considered together with 
Cloud Manufacturing service composition optimization. The manufacturing service 
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scheduling scheme in the Cloud Manufacturing environment directly affects whether the 
manufacturing scheme can be effectively implemented, it is necessary to make a 
scheduling strategy in real-time according to the service provider's production resources. 
The purpose of this paper is to construct BCOM-CMfg by considering the collaborative 
optimization of Cloud Manufacturing service composition and manufacturing service 
scheduling. Furthermore, an algorithm to solve BCOM-CMfg is proposed, which is 
called S-MOPIO. The main contributions of this paper are as follows: 1) The CPL 
between manufacturing services is proposed to evaluate the relationship between 
services, which is added to BCOM-CMfg to reveal the importance of the relationship 
between services. 2) The S-MOPIO algorithm is proposed based on an adaptive learning 
mechanism, which is used to solve the Efficient Service Scheduling Model and BCOM-
CMfg. 3) The simulation results show that the effect of the S-MOPIO algorithm for 
solving BCOM-CMfg is better than MOPIO, MOPSO [Saremi and Mirjalili (2020)] and 
CPSMOEA [Zhang and Zhou (2015)]. Besides, BCOM-CMfg is beneficial to reduce 
manufacturing costs and improve the reliability of Cloud Manufacturing. 

2 System model and problem formulation 
2.1 Manufacturing service composition optimization model 
In Cloud Manufacturing environment, a complex manufacturing task 𝐼𝐼 , 𝐼𝐼 =
{1,2,3, … 𝑖𝑖, . . .𝑘𝑘}, where subtask 𝑖𝑖 contains multiple candidate services. Manufacturing task 
𝐼𝐼  can be completed with different service composition X={𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, … 𝑥𝑥𝑖𝑖 , … 𝑥𝑥𝑘𝑘}, where 
𝑥𝑥𝑖𝑖  is the service selected when subtask 𝑖𝑖 is completed, 𝛺𝛺  is a collection of all possible 
service compositions of task I. In general, there are many different evaluation indexes for 
service 𝑥𝑥𝑖𝑖, such as time, cost, reliability of service, etc. Therefore, we need to evaluate the 
different indexes of 𝑋𝑋 and choose the best one after comparison. 𝑇𝑇𝑖𝑖, 𝐶𝐶𝑖𝑖 and 𝑅𝑅𝑖𝑖 are used to 
represent the time, cost, and reliability of the scheme of service 𝑥𝑥𝑖𝑖 respectively. In general, 
𝑇𝑇𝑖𝑖 is dynamic. Except for the time, cost and reliability of Cloud Manufacturing services, we 
propose Cooperation Level, a new evaluation index, 𝐿𝐿𝑖𝑖𝑖𝑖  is used to describe the CPL 
between candidate services 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑘𝑘. A detailed description of each index are as follows. 

2.1.1 Time of service 
In this paper, the time of service is dynamic while the time of completing subtasks 
fluctuates with the idle condition of the machine, so the time of service is evaluated in 
real-time according to the Efficient Service Scheduling Model in Section 2.2. 

2.1.2 Cost of service 
The service cost includes the cost of labor, the cost of raw materials, the cost of resource 
scheduling and other costs. 
𝐶𝐶𝑖𝑖 = 𝜇𝜇1𝐶𝐶𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜇𝜇2𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜇𝜇3𝐶𝐶𝑖𝑖

𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+𝜇𝜇4𝐶𝐶𝑖𝑖𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 (1) 

where 𝐶𝐶𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the cost of labor, 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the cost of raw materials, 𝐶𝐶𝑖𝑖
𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is 

the cost of service scheduling, 𝐶𝐶𝑖𝑖𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 is other cost. 𝜇𝜇𝑖𝑖 is the weight of each element of 
costs. 𝜇𝜇𝑖𝑖 ∈ (0,1), it depends on the actual situation of the service provider, For example, 
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the main costs come from materials and labor to most small manufacturing enterprises, 
but the cost of resource scheduling in some large manufacturing enterprises occupy some 
proportion. In the experiment, we will generate 𝜇𝜇𝑖𝑖 randomly in a range. 

2.1.3 Reliability of service 
The reliability of service is evaluated from the perspectives of Cloud Manufacturing 
products and Cloud Manufacturing service providers. To improve the reliability of 
products, the production process needs to be upgraded, but it will not be improved greatly 
in a short time. However, the reliability of Cloud Manufacturing service providers can be 
improved, which affected by excessive load, unreasonable production resource 
scheduling and many external factors, so we should pay more attention to Cloud 
Manufacturing service providers. 

𝑅𝑅𝑖𝑖 = 𝜑𝜑1𝑅𝑅𝑖𝑖
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜑𝜑2𝑅𝑅𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜑𝜑3𝑅𝑅𝑖𝑖𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 (2) 

As shown in Eq. (2), 𝑅𝑅𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the reliability of the product, 𝑅𝑅𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the 
reliability of service providers. 𝜑𝜑𝑖𝑖 ∈ (0,1) , it depends on the actual situation of the 
service providers. 

2.1.4 CPL between services 
In this paper, we use the contract value, quantity and duration between service providers 
to assess the Cooperation Level of service. The calculation method is shown in Eq. (3). 
𝛼𝛼 is the sum of contract price between the services, 𝛽𝛽  is the total number of phase 
cooperation between services, 𝛾𝛾  is the duration of cooperation between the services. 
These data are available periodically and will be updated continuously. 

𝐿𝐿𝑖𝑖𝑖𝑖 =
1

1 + 𝑒𝑒−�𝜔𝜔1𝛼𝛼𝑖𝑖𝑖𝑖+𝜔𝜔2𝛽𝛽𝑖𝑖𝑖𝑖+𝜔𝜔3𝛾𝛾𝑖𝑖𝑖𝑖�
− 0.5 (3) 

where 𝛼𝛼𝑖𝑖𝑖𝑖 is the total contract price between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑘𝑘, 𝛽𝛽𝑖𝑖𝑖𝑖 is total contract number, 𝛾𝛾𝑖𝑖𝑖𝑖 
is total contract duration, 𝜔𝜔1, 𝜔𝜔2, 𝜔𝜔3 are the weights. 
Based on the analysis of service indexes, a new service composition model in Cloud 
Manufacturing is described in Fig. 1, First of all, the data of Cloud Manufacturing 
services are collected and preprocessed. Secondly, the processed data is calculated by 
CPL mode, the CPL value is obtained, it will be stored in the CPL database, which will 
be updated by optimization result. The detail of the Dynamic Evaluation Model will be 
described in Section 2.2. The outputs of the Efficient Scheduling Model and the CPL 
Dynamic Evaluation Model are used as the time and CPL of manufacturing service 
respectively, it is inputted into the multi-objective optimization model together with the 
reliability and cost. Finally, the optimization results are output. It is worth noting that the 
Efficient Scheduling Model can also output scheduling solutions while outputting the 
time of manufacturing service.  
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Figure 1: Bilateral collaborative optimization model of Cloud Manufacturing 

In Eq. (4), as shown in Eq. (4), BCOM-CMfg is established: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋∈𝛺𝛺

𝑓𝑓(𝑋𝑋) = (� 𝑇𝑇𝑖𝑖, � 𝐶𝐶𝑖𝑖,−
𝑥𝑥𝑖𝑖∈𝑋𝑋

�𝑅𝑅𝑖𝑖
𝑥𝑥𝑖𝑖∈𝑋𝑋

,− � 𝐿𝐿𝑖𝑖𝑖𝑖
𝑥𝑥𝑖𝑖,𝑥𝑥𝑘𝑘∈𝑋𝑋,𝑖𝑖≠𝑘𝑘𝑥𝑥𝑖𝑖∈𝑋𝑋

)  (4) 

𝑠𝑠. 𝑡𝑡. 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ � 𝑇𝑇𝑖𝑖 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑖𝑖∈𝑋𝑋

� 𝐶𝐶𝑖𝑖 ≤ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑖𝑖∈𝑋𝑋

� 𝐿𝐿𝑖𝑖𝑖𝑖 ≥ 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑖𝑖,𝑥𝑥𝑘𝑘∈𝑋𝑋,𝑖𝑖≠𝑘𝑘

� 𝑅𝑅𝑖𝑖 ≥ 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑖𝑖∈𝑋𝑋

 

where 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is the upper limit of time to complete a complex manufacturing task, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is 
the upper limit of cost, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum CPL of X,  𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum reliability of 
X. BCOM-CMfg can not only provide the best combination of manufacturing services for 
service demanders, but also provide timely production scheduling solutions for service 
providers. It can improve the reliability of Cloud Manufacturing services and reduce the 
investment of service providers in manufacturing service scheduling. 

2.2 Efficient manufacturing service scheduling model 
The theoretical research of the scheduling mainly focuses on the scheduling problem 
based on the minimum scheduling time represented by the manufacturing service 
scheduling. As we know, a complex manufacturing system involves massive 



 
 
 
2036                                                                      CMC, vol.64, no.3, pp.2031-2042, 2020 

manufacturing service scheduling processes, which makes the solution to the scheduling 
problem very complex. Because of the large solution space and the nesting nature of the 
scheduling problem, the graphical method becomes impractical. However, the 
optimization algorithm has a good performance in solving high-dimensional multi-
objective optimization problems. The mapping of the solution vector to the scheduling 
scheme is the primary problem of using the optimization algorithm to solve the 
scheduling problem. In this paper, the two-dimensional vector is used to implement the 
mapping of the solution vector to the scheduling scheme. Assume that a manufacturing 
subtask 𝑖𝑖 is decomposed into 𝑤𝑤 artifacts in the Cloud Manufacturing environment, and 𝑢𝑢 
machines are required to complete the subtask 𝑖𝑖 , we treat processing machines or 
production lines as manufacturing services. The subtasks are sequentially executed on 
certain machines according to the requirements, and each machine can only perform one 
manufacturing task at a time. N={1, 2, 3,... 𝑛𝑛, ... 𝑤𝑤} denotes the set of artifacts needed to 
complete subtask 𝑖𝑖, M={1, 2, 3, ... 𝑚𝑚 ... 𝑢𝑢} is the set, that the element is production 
equipment required by subtask 𝑖𝑖, J={1, 2, 3, ... 𝑗𝑗, ... 𝑣𝑣} is the steps of completing the 
workpiece 𝑛𝑛. X={𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥𝑗𝑗,… 𝑥𝑥𝑤𝑤∗𝑣𝑣} is the scheduling result of the subtask 𝑖𝑖. 𝑥𝑥𝑗𝑗 is a 
two-dimensional vector, the first dimension of 𝑥𝑥𝑗𝑗 is called the process vector, which can 
represent all the processes required to complete the workpiece. If the workpiece No. 3 to 
completed need 5 processes, the process vector should contain five Roman numerals 3 as 
elements. The second dimension of 𝑥𝑥𝑗𝑗 is called the solution vector, which contains the 
priority of each process. The solution vector is iterated according to the optimization 
algorithm. The two-dimensional vector is sorted according to the evolution result while 
the process vector also changes in sequence with the ordering of the solution vector. A 
sequence of different process vectors can represent a set of scheduling schemes.  
To accomplish efficient manufacturing, we establish a multi-objective manufacturing 
service scheduling model considering manufacturing time and equipment utilization rate 
to manage the scheduling and distribution of manufacturing resources. 𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚  is the 𝑗𝑗 -
𝑡𝑡ℎ process of the workpiece 𝑛𝑛  in the processing time of the machine 𝑚𝑚 . If all the 
machines start at the same time and all the machines close right after completing the last 
workpiece of the subtask while the time of the workpiece transferring between different 
machines is not taken into account, the total time taken by machine 𝑚𝑚 from startup to 
shutdown is 𝑆𝑆𝑇𝑇𝑚𝑚. For a single machine m, the total machining time of the machine is 
∑ 𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛∈𝑁𝑁,𝑗𝑗∈𝐽𝐽 , 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 (𝑋𝑋) is the idle time of the machine 𝑚𝑚 by X. As shown in Eq. (5), 
𝑇𝑇(𝑋𝑋) is the total completion time of subtask X. 

𝑇𝑇(𝑋𝑋) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚∈𝑀𝑀

{𝑆𝑆𝑇𝑇𝑚𝑚} = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚∈𝑀𝑀

�𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 (𝑋𝑋) + � 𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚

𝑛𝑛∈𝑁𝑁,𝑗𝑗∈𝐽𝐽

� 
 

(5) 

where 𝐸𝐸(𝑋𝑋)  is the device utilization rate to complete a subtask ,  𝑢𝑢  is the number of 
machines to complete the subtask. 

𝐸𝐸(𝑋𝑋) =
1
𝑢𝑢
�

∑ 𝑡𝑡𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛∈𝑁𝑁,𝑗𝑗∈𝐽𝐽

𝑇𝑇(𝑋𝑋)
𝑚𝑚∈𝑀𝑀

 
 

(6) 

Eq. (7) is the objective function of the multi-objective manufacturing service scheduling 
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model, where 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum efficiency allowed for subtask completion, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is 
the maximum time allowed for subtask completion. Also, there is a time relationship 
between the processes, which is the latter process needs to be processed after the 
completion of the previous process. 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑋𝑋) = (𝑇𝑇(𝑋𝑋),−𝐸𝐸(𝑋𝑋))  
(7) 

𝑠𝑠. 𝑡𝑡.           �𝐸𝐸(𝑋𝑋) ≥ 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇(𝑋𝑋) ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 

3 Method 
Both Eqs. (4) and (7) are the equations of complex multi-objective optimization problems, 
so we propose S-MOPIO to solve them. S-MOPIO is improved based on the Pigeon-
Inspired Optimization (PIO) algorithm [Dou and Duan (2016)], which is a group 
intelligence optimization algorithm emerged in recent years. In PIO, pigeons use different 
navigation tools in different stages of finding targets, the map and compass operator and 
landmark operator are proposed to update the position and speed of individuals. In the first 
stage, the map and the compass operator is introduced. The pigeons can sketch the homing 
in the brain through their induction of the earth's magnetic field, then clarify the direction of 
flight according to the direction of the sun. In the D-dimensional search space, the speed 
and position of the pigeons are updated according to Eqs. (8) and (9) in each iteration. 
𝑉𝑉𝑖𝑖

g = 𝑉𝑉𝑖𝑖
g−1 ∗ 𝑒𝑒−𝑅𝑅∗g + 𝑟𝑟 ∗ (𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑋𝑋𝑖𝑖

g−1) (8) 

𝑋𝑋𝑖𝑖
g = 𝑋𝑋𝑖𝑖

g−1 + 𝑉𝑉𝑖𝑖
g (9) 

where 𝑋𝑋𝑖𝑖 and 𝑉𝑉𝑖𝑖 are the position and speed of the pigeons, g is the number of iterations, 𝑟𝑟 
is a random number between 0 and 1, 𝑅𝑅 is the map and compass factor, 𝑅𝑅 ∈ (0,1). 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
is the global optimal position, found by Grid Search. 
In the second stage, the landmark operator is introduced. After the pigeons approach the 
destination, they will navigate according to the familiar landmarks. If there are familiar 
landmarks near the individuals, they will fly directly to the destination. Otherwise, they 
will fly with other pigeons, which are familiar with the landmarks. During each iteration, 
the number of pigeons is halved according to Eq. (10), while the first half of the 
population with better fitness is selected as the current population. 𝑋𝑋𝑐𝑐  is the central 
position of the current pigeons, the flight reference direction is calculated according to 
Eq. (11), 𝑓𝑓 is fitness function, ε is a constant close to 0, the pigeon position is updated 
according to Eq. (12). 

𝑁𝑁g =
𝑁𝑁g−1

2
 

(10) 

𝑋𝑋c
g−1 =

∑ 𝑋𝑋𝑖𝑖
g−1�𝑓𝑓�𝑋𝑋𝑖𝑖

g−1� + 𝜀𝜀�
−1𝑁𝑁g−1

𝑖𝑖=1

𝑁𝑁g−1 ∑ �𝑓𝑓�𝑋𝑋𝑖𝑖
g−1� + 𝜀𝜀�

−1𝑁𝑁g−1
𝑖𝑖=1

 
(11) 

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖
g−1 + 𝑟𝑟 ∗ �𝑋𝑋𝑐𝑐

g−1 − 𝑋𝑋𝑖𝑖
g−1� (12) 

where 𝑁𝑁g is the population size of g-𝑡𝑡ℎ iteration, 𝑋𝑋𝑖𝑖 is the position of the pigeon. Based 
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on investigating the existing academic achievements and fully considering the 
characteristics of different operators, the Pigeon Swarm Optimization algorithm, Particle 
Swarm Optimization Algorithm and Differential Evolution algorithm are introduced into 
the strategy pool.  
In Eqs. (13) and (14), the reward of each operator is calculated, then the roulette method 
is used to select the operator according to the probability selection algorithm. The 
operator to be selected for the next evolution is determined according to the historical 
performance of the operator. 

𝑉𝑉𝑚𝑚
g = 𝑎𝑎 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚

g − 𝑏𝑏 ∗ 𝐻𝐻𝐻𝐻𝑚𝑚
g  (13) 

𝑄𝑄𝑚𝑚
g = �𝜂𝜂−g�𝑉𝑉𝑚𝑚

g-1 −  𝑉𝑉𝑚𝑚
g-2�

n

g=3

 
 

(14) 

where g  is the number of iteration, 𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚
g  is the Inverted Generation Distance (IGD) 

[Leonardo, Manuel and Thomas (2017)] value of population when evolve by the 𝑚𝑚-𝑡𝑡ℎ 
operator at g-𝑡𝑡ℎ iteration. 𝐻𝐻𝐻𝐻𝑚𝑚

g  is the Hypervolume (HV) [Yang, Emmerich, Deutz et al. 
(2019)] value of population when evolve by the 𝑚𝑚-𝑡𝑡ℎ operator at g-𝑡𝑡ℎ iteration. 𝑎𝑎 is the 
weight of the 𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚

g , 𝑏𝑏  is the weight of 𝐻𝐻𝐻𝐻𝑚𝑚
g . 𝑉𝑉𝑚𝑚

g  is used to evaluate the effect of 
population evolution, it will be added into 𝑉𝑉𝐸𝐸𝐸𝐸(Evolutionary history). As shown in Eq. 
(14), 𝑄𝑄𝑚𝑚

g  is the reward that 𝑚𝑚-𝑡𝑡ℎ operator is selected at g-𝑡𝑡ℎ iteration, 𝜂𝜂 is the learning 
rate. The probability that the m-𝑡𝑡ℎ  operator is selected to evolve the g-𝑡𝑡ℎ  iteration 
population is proportional to 𝑄𝑄𝑚𝑚

g , it will be added into 𝑀𝑀𝑃𝑃 (Policy Matrix). The pseudo-
code of S-MOPIO is shown in Tab. 1. 

Table 1: The pseudo-code of S-MOPIO 
S-MOPIO 

Input: 𝑁𝑁 (Population Size)，𝑁𝑁�(Archive Size)，𝐺𝐺(The maximum number of iterations), 
Mesh_div(Mesh dimension). 
Output: 𝑃𝑃t� (nondominated set) 
Initialization： N=100; 𝑁𝑁� = 100; 𝐺𝐺 = 1000；𝑀𝑀𝑃𝑃=[1/3,1/3,1/3]; the initial value of 𝑉𝑉𝐸𝐸𝐸𝐸 
is null matrix; 𝑃𝑃𝑡𝑡 is randomly generated, Mesh_div=10. 
while g < 𝐺𝐺 do 
        Calculate fitness of population； 
        Add non-dominated solutions to 𝑃𝑃t�； 
        Find 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 by Mesh method in 𝑃𝑃t�； 
        Calculate 𝑉𝑉𝑚𝑚

g by Eq. (13) and update 𝑉𝑉𝐸𝐸𝐸𝐸； 
        Calculate 𝑄𝑄𝑚𝑚

g  by Eq. (14) to update 𝑀𝑀𝑃𝑃； 
        Select evolution operator to update the population according to 𝑀𝑀𝑃𝑃； 
        g = g + 1； 
end 
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4 Simulation and analysis 
The purpose of this section of the experiment is to verify the effectiveness of S-MOPIO 
in solving the BCOM-CMfg. The QWS 2.0 dataset is used in the experiment, which was 
collected by Guelph University [Al-Masri and Mahmoud (2007)]. We randomly expand 
the dataset to 4000 within the reasonable range of the original data. At the same time, due 
to the lack of CPL in the dataset, we simulated the relevant data of the total contract 
price, the total number of contracts and the total length of the contracts, which are used to 
calculate the value of CPL. The real Pareto Front is formed by combining the Non-
dominant solutions of the algorithms involved in this paper and Non-dominant sorting 
them based on the Pareto principle. 
To compare the performance of the algorithm, IGD and HV are used to evaluate the 
performance of the algorithm. The smaller the IGD is, the closer the non-dominant 
dissociation True Pareto Front is. A larger HV, a more uniform distribution of the non-
dominated solution. To verify the effectiveness of the algorithm, we conducted 
comparative experiments under different dimensions to compare some multi-objective 
optimization algorithms, including MOPSO, MOPIO, S-MOPIO, and CPSMOEA. 

  
Figure 2: Mean of IGD Figure 3: Mean of HV 

We calculate the IGD according to the Non-dominant solution of each algorithm, Four 
Multi-objective optimization algorithms are used to solve the BCOM-CMfg in different 
dimensions. The solutions to these multi-objective optimization algorithms under 
different dimensions are displayed in Fig. 2, when dimension=8 or 16 or 20, it is obvious 
that the IGD of solution calculated by the S-MOPIO is the smallest. In other dimensions, 
it's also closer than the smallest one. It can be inferred that the solution of S-MOPIO is 
very close to True Pareto Front than the other three algorithms. The change of the IGD is 
observed. Under different dimensions, the S-MOPIO algorithm shows a better 
performance in approaching the Pareto Front of BCOM-CMfg. 
The trend of the HV is shown in Fig. 3. When the dimension is four, the Pareto Front which 
calculated by the MOPIO is the smallest. However, when the dimension is greater than or 
equal to 8, the Pareto Front which calculated by the S-MOPIO is the smallest. It can be 
inferred that the S-MOPIO algorithm is good at solving models with high dimensions. 
To compare the difference between BCOM-CMfg and Crisis Management Supply Chain 
(CMSC) [Xu, Tang, Wang et al. (2018)], we calculate the index data of manufacturing 
services in the two models. The average and median values of service time, service cost and 
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service reliability of 4000 candidate services in BCOM-CMfg and CMSC are shown in Figs. 
4 and 5. The advantage of BCOM-CMfg in the cost and reliability of service is obvious. 

  
Figure 4: Mean of metrics for Candidate 
Service 

Figure 5: Median of metrics for Candidate 
Service 

Besides, S-MOPIO is used to solve the CMSC and BCOM-CMfg in different dimensions 
for 30 times. The mean values of reliability and cost are displayed in Figs. 6 and 7. 

 
 

Figure 6: Comparison of reliability  Figure 7: Cost of reliability  

In different dimensions, the mean of service composition cost in BCOM-CMfg is lower 
than the CMSC model. The mean of service composition reliability in BCOM-CMfg is 
higher than the CMSC model. It shows that BCOM-CMfg can reduce Cloud 
Manufacturing cost and improve the reliability of Cloud Manufacturing. 

 
Figure 8: Comparison of time  
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In Fig. 8, the performance of the two models have their advantages and disadvantages in 
the time index. The reason is that the algorithm also needs to consider other indexes 
while selecting candidate services, and there is no significant difference between the two 
models in calculating the time of a single candidate service, so it is easy to be affected by 
other indexes. 

5 Conclusion 
Considering the service composition and service scheduling of both sides on the Cloud 
Manufacturing platform, a multi-objective efficient scheduling strategy and CPL 
evaluation mechanism are proposed to construct the BCOM-CMfg model. The S-MOPIO 
algorithm is proposed to solve the cooperative optimization problem. The experimental 
results show that BCOM-CMfg is beneficial to the reliability of Cloud Manufacturing 
and the realization of Cloud Manufacturing solution. However, we lack the research on 
the structure of manufacturing tasks, so we can fully consider the correlation between 
different tasks in the future, and find effective model solving algorithms according to 
different business backgrounds while building a more accurate service portfolio 
optimization model.  
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