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Abstract: Object detection is one of the most fundamental, longstanding and significant 
problems in the field of computer vision, where detection involves object classification 
and location. Compared with the traditional object detection algorithms, deep learning 
makes full use of its powerful feature learning capabilities showing better detection 
performance. Meanwhile, the emergence of large datasets and tremendous improvement 
in computer computing power have also contributed to the vigorous development of this 
field. In the paper, many aspects of generic object detection are introduced and 
summarized such as traditional object detection algorithms, datasets, evaluation metrics, 
detection frameworks based on deep learning and state-of-the-art detection results for 
object detectors. Finally, we discuss several promising directions for future research. 
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1 Introduction 
 Object detection [Fischler and Elschlager (1973)] is one of the most fundamental and 
challenging tasks in the field of computer vision, which aims to recognize object categories 
and predict the location of each object by a bounding box [Everingham, Van 
Gool ,Williams et al. (2010); Deng, Dong, Socher et al. (2009)]. At the same time, object 
detection is the cornerstone of image understanding and computer vision, which plays an 
extremely vital role in solving complex computer tasks, such as image segmentation, image 
capture, scene understanding, video tracking and other visual tasks. Therefore, exploring 
fast and accurate object detection methods is an exceedingly significant and challenging 
task. This article summarizes recent popular deep learning-based object detection methods 
and discusses future promising directions. Specially speaking, in Section 2, we explore 
traditional object detectors. Datasets and evaluation metrics are listed in Section 3. Then 
detectors based on deep learning are summarized in Section 4 and state-of-the-art detection 
results for object detectors based on several datasets are listed in Section 5. Finally, we 
summarize and explore future promising directions in Section 6. 

2 Previous work 
Traditional detectors in the early stage before the deep learning was mainly divided into 
three steps: regional proposal generation, feature vector extraction and region 
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classification. During regional proposal generation, an intuitive idea was usually to 
employ sliding windows technique [Vedaldi, Gulshan, Varma et al. (2009); Viola and 
Jones (2001); Dalal and Triggs (2005); Viola and Jones (2004)] to obtain areas of images 
that may contain objects. During the second phase, traditional model usually used 
SIFT(Scale Invariant Feature Transform) [Lowe (1999)], Haar [Lienhart and Maydt 
(2002)], HOG (Histogram of Gradients) [Dalal and Triggs (2005)], or SURF(Speeded Up 
Robust Features) [Bay, Tuytelaars and Van Gool (2006)] to extract a fixed-length feature 
vector in the regional proposal, which was used to capture the semantic information of 
different positions of the image and express the feature information of the image objects. 
Finally, the extracted feature vectors were commonly classified by SVM [Hearst, Dumais, 
Osuna et al. (1998)]. Additionally, some related techniques such as adaboost [Freund and 
Schapire (1996)], bagging [Opitz and Maclin (1999)] or cascade learning [Viola and 
Jones (2004)] were employed to further improve detection accuracy.   
As the winner of the VOC Object Detection Challenge three times, the Deformable Part-
based Model (DPM) [Felzenszwalb, Girshick, McAllester et al. (2009)] was the peak of 
the traditional detection techniques. As an extension of the HOG detector, DPM 
combined the idea of dividing and conquering, and has achieved the unprecedented 
object detection accuracy. Specifically, DPM could be seen as learning a correct method 
of object component decomposition during training, and combining different object 
components in reasoning. The improved DPM model [Felzenszwalb, Girshick and 
McAllester (2010); Girshick, Felzenszwalb and Mcallester (2011); Girshick (2012)] 
combined some other beneficial strategies, such as hard negative mining [Bucher, Herbin 
and Jurie (2016)], cascade architecture, and bounding box regression, to handle real-
world objects with more sophisticated challenges. 
However, between 2008 and 2012, detection accuracy stagnated and stabilized on the 
canonical PASCAL VOC dataset. The best performing detection models during that time 
were complex integrated systems, combining multiple low-dimensional image features 
with high-level context. At the same time, the drawbacks and limitations of traditional 
detectors were showed, the most prominent of which is that traditional feature extractors 
failed to capture the high-level semantic features and sophisticated content of the image. 

3 Datasets and evaluation metrics 
Datasets play a significant role in the development of object detectors. In this section, 
several significant datasets for generic object detection task are briefly reviewed and 
evaluation metrics are summarized in Tab. 2. 

3.1 Datasets  
From the initial 20 classification of the lesser picture PASCAL VOC [Everingham, Van 
Gool, Williams et al. (2010)] to the subsequent multi-category of millions of large dataset 
ImageNet [Deng, Dong, Socher et al. (2009)], the object detection methods based on 
deep learning have mushroomed. Additionally, the emergence of large dataset such as MS 
COCO, Open Images etc. [Lin, Maire, Belongie et al. (2014); Kuznetsova, Rom, Alldrin 
et al .(2000); Papageorgiou and Poggio (2000); Dalal and Triggs (2005)], provided more 
abundant and finer image features for detection approaches through more sophisticated 
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image annotation information and finer picture outlines. It was the publication of these 
datasets that promoted the development of object detection and other computer vision 
tasks. Therefore, datasets play a significant role in computer vision tasks in the last 
decade. Some overviews and highlights of significant datasets are listed in Tab. 1. 

Table 1: Significant datasets for object detection 

Dataset Total Images Classes Highlights 

PASCAL 
VOC 
(2012) 

 
11540 

 

 
20 

Contains 20 categories of 
common objects in life. 
Complete picture 
annotations. 

 
ImageNet 

 
14 millions+ 

 
21841 

Ample image samples and 
rich object classes. 
More indiscernible than 
PASCAL VOC. 

 
MS COCO 

 
328,000+ 

 
80 

The object in image are 
moderately sized and 
centered. 
Relatively fine picture 
annotations. 

Open 
ImagesV5 

 
2.8 millions+ 

 
350 

The split mask marks the 
outline of the object. 
More accurate object 
outlines and finer image 
annotations. 

Places 10 millions+ 434 The largest labeled dataset 
for scene recognition 

Objects365 6300000+ 365 
Universal detection dataset 
with large scale and high 
quality 

PASCAL VOC [Everingham, Van Gool, Williams et al. (2010)] was an excellent dataset 
that standardized image recognition and classification. From the initial four 
classifications of 2005 to the 20 classifications of common objects later, the PASCAL 
VOC dataset provided increasingly rich pictures and categories. At the same time, all 
previous images were retained to serve as future training sets, which stimulated the 
development of the model and improves the overall performance and accuracy of the 
detection methods. 
ImageNet [Deng, Dong, Socher et al. (2009)] was a tremendous dataset widely used in 
the ILSVRC challenging competition, which contained more than 14 million full-size 
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tagged images and 20,000 image categories. The ILSVRC competition mainly included 
image classification and object positioning, detection, video detection, and scene 
classification, and provided different dataset for each part.  
MS COCO [Lin, Maire, Belongie et al. (2014)] was considered one of the most 
authoritative and richest datasets in computer vision. The biggest advantage of dataset 
was that the objects were moderately sized and centered in the image, with the goal of 
understanding the scene. In the object detection challenge, the MS COCO provided 
200,000 images and more than 500,000 object annotations in 80 categories, making it one 
of the most widely publicly available detection databases in the world. 
Open Images [Kuznetsova, Rom, Alldrin et al. (2000); Ferrari (2018)] (now V5 in 2019) 
was the largest publicly available object detection dataset publicly available from Google. 
Open Images V5 contained a split mask of 350 categories and 2.8 million object 
instances, which differed from the bounding box in which only the object was identified, 
the split mask marked the outline of the object, characterizing its spatial extent to a higher 
level of detail. What’s even more breathtaking was that the Google team released about 
100,000 masked images on the validation and test set, and these masked images were all 
manually annotated. 
Object365 [Shao, Li, Zhang et al. (2019)] was released by Kuangshi Research Institute in 
2019 had the characteristics of large scale, high quality and strong generalization ability. 
Compared with MS COCO dataset, Objects365 contained 630000 pictures, about 5 times 
as many as MS COCO; contained about 10 million object annotation boxes, about 11 
times as many as MS COCO dataset annotation boxes; the average annotation boxes of 
each picture of Objects365 were 15.8, more than 2 times as many as MS COCO dataset. 
In addition, Using the Object365 dataset and the previously released large-scale 
CrowdHuman dataset, Kuangshi technology and Beijing Zhiyuan Artificial Intelligence 
Research Institute jointly held the field inspection challenge (DIW 2019), and 
successfully applied for the seminar of computer vision and model recognition 
conference in 2019. 

3.2 Evaluation metrics 
Generally, there are three metrics for evaluating detectors performance: speed in Frame 
Per Second (FPS), precision and recall. Specific details of evaluation metrics can be seen 
in Tab. 2, and also found in Everingham et al. [Everingham, Van Gool, Williams et al. 
(2010); Deng, Dong, Socher et al. (2009)]. 

4 Detection paradigms in deep learning 
Object detectors based on deep learning are mainly divided into two classes: Region 
Based (Two Stage) Detectors and Unified (One Stage) Detectors. Region based detectors 
usually involve two steps of regional proposal generation and classification prediction. In 
contrast, Unified detectors normally employ a complete framework to predict object areas 
in pictures and classify them. Therefore, region-based detectors could acquire higher 
accuracy while unified detectors have faster detection speed. Several significant detectors 
based on deep learning is shown in Fig. 1. 
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Table 2: Metrics for evaluating detectors performance 

Metric Meaning Definition and Description 

FPS Frame per second The number of images processed per second 

ε IOU threshold Standard for assessing location accuracy 

TP True Positive Correct predictions from samples 

FP False Positive Wrong predictions from samples 

β Confidence threshold Indicators used to calculate precision and recall 

P(β) Precision The fraction of correct detections out of the total 
detections   

R (β) Recall The fraction of all objects detected by the 
detector having a confidence of at least β 

AP Average Precision Computed over the different levels of recall by 
varying the β 

mAP mean AP Average score of AP across all classes 

TPR True Positive Rate The fraction of TP over FP 

FPPI FP Per Image The fraction of FP over each image 

                     Generic Object Detection 

 
 
 
 
mAP 

 
 
 
mean 
Average 
Precision 
 

VOC mAP at 0.5 IOU threshold over all 
20 classes 

ILSVRC mAP at a modified IOU over all 
classes 

 
 
MS  
COCO 

• APcoco: mAP averaged over ten 
ε: {0.5: 0.05: 0.95} 

• AP50: mAP at 0.50 IOU threshold 

• AP75: mAP at 0.75 IOU threshold 

• APS: AP coco for small objects of 
area smaller than 322 
• APM: AP coco for objects of area 
between 322 and 962 

• APL: AP coco for large objects of 
area bigger than 962 
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Figure 1: Several typical region based detectors and unified detectors 

 

Figure 2: A brief description of several two-stage detector frameworks 

4.1 Region based detectors 
Region Based Detectors generally split object detection task into two steps, candidate 
region generation and classification prediction. During candidate region generation phase, 
an existing search algorithm [Endres and Hoiem (2010); Rahtu, Kannala and Blaschko 
(2011); Alexe, Deselaers and Ferrari (2012); Uijlings, Van De Sande, Gevers et al. (2013)] 
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is used to generate a plurality of proposal regions of the image that may contain objects. 
After that, the deep convolutional neural network is used to extract the features of the 
object in the candidate regions. Finally, extracted feature vectors in the image is classified 
and predicted from the predefined category label. Next, some of significant and excellent 
detectors among Region Based Detectors [Girshick, Donahue, Darrell et al. (2014); He, 
Zhang, Ren et al. (2015); Girshick (2015); Ren, He, Girshick et al. (2015); Dai, Li, He et 
al. (2016); He, Gkioxari, Dollár et al .(2017); Cai and Vasconcelos (2018); Ouyang, Wang, 
Zhu et al. (2017); Li, Peng, Yu et al. (2017); Lu, Li, Yue et al. (2019)] are reviewed and 
summarized as follows, and an overview of several region based detectors (e.g., RCNN, 
Fast RCNN, Faster RCNN, RFCN and Mask RCNN) is shown in Fig. 2. 
RCNN Series Detectors [Girshick, Donahue, Darrell et al. (2014); He, Zhang, Ren et al. 
(2015); Girshick (2015); Ren, He, Girshick et al. (2015)]: In the past few years, 
convolutional neural networks (CNNs) [Krizhevsky, Sutskever and Hinton (2012); 
Simonyan and Zisserman (2014); Szegedy, Liu , Jia et al. (2015); He, Zhang, Ren et al. 
(2016); Huang, Liu, Van Der Maaten et al. (2017); Hu, Shen and Sun (2018); Ghiasi, Lin 
and Le (2019)] had achieved great success in the ImageNet classification task through its 
powerful hierarchical feature learning ability. After that, Girshirk et al. explored RCNN 
framework for general object detection and semantic segmentation in 2014, which 
integrated AlexNet [Krizhevsky, Sutskever and Hinton (2012)] with Selective Search 
algorithm [Uijlings, Van De Sande, Gevers et al. (2013)]. Apart from that, R-CNN 
adopted transfer learning and fine-tune techniques to further improve detection accuracy. 
After that, plenties of models were proposed on the basis of RCNN such as SPPNet, Fast 
RCNN, Faster RCNN etc. 
Inspired by spatial pyramid matching [Kleban, Xie and Ma (2008)], He et al. adopted 
Spatial Pyramid Pooling (SPP) [He, Zhang, Ren et al. (2015)] into RCNN to accelerate 
the calculation of spatial feature vectors and solve the problem of fixed-size inputs. 
Naturally, R-CNN with SPP layer could significantly improve reasoning and detection 
speed while maintaining comparable or better performance over the no-SPP architecture. 
However, SPPNet performs an obvious disadvantage that it fails to update the 
convolutional layer parameters before the SPP layer by back propagation, which greatly 
limits the performance of deep CNNs. Additionally, feature vectors also require extra 
disk space to store. 
To solve these above problems, Girshirk proposed Fast RCNN [Girshick (2015)] to 
accelerate the calculation of the entire network features and achieve better object 
detection performance. Specially speaking, Fast RCNN replaces spatial pyramid pooling 
layer in SPPNet with ROI pooling and changes the final SVM classification to the fully 
connected layer with SoftMax supervised classification, adding one more connected layer 
branch for border regression.  
Although Fast RCNN can greatly speed up the detection process, it takes more time to 
process the image in the regional proposal phase than the feature extraction. Additionally, 
model uses Selective Search [Uijlings, Van De Sande, Gevers et al. (2013)] or Edge 
Boxes [Zitnick and Dollár (2014)] to generate proposal regions, which are based on low-
dimensional image features to produce redundant or repeated candidate regions. In order 
to generate candidate regions better and faster, Ren et al. proposed Faster RCNN [Ren, 
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He, Girshick et al. (2015)], which offered a more accurate and faster regional generation 
proposal called Region proposal Network (RPN) employing anchor boxes mechanism. 
While Faster RCNN exhibits superior detection accuracy and faster detection speed than 
previous models, it fails to share feature computation during the classification phase. 
Such amount of calculation is huge because there are hundreds of candidate regions in 
each picture.  
Fast RCNN and Faster RCNN varients [Bell, Lawrence Zitnick, Bala et al. (2016); 
Kong, Yao, Chen et al. (2016); Shrivastava, Gupta and Girshick (2016); Lin, Dollár, 
Girshick et al. (2017); Dai, Li , He et al. (2016); Zhu, Zhao, Wang et al. (2017); Li, Peng, 
Yu et al. (2017)]: In order to improve the accuracy of  detecting small objects, ION [Bell, 
Lawrence Zitnick, Bala et al. (2016)] adds skip connection and Recurrent Neural 
Network (RNN) on the basis of Fast RCNN, in which L2 regularized skip connection is 
used to extract multi-layer features and RNN is used to extract object context information. 
At the same time, Kong et al. [Kong, Yao, Chen et al. (2016)] proposes a deeply 
hierarchical structure HyperNet, which is used to generate object proposals and detect 
objects at the same time. In the same year, shrivast et al. [Shrivastava, Gupta and 
Girshick (2016)] proposed a new bootstrapping method OHEM based on the Stochastic 
gradient descent algorithm. The main idea of OHEM is to select only some difficult 
samples for back propagation training, so it can greatly shorten the reasoning time and 
the network focuses on distinguishing negative samples. All the detection architectures 
described before are only predicted on the top-level feature map, but due to the low 
resolution of the high-level feature map, the detectors have always performed poorly in 
small object detection. In order to achieve better detection performance, Lin et al. [Lin, 
Dollár, Girshick et al. (2017)] proposes FPN network, which combines high-level and 
low-level information and predicts hierarchically. Noticing that the fully connected layers 
greatly increase the calculation of the feature, Dai et al. [Dai, Li, He et al. (2016)] 
proposes Region-based Fully Convolutional Networks (R-FCN) to solve this problem, 
which ensures the entire network sharing feature calculation. Compared to Faster RCNN, 
R-FCN used the ResNet101 [He, Zhang, Ren et al. (2016)] Benchmark network and 
replaces the ROI layer and the fully connected layer with Position Sensitive Score Maps 
and Position Sensitive ROI Pooling Layer. After that, Zhu et al. [Zhu, Zhao, Wang et 
al .(2017)] proposes CoupleNet network based on global, local and context information, 
which uses the location sensitive graph in R-FCN to capture the local information of the 
object, and adopts the candidate region pooling in Fast RCNN to capture the global 
information and context information of the object. In order to further improve detection 
speed, Li et al. [Li, Peng, Yu et al. (2017)] proposed Light Head RCNN, which used a 
large-core separable convolution to generate a feature map with a small number of 
channels, and then connected an RCNN sub-network that extracted the features of the 
classification and regression. 
Mask RCNN [He, Gkioxari, Dollár et al. (2017)]: The instance segmentation task and 
detection task are interpenetrated, and the only difference is that instance segmentation 
requires assigning a specific category label to each pixel in the image. Early methods 
basically classified the images finely, and then used Fast RCNN to classify each region. 
In order to obtain more precise instance segmentation accuracy and higher efficiency, He 
et al. [He, Gkioxari, Dollár et al. (2017)] proposed Mask RCNN to handle instance 
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segmentation by extending Faster RCNN. Compared with Faster RCNN, Mask RCNN 
replaced ROI Pooling layer with ROI Align layer for preserving spatial correlation at the 
pixel level.  
Cascade RCNN [Cai and Vasconcelos (2018)]: In order to find the appropriate IOU 
threshold for training and predicting, Cai et al. [Cai and Vasconcelos (2018)] proposed 
the Cascade RCNN, which consisted of a series of detectors trained by increasing the 
IOU threshold cascade. Resampling is adopted to make all detectors close to positive 
sample training set during training to reduce overfitting in the network. In addition, the 
overall model also adopts the same cascading mode during testing, which promoted a 
better match between the candidate frame and the detector at each stage.  
SNIP and TridentNet [Singh and Davis (2018); Singh and Najibi (2018); Li, Chen, 
Wang et al. (2019)]: At present, the common object detection datasets mainly include two 
challenges: small object size and large object size difference. In order to better deal with 
the problem of image size invariance, Singh et al. [Singh and Davis (2018)] Proposes a 
new training scheme, Scale Normalization for Image Pyramids(SNIP), which selectively 
propagates the gradient of object instances of different sizes as the loss function of image 
size and extracts candidate regions and training according to the setting resolution 
threshold. After that, SNIPER [Singh, Najibi and Davis (2018)] is an improved version of 
SNIP. It scales the image to three sizes and extracts a certain size of chip according to 
certain rules, and then scales the chip to a fixed size for training and detection. In addition, 
compared with SNIP, which only focuses on the candidate areas obtained by the 
recommendation box algorithm, SNIPER adopts the negative chip sampling strategy to 
select the candidate areas that are easy to be misjudged as objects. After that, Li et al. [Li, 
Chen, Wang et al. (2019)] proposes tridentnet algorithm  based on the receptive field, 
which increases the receptive field of the network by introducing hole convolution, so as 
to detect targets at different scales. Specifically, tridentnet replaces the convolution layer 
of Faster RCNN feature extraction network with a convolution layer of three branches 
equipped with different dilated parameters. So that on the one hand, the time of forward 
calculation of the network is reduced, on the other hand, the parameters learned by the 
network have better generalization ability.  

4.2 Unified detectors 
Compared to region based detectors, unified detectors exhibit faster detection speed. 
Concretely speaking, unified detectors combine regional proposal and classification 
prediction, which take all positions in the picture as candidate regions and send entire 
picture into convolution network to extract feature vectors, and finally output the 
category and position of the object directly. Therefore, unified frameworks as a whole can 
be optimized end-to-end manner, and it is foreseeable that the detection accuracy is worse 
as a result of the extraction of fewer picture feature vectors. Next, some of significant and 
excellent detectors among Unified Detectors [Sermanet, Eigen, Zhang et al. (2013); 
Redmon, ivvala, Girshick et al. (2016); Redmon and Farhadi (2017); Redmon and 
Farhadi (2018); Liu, Anguelov, Erhan et al. (2016); Fu, Liu , Ranga et al. (2017); Lin, 
Goyal, Girshick et al. (2017); Law and Deng (2018)] are reviewed and summarized as 
follows, and an overview of unified detectors (e.g., YOLO, SSD, CornerNet and 
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RetinaNet) are shown in Fig. 3. 

 
Figure 3: A brief description of several one-stage detector frameworks 

Overfeat [Sermanet, Eigen, Zhang et al. (2013)]: As one of the earliest unified detectors, 
Sermanet et al. [Sermanet, Eigen, Zhang et al. (2013)]proposed a feature detector in 2013 
called Overfeat using a fully convolutional deep network, which trained multiple tasks 
and assisted each other to improve accuracy through a single shared network, thus it 
could success to apply in classification, location and detection tasks. Concretely speaking, 
Overfeat employs multi-scale images and sliding window method to generate candidate 
regions and replaces final pooling layer with offset max pooling for obtaining more 
robust image features. Apart from this, not suppressing bounding boxes, Overfeat 
employs a cumulative bounding box approach to increase detection confidence. 
Nevertheless, Overfeat still has some places such as coordinates loss function, bounding 
box prediction etc. to optimize and improve. 
YOLO Series Detectors [Redmon, ivvala, Girshick et al. (2016); Redmon and Farhadi 
(2017); Redmon and Farhadi (2018)]: Similar to the thought of Overfeat, Rendom et al. 
[Redmon, Divvala, Girshick et al. (2016)] developed a unified real-time detection 
framework called YOLO, which handled detection as a regression problem. The overall 
model employed a single deep convolutional network, in which input image was send to 
extract features and directly output the object classification and coordinates, thus the 
overall architecture could be optimized end-to-end manner and performed faster 
reasoning and detection speed compared with region based detectors. Despite all this, 
there are also some limitations of the YOLO, which yields more location errors and fails 
to recognize clusters or small objects, irregular or different aspect radio objects, untrained 
object categories etc. After that, Redmon et al. [Redmon and Farhadi (2017)] proposed 
YOLOv2 (better and faster) by mending the shortcomings of YOLO architecture and 
employing more excellent optimization methods and network architecture. Concretely 
speaking, model mainly focuses on improving model recall, object location and 
classification accuracy compared to YOLO, which applies some novel and beneficial 
methods such as multi-scale training, k-means clustering algorithm, joint optimization 
technique etc. to address the limitations of the original model. Additionally, YOLOv2 
replaces the original VGG network [Simonyan and Zisserman (2014)] with Darknet19 
benchmark network, and adds Batch Normalization after each convolution layer to 
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optimize the deep network, allowing the model to converge faster. Although YOLOv2 
improved in the original model by a large margin, it failed to break the limit of inaccurate 
detection of small objects. Two years later, some novel ideas and continuous 
advancement of the deep network prompted Redmon and Farhadi to propose a better 
unified detector called YOLOv3 [Redmon and Farhadi (2018)], which was elevated on 
the basis of YOLOv2. Different from YOLOv2, model employed darknet53 as backbone 
network and resNet shortcut connection to avoid gradient disappearance. In addition, 
YOLOv3 referenced Feature Pyramid Network (FPN) [Lin, Dollár, Girshick et al. (2017)] 
to adopt three scale feature maps and replaced the original SoftMax with sigmoid and 
entropy on the loss function to support multi-tag prediction.  
SSD Series Detectors [Liu, Anguelov, Erhan et al. (2016); Fu, Liu and Ranga et al. 
(2017)]: To optimize the problem of inaccurate position in the YOLO model, Liu et al. 
[Liu, Anguelov, Erhan et al. (2016)] proposed a faster and more accurate unified detector 
called SSD, which combined the regression idea in YOLO with the anchor box 
mechanism of Faster RCNN. The overall model architecture was fine-tuned on the 
VGG16 network, where the altrous algorithm was used to convert the last fully connected 
layers into convolutional layers and added several additional convolutional and pooling 
layers at the end of the network. By employing picture features at different resolutions 
extracted from multiple convolutional layers to predict Bounding boxes of different 
scales and sizes, the model could handle multiple sizes of objects even in low resolution 
pictures. Nevertheless, SSD model fails to solve the problem of low accuracy on 
detecting small objects, the dominating reason is that there are few features of small 
objects in the high-level feature maps. After that, Fu et al. [Fu, Liu, Ranga et al. (2017)] 
proposed the DSSD model for more accurate detection of small objects in the picture, 
which added a series of deconvolution layers after the original SSD architecture for more 
complete image information interaction. Specially speaking, DSSD model improves the 
feature representation ability of low-level high-resolution images for small objects 
detection, which takes account of high-level feature information and low-level spatial 
resolution simultaneously. However, due to the addition of deconvolution module and 
increase in calculation, the model demands more reasoning and detection time. 
RetinaNet [Lin, Goyal, Girshick et al. (2017)]: Generally, unified detectors exhibit worse 
detection performance than region based detectors because former fails to process the 
imbalance of positive and negative samples. In order to solve this problem, Lin et al. [Lin, 
Goyal, Girshick et al. (2017)] proposed a unified detector called RetinaNet using Focal 
loss replace original cross entropy loss, which could reduce the weight of easily 
categorized samples during training and focused on those samples that are difficult to 
classify. The overall model architecture adopts FPN as backbone network to extract 
picture features, followed by two sub-networks for classification and border regression. 
Nevertheless, the fly in the ointment is that RetinaNet spends more reasoning and 
detection time than other state-of-the-art unified detectors. After that, Zhang et al. [Zhang, 
Wen, Bian et al. (2018)] proposes a single-stage detector RefineDet with balanced speed 
and accuracy, which consists of anchor refinement module, transfer connection block and 
object detection module. In addition, the feature fusion of feature pyramid network is also 
used in the architecture to effectively improve the detection performance on small objects. 
Specifically, the anchor refinement module filters the negative prediction box to reduce 
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the search range and slightly adjust the position and size of the anchor box. The transform 
connection block uses deconvolution to match the dimensions of the upper and lower 
modules, and adopts the way of bitwise addition to increase the advanced features.  
CornerNet [Law and Deng (2018)]: Many of the state-of-the-art detectors have recently 
used the anchor boxes mechanism, but there are also some apparent flaws in the anchor 
boxes such as imbalanced positive and negative samples, excessive introduction of 
hyperparameters etc. Therefore, Law et al. [Law and Deng (2018)] proposed a unified 
detector called CornerNet, which considered bounding box as a pair of key corner 
detections (top left and bottom right). At the same time, it also proposed a new pooling 
method corner pooling to help the model better locate the corners. In addition, model's 
backbone network consists of two hourglass networks [Newell, Yang and Deng (2016)], 
which no longer employs maximum pool and adopts intermediate supervision method. 
After that. Zhou et al. [Zhou, Wang and Krähenbühl (2019)] proposes a single-stage 
detector CenterNet [Duan, Bai, Xie et al. (2019)] using corner and center point prediction, 
which is modified on the CornerNet architecture. Similar to CornerNet, CenterNet uses 
thermodynamic diagram to realize and introduce the Gaussian distribution area of 
prediction point to calculate the real prediction value, and the loss function is also fine-
tuned on the original basis. Compared with CornerNet, the model directly regresses the 
target frame size, and the predicted value can be obtained according to the target frame 
size and the coordinates of the center point. In addition, two additional modules, center 
pooling and cascade corner pooling, are introduced into the model. Center pooling is used 
to predict the key point branches of the center to help the center key point obtain more 
visual recognition information of the target, while cascade corner pooling is used to 
obtain more robust corner information. 

5. State-of-the-art for Generic Object Detection 
PASCAL VOC and MS COCO are the most commonly used datasets for object detection 
competitions, where former is a small dataset containing approximately two objects per 
image and latter is a large dataset including of multiple small objects per image. 
Therefore, it is more challenge to identify objects employing MS COCO dataset. Next, in 
Tab. 3 and Tab. 4 we list some excellent detector results on PASCAL VOC and MS 
COCO over the recent few years. In Tab. 3, for VOC2007, the models are trained on 
VOC2007 and VOC2012 trainval sets and tested on VOC2007 test set. For VOC2012, 
the models are trained on VOC2007 and VOC2012 trainval sets plus VOC2007 test set 
and tested on VOC2012 test set by default. In table 4, Detection results on MS COCO 
test-dev data set. 
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Table 3: Some of state-of-the-art detectors result on PASCAL VOC 

Detector Backbone Network Year VOC07 (IOU=0.5) VOC12 (IOU=0.5) 

Region Based Detectors: 

RCNN VGG-16 2014 58.5 - 

SPPNet VGG-16 2014 59.2 - 

Fast RCNN VGG-16 2015 70.0 68.4 

Faster RCNN VGG-16 2015 76.4 73.8 

OHEM VGG-16 2016 74.6 71.9 

CRAFT VGG-16 2016 75.7 71.3 

HyperNet VGG-16 2016 76.3 71.4 

ION VGG-16 2016 79.2 76.4 

R-FCN ResNet-101 2016 80.5 77.6 

DeNet512 ResNet-101 2017 77.1 73.9 

CoupleNet ResNet-101 2017 82.7 80.4 

FPN-Reconfig ResNet-101 2018 82.4 81.1 

DCN+R-CNN ResNet-101 2018 84.0 81.2 

Unified Detectors: 

YOLO VGG-16 2016 66.4 57.9 

SSD512 VGG-16 2016 79.8 57.9 

RON384 VGG-16 2017 75.4 73.0 

YOLOv2 Darknet 2017 78.6 73.5 

DSSD513 ResNet-101 2017 81.5 80.0 

RefineDet512 VGG-16 2018 81.8 80.1 

RFBNet512 VGG-16 2018 82.2 - 

CenterNet ResNet-101 2019 78.7 - 
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Table 4: Some of state-of-the-art detectors result on MS COCO 

Detector Backbone 
Network Year AP  AP50  AP75 APS  APM  APL 

Region Based Detectors: 

Fast RCNN VGG-16 2015 19.7  35.9   - -     -     - 

Faster RCNN VGG-16 2015 21.9  42.7   - -     -     - 

OHEM VGG-16 2016 22.6  42.5  22.2 5.0   23.7  37.9 

ION VGG-16 2016 23.6  43.2  23.6 6.4   24.1  38.3 

R-FCN ResNet-101 2016 29.9  51.9   - 10.8  32.8  45.0 

DeNet-101 ResNet-101 2017 33.8  53.4  36.1 12.3  36.1  50.8 

CoupleNet ResNet-101 2017 34.4  54.8  37.2 13.4  38.1  50.8 

Mask RCNN ResNeXt-101 2017 39.8  62.3  43.4 22.1  43.2  51.2 

DCN+R-CNN ResNeXt-101 2018 42.6  65.3  46.5 26.4  46.1  56.4 
Cascade R-
CNN  ResNeXt-101 2018 42.8  62.1  46.3 23.7  45.5  55.2 

SNIP++ DPN-98 2018 45.7  67.3  51.1 29.3  48.8  57.1 

SNIPER++ ResNet-101 2018 46.1  67.0  51.6 29.6  48.9  58.1 

Grid R-CNN ResNeXt-101 2019 43.2  63.0  46.6 25.1  46.5  55.2 

TridentNet ResNet-101 2019 42.7  63.6  46.5 23.9  46.6  56.6 

Unified Detectors: 

SSD512 VGG-16 2016 28.8  48.5  30.3 10.9  31.8  43.5 

YOLOv2 DarkNet-19 2017 21.6  44.0  19.2 5.0   22.4  35.5 

DSSD513 ResNet-101 2017 33.2  53.3  35.2 13.0  35.4  51.1 

RetinaNet800+ ResNet-101 2018 39.1  59.1  42.3 21.8  42.7  50.2 

RefineDet512 ResNet-101 2018 36.4  57.5  39.5 16.6  39.9  51.4 

CornerNet511 Hourglass-104 2018 40.5  56.5  43.1 19.4  42.7  53.9 

FCOS ResNeXt-101 2019 42.1  62.1  45.2 25.6  44.9  52.0 
CenterNet511+
+ Hourglass-104 2019 47.0  64.5  50.7 28.9  49.9  58.9 
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6 Conclusion and Future researches 
In the past two decades, universal object detectors based on deep learning have flourished 
and achieved remarkable achievements. This article not only reviews some commonly 
used detection datasets, evaluation metrics, objects detectors based on deep learning 
methods, but also summarizes some of innovative technologies and inadequacies of 
model for some significant detectors to provide direction for future improvement. 
Concretely speaking, one of the hottest research topics in the future is to combine Auto 
Machine Learning to find the optimal detector architecture and optimization strategies. 
Then, when the number of pictures is rich and picture information is insufficient, 
excellent results can also be obtained by applying weakly supervised detection to 
detectors. In addition, recent researches have shown that efficient combination of 
contextual information can greatly improve detection performance, as objects in the 
pictures have strong relationships. Therefore, one of promising directions of future 
research on image object recognition is how to effectively and correctly incorporate 
image context information. In conclusion, the above three points would be promising 
directions to further improve detectors performance. 
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